1
|
Wang D, Lu D, Zhang M, Dai A, Jin G, Wang Q, Zhang Y, Kahane P. Advances in epileptic network findings of hypothalamic hamartomas. J Cent Nerv Syst Dis 2024; 16:11795735241237627. [PMID: 38449707 PMCID: PMC10916467 DOI: 10.1177/11795735241237627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 03/08/2024] Open
Abstract
Hypothalamic hamartomas (HHs) are congenital developmental malformations located in the hypothalamus. They are associated with a characteristic clinical manifestation known as gelastic seizures (GS). However, the traditional understanding of HHs has been limited, resulting in insufficient treatment options and high recurrence rates of seizures after surgery. This is consistent with the network hypothesis of focal epilepsy that the epileptogenic zone is not only limited to HH but may also involve the distant cerebral cortex external to the HH mass. The epilepsy network theory, on the other hand, provides a new perspective. In this study, we aim to explore HH-related epilepsy as a network disease, challenging the conventional notion of being a focal lesional disease. We analyze various aspects of HHs, including genes and signaling pathways, local circuits, the whole-brain level, phenotypical expression in terms of seizure semiology, and comorbidities. By examining HHs through the lens of network theory, we can enhance our understanding of the condition and potentially identify novel approaches for more effective management and treatment of epilepsy associated with HHs.
Collapse
Affiliation(s)
- Di Wang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Di Lu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Mingtai Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Anqi Dai
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Guangyuan Jin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qiao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuyang Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Philippe Kahane
- Neurology Deparment, CHU Grenoble Alpes, University Grenoble Alpes, Grenoble Institute Neuroscience, Grenoble, France
| |
Collapse
|
2
|
Wu SN, Wu CL, Cho HY, Chiang CW. Effective Perturbations by Small-Molecule Modulators on Voltage-Dependent Hysteresis of Transmembrane Ionic Currents. Int J Mol Sci 2022; 23:ijms23169453. [PMID: 36012718 PMCID: PMC9408818 DOI: 10.3390/ijms23169453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih's Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih's Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih's Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih's Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Post-Baccalaureate Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5334); Fax: +886-6-2362780
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Lai MC, Wu SN, Huang CW. Zingerone Modulates Neuronal Voltage-Gated Na + and L-Type Ca 2+ Currents. Int J Mol Sci 2022; 23:ijms23063123. [PMID: 35328544 PMCID: PMC8950963 DOI: 10.3390/ijms23063123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Zingerone (ZO), a nontoxic methoxyphenol, has been demonstrated to exert various important biological effects. However, its action on varying types of ionic currents and how they concert in neuronal cells remain incompletely understood. With the aid of patch clamp technology, we investigated the effects of ZO on the amplitude, gating, and hysteresis of plasmalemmal ionic currents from both pituitary tumor (GH3) cells and hippocampal (mHippoE-14) neurons. The exposure of the GH3 cells to ZO differentially diminished the peak and late components of the INa. Using a double ramp pulse, the amplitude of the INa(P) was measured, and the appearance of a hysteresis loop was observed. Moreover, ZO reversed the tefluthrin-mediated augmentation of the hysteretic strength of the INa(P) and led to a reduction in the ICa,L. As a double ramp pulse was applied, two types of voltage-dependent hysteresis loops were identified in the ICa,L, and the replacement with BaCl2-attenuated hysteresis of the ICa,L enhanced the ICa,L amplitude along with the current amplitude (i.e., the IBa). The hysteretic magnitude of the ICa,L activated by the double pulse was attenuated by ZO. The peak and late INa in the hippocampal mHippoE-14 neurons was also differentially inhibited by ZO. In addition to acting on the production of reactive oxygen species, ZO produced effects on multiple ionic currents demonstrated herein that, considered together, may significantly impact the functional activities of neuronal cells.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Chi-Mei Medical Center, Department of Pediatrics, Tainan 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (S.-N.W.); (C.-W.H.)
| | - Chin-Wei Huang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (S.-N.W.); (C.-W.H.)
| |
Collapse
|
4
|
Abstract
PURPOSE Development of new thymoleptic medications has primarily centered on anticonvulsants and antipsychotic drugs. Based on our studies of intracellular calcium ion signaling in mood disorders, we were interested in the use of novel medications that act on this mechanism of neuronal activation as potential mood stabilizers. METHOD We reviewed the dynamics of the calcium second messenger system and the international body of data demonstrating increased baseline and stimulated intracellular calcium levels in peripheral cells of patients with bipolar mood disorders. We then examined studies of the effect of established mood stabilizers on intracellular calcium ion levels and on mechanisms of mobilization of this second messenger. After summarizing studies of calcium channel blocking agents, whose primary action is to attenuate hyperactive intracellular calcium signaling, we considered clinical experience with this class of medications and the potential for further research. FINDINGS Established mood stabilizers normalize increased intracellular calcium ion levels in bipolar disorder patients. Most case series and controlled studies suggest an antimanic and possibly mood stabilizing effect of the calcium channel blocking medications verapamil and nimodipine, with fewer data on isradipine. A relatively low risk of teratogenicity and lack of cognitive adverse effects or weight gain suggest possible applications in pregnancy and in patients for whom these are considerations. IMPLICATIONS Medications that antagonize hyperactive intracellular signaling warrant more interest than they have received in psychiatry. Further experience will clarify the applications of these medications alone and in combination with more established mood stabilizers.
Collapse
|
5
|
Helen Cross J, Spoudeas H. Medical management and antiepileptic drugs in hypothalamic hamartoma. Epilepsia 2017; 58 Suppl 2:16-21. [DOI: 10.1111/epi.13758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- J. Helen Cross
- UCL-Institute of Child Health; Great Ormond Street Hospital for Children; London United Kingdom
- Young Epilepsy; Lingfield United Kingdom
| | - Helen Spoudeas
- Great Ormond Street Hospital for Children & University College Hospital; London United Kingdom
| |
Collapse
|
6
|
Kerrigan JF, Parsons A, Tsang C, Simeone K, Coons S, Wu J. Hypothalamic hamartoma: Neuropathology and epileptogenesis. Epilepsia 2017; 58 Suppl 2:22-31. [DOI: 10.1111/epi.13752] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 01/06/2023]
Affiliation(s)
- John F. Kerrigan
- Hypothalamic Hamartoma Program and Pediatric Neurology Division; Barrow Neurological Institute at Phoenix Children's Hospital; Phoenix Children's Hospital; Phoenix Arizona U.S.A
- Hypothalamic Hamartoma Tissue Research Laboratory; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona U.S.A
| | - Angela Parsons
- Hypothalamic Hamartoma Tissue Research Laboratory; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona U.S.A
| | - Candy Tsang
- Hypothalamic Hamartoma Tissue Research Laboratory; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona U.S.A
| | - Kristina Simeone
- Department of Pharmacology; Creighton University School of Medicine; Omaha Nebraska U.S.A
| | - Stephen Coons
- Division of Neuropathology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona U.S.A
| | - Jie Wu
- Hypothalamic Hamartoma Program and Division of Neurology; Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix Arizona U.S.A
| |
Collapse
|
7
|
Brain proteomic modifications associated to protective effect of grape extract in a murine model of obesity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:578-588. [DOI: 10.1016/j.bbapap.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
8
|
Wu J, Gao M, Rice SG, Tsang C, Beggs J, Turner D, Li G, Yang B, Xia K, Gao F, Qiu S, Liu Q, Kerrigan JF. Gap Junctions Contribute to Ictal/Interictal Genesis in Human Hypothalamic Hamartomas. EBioMedicine 2016; 8:96-102. [PMID: 27428422 PMCID: PMC4919609 DOI: 10.1016/j.ebiom.2016.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022] Open
Abstract
Human hypothalamic hamartoma (HH) is a rare subcortical lesion associated with treatment-resistant epilepsy. Cellular mechanisms responsible for epileptogenesis are unknown. We hypothesized that neuronal gap junctions contribute to epileptogenesis through synchronous activity within the neuron networks in HH tissue. We studied surgically resected HH tissue with Western-blot analysis, immunohistochemistry, electron microscopy, biocytin microinjection of recorded HH neurons, and microelectrode patch clamp recordings with and without pharmacological blockade of gap junctions. Normal human hypothalamus tissue was used as a control. Western blots showed increased expression of both connexin-36 (Cx36) and connexin-43 (Cx43) in HH tissue compared with normal human mammillary body tissue. Immunohistochemistry demonstrated that Cx36 and Cx43 are expressed in HH tissue, but Cx36 was mainly expressed within neuron clusters while Cx43 was mainly expressed outside of neuron clusters. Gap-junction profiles were observed between small HH neurons with electron microscopy. Biocytin injection into single recorded small HH neurons showed labeling of adjacent neurons, which was not observed in the presence of a neuronal gap-junction blocker, mefloquine. Microelectrode field recordings from freshly resected HH slices demonstrated spontaneous ictal/interictal-like discharges in most slices. Bath-application of gap-junction blockers significantly reduced ictal/interictal-like discharges in a concentration-dependent manner, while not affecting the action-potential firing of small gamma-aminobutyric acid (GABA) neurons observed with whole-cell patch-clamp recordings from the same patient's HH tissue. These results suggest that neuronal gap junctions between small GABAergic HH neurons participate in the genesis of epileptic-like discharges. Blockade of gap junctions may be a new therapeutic strategy for controlling seizure activity in HH patients. Neuronal-type functional gap junctions are present in HH tissue. Expression of neuronal-type gap junctions is more abundant in HH tissue relative to normal hypothalamus (mammillary body). In HH slices, pharmacological block of neuronal-type gap junctions significantly reduces seizure-like discharges.
This paper evaluates the role that gap junctions contribute to seizure activity utilized human hypothalamic hamartoma (HH) tissue after surgical resection. We find that 1) gap junctions are present in HH tissue, 2) gap junctions are more abundant in HH tissue relative to normal hypothalamus (mammillary body), and 3) pharmacological blockade of gap junctions in freshly-resected HH tissue slices can decrease the seizure-like discharges. These results provide evidence that gap junctions participate in the generation of seizures from HH tissue and suggest further research into the possibility that gap junction blocking medications may improve seizures in patients with HH.
Collapse
Affiliation(s)
- Jie Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University of Medical College, Guangdong, Shantou 815041, China.
| | - Ming Gao
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Stephen G Rice
- Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Candy Tsang
- Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - John Beggs
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Dharshaun Turner
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Guohui Li
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kunkun Xia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Fenfei Gao
- Department of Pharmacology, Shantou University of Medical College, Guangdong, Shantou 815041, China
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Qiang Liu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - John F Kerrigan
- Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| |
Collapse
|
9
|
Abstract
Hyperactive intracellular calcium ion (Ca) signaling in peripheral cells has been a reliable finding in bipolar disorder. Some established mood stabilizing medications, such as lithium and carbamazepine, have been found to normalize elevated intracellular Ca concentrations ([Ca]i) in platelets and lymphocytes from bipolar disorder patients, and some medications the primary effect of which is to attenuate increased [Ca]i have been reported to have mood stabilizing properties.Hyperactive intracellular Ca signaling has also been implicated in epilepsy, and some anticonvulsants have calcium antagonist properties. This study demonstrated that levetiracetam, an anticonvulsant that has been shown to block N and P/Q-type calcium channels in animal studies does not alter elevated [Ca]i in blood platelets of patients with bipolar disorder. Review of published clinical trials revealed no controlled evidence of efficacy as a mood stabilizer.This study underscores the possibility that pharmacologic actions of a medication in animals and normal subjects may not necessarily predict its pharmacologic or clinical effects in actual patients. Effects of treatments on pathophysiology that is demonstrated in clinical subtypes may be more likely to predict effectiveness in those subtypes than choosing medications based on structural similarities to established treatments.
Collapse
|
10
|
Wu J, Gao M, Shen JX, Qiu SF, Kerrigan JF. Mechanisms of intrinsic epileptogenesis in human gelastic seizures with hypothalamic hamartoma. CNS Neurosci Ther 2014; 21:104-11. [PMID: 25495642 DOI: 10.1111/cns.12348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022] Open
Abstract
Human hypothalamic hamartoma (HH) is a rare developmental malformation often characterized by gelastic seizures, which are refractory to medical therapy. Ictal EEG recordings from the HH have demonstrated that the epileptic source of gelastic seizures lies within the HH lesion itself. Recent advances in surgical techniques targeting HH have led to dramatic improvements in seizure control, which further supports the hypothesis that gelastic seizures originate within the HH. However, the basic cellular and molecular mechanisms of epileptogenesis in this subcortical lesion are poorly understood. Since 2003, Barrow Neurological Institute has maintained a multidisciplinary clinical program to evaluate and treat patients with HH. This program has provided a unique opportunity to investigate the basic mechanisms of epileptogenesis using surgically resected HH tissue. The first report on the electrophysiological properties of HH neurons was published in 2005. Since then, ongoing research has provided additional insights into the mechanisms by which HH generate seizure activity. In this review, we summarize this progress and propose a cellular model that suggests that GABA-mediated excitation contributes to epileptogenesis in HH lesions.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA; Department of Physiology, Shantou University of Medical College, Shantou, Guangdong, China; Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | | | | | | | | |
Collapse
|
11
|
Anticonvulsant effects of bis-1,4-dihydropyridines and the probable role of L-type calcium channels suggested by docking simulations. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1083-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Steinmetz PN, Wait SD, Lekovic GP, Rekate HL, Kerrigan JF. Firing behavior and network activity of single neurons in human epileptic hypothalamic hamartoma. Front Neurol 2013; 4:210. [PMID: 24409165 PMCID: PMC3873534 DOI: 10.3389/fneur.2013.00210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/11/2013] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Human hypothalamic hamartomas (HH) are intrinsically epileptogenic and are associated with treatment-resistant gelastic seizures. The basic cellular mechanisms responsible for seizure onset within HH are unknown. We used intra-operative microwire recordings of single neuron activity to measure the spontaneous firing rate of neurons and the degree of functional connection between neurons within the tumor. TECHNIQUE Fourteen patients underwent transventricular endoscopic resection of HH for treatment-resistant epilepsy. Prior to surgical resection, single neuron recordings from bundled microwires (total of nine contacts) were obtained from HH tissue. Spontaneous activity was recorded for two or three 5-min epochs under steady-state general anesthesia. Off-line analysis included cluster analysis of single unit activity and probability analysis of firing relationships between pairs of neurons. RESULTS Altogether, 222 neurons were identified (mean 6 neurons per recording epoch). Cluster analysis of single neuron firing utilizing a mixture of Gaussians model identified two distinct populations on the basis of firing rate (median firing frequency 0.6 versus 15.0 spikes per second; p < 10(-5)). Cluster analysis identified three populations determined by levels of burst firing (median burst indices of 0.015, 0.18, and 0.39; p < 10(-15)). Unbiased analysis of spontaneous single unit behavior showed that 51% of all possible neuron pairs within each recording epoch had a significant level of firing synchrony (p < 10(-15)). The subgroup of neurons with higher median firing frequencies was more likely to demonstrate synchronous firing (p < 10(-7)). CONCLUSION Hypothalamic hamartoma tissue in vivo contains neurons which fire spontaneously. The activity of single neurons is diverse but distributes into at least two electrophysiological phenoytpes. Functional linkage between single neurons suggests that HH neurons exist within local networks that may contribute to ictogenesis.
Collapse
Affiliation(s)
- Peter N. Steinmetz
- Comprehensive Epilepsy Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Scott D. Wait
- Carolina Neurosurgery and Spine Associates, Levine Children’s Hospital, Carolinas Medical Center, Charlotte, NC, USA
| | - Gregory P. Lekovic
- House Ear Institute, University of Southern California School of Medicine, Los Angeles, CA, USA
| | - Harold L. Rekate
- The Chiari Institute, Hofstra Northshore LIJ College of Medicine, Great Neck, NY, USA
| | - John F. Kerrigan
- Comprehensive Epilepsy Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Division of Pediatric Neurology, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, USA
| |
Collapse
|
13
|
Simeone KA, Matthews SA, Samson KK, Simeone TA. Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures. Exp Neurol 2013; 251:84-90. [PMID: 24270080 DOI: 10.1016/j.expneurol.2013.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 12/13/2022]
Abstract
Mitochondria actively participate in neurotransmission by providing energy (ATP) and maintaining normative concentrations of reactive oxygen species (ROS) in both presynaptic and postsynaptic elements. In human and animal epilepsies, ATP-producing respiratory rates driven by mitochondrial respiratory complex (MRC) I are reduced, antioxidant systems are attenuated and oxidative damage is increased. We report that MRCI-driven respiration and functional uncoupling (an inducible antioxidant mechanism) are reduced and levels of H2O2 are elevated in mitochondria isolated from KO mice. Experimental impairment of MRCI in WT hippocampal slices via rotenone reduces paired-pulse ratios (PPRs) at mossy fiber-CA3 synapses (resembling KO PPRs), and exacerbates seizure-like events in vitro. Daily treatment with AATP [a combination therapy composed of ascorbic acid (AA), alpha-tocopherol (T), sodium pyruvate (P) designed to synergistically target mitochondrial impairments] improved mitochondrial functions, mossy fiber PPRs, and reduced seizure burden index (SBI) scores and seizure incidence in KO mice. AATP pretreatment reduced severity of KA-induced seizures resulting in 100% protection from the severe tonic-clonic seizures in WT mice. These data suggest that restoration of bioenergetic homeostasis in the brain may represent a viable anti-seizure target for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Kristina A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Stephanie A Matthews
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Kaeli K Samson
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Timothy A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
14
|
Mittal S, Mittal M, Montes JL, Farmer JP, Andermann F. Hypothalamic hamartomas. Part 1. Clinical, neuroimaging, and neurophysiological characteristics. Neurosurg Focus 2013; 34:E6. [DOI: 10.3171/2013.3.focus1355] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypothalamic hamartomas are uncommon but well-recognized developmental malformations that are classically associated with gelastic seizures and other refractory seizure types. The clinical course is often progressive and, in addition to the catastrophic epileptic syndrome, patients commonly exhibit debilitating cognitive, behavioral, and psychiatric disturbances. Over the past decade, investigators have gained considerable knowledge into the pathobiological and neurophysiological properties of these rare lesions. In this review, the authors examine the causes and molecular biology of hypothalamic hamartomas as well as the principal clinical features, neuroimaging findings, and electrophysiological characteristics. The diverse surgical modalities and strategies used to manage these difficult lesions are outlined in the second article of this 2-part review.
Collapse
Affiliation(s)
- Sandeep Mittal
- 1Department of Neurosurgery, Comprehensive Epilepsy Center, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | - Monika Mittal
- 1Department of Neurosurgery, Comprehensive Epilepsy Center, Wayne State University, Detroit Medical Center, Detroit, Michigan
| | | | | | - Frederick Andermann
- 3Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Simeone TA, Simeone KA, Samson KK, Kim DY, Rho JM. Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices. Neurobiol Dis 2013; 54:68-81. [PMID: 23466697 DOI: 10.1016/j.nbd.2013.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 01/10/2023] Open
Abstract
In human disease, channelopathies involving functional reduction of the delayed rectifier potassium channel α-subunit Kv1.1 - either by mutation or autoimmune inhibition - result in temporal lobe epilepsy. Kv1.1 is prominently expressed in the axons of the hippocampal tri-synaptic pathway, suggesting its absence will result in widespread effects on normal network oscillatory activity. Here, we performed in vitro extracellular recordings using a multielectrode array to determine the effects of loss of Kv1.1 on spontaneous sharp waves (SPWs) and high frequency oscillations (HFOs). We found that Kcna1-null hippocampi generate SPWs and ripples (80-200Hz bandwidth) with a 50% increased rate of incidence and 50% longer duration, and that epilepsy-associated pathologic HFOs in the fast ripple bandwidth (200-600Hz) are also present. Furthermore, Kcna1-null CA3 has enhanced coupling of excitatory inputs and population spike generation and CA3 principal cells have reduced spike timing reliability. Removing the influence of mossy fiber and perforant path inputs by micro-dissecting the Kcna1-null CA3 region mostly rescued the oscillatory behavior and improved spike timing. We found that Kcna1-null mossy fibers and medial perforant path axons are hyperexcitable and produce greater pre- and post-synaptic responses with reduced paired-pulse ratios suggesting increased neurotransmitter release at these terminals. These findings were recapitulated in wild-type slices exposed to the Kv1.1 inhibitor dendrotoxin-κ. Collectively, these data indicate that loss of Kv1.1 enhances synaptic release in the CA3 region, which reduces spike timing precision of individual neurons leading to disorganization of network oscillatory activity and promotes the emergence of fast ripples.
Collapse
Affiliation(s)
- Timothy A Simeone
- Creighton University, Department of Pharmacology, Omaha, NE 68174, USA.
| | | | | | | | | |
Collapse
|
16
|
Asthana A, Kisaalita WS. Biophysical microenvironment and 3D culture physiological relevance. Drug Discov Today 2012; 18:533-40. [PMID: 23270783 DOI: 10.1016/j.drudis.2012.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
Force and substrate physical property (pliability) is one of three well established microenvironmental factors (MEFs) that may contribute to the formation of physiologically more relevant constructs (or not) for cell-based high-throughput screening (HTS) in preclinical drug discovery. In 3D cultures, studies of the physiological relevance dependence on material pliability are inconclusive, raising questions regarding the need to design platforms with materials whose pliability lies within the physiological range. To provide more insight into this question, we examine the factors that may underlie the studies inconclusiveness and suggest the elimination of redundant physical cues, where applicable, to better control other MEFs, make it easier to incorporate 3D cultures into state of the art HTS instrumentation, and reduce screening costs per compound.
Collapse
Affiliation(s)
- Amish Asthana
- Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
17
|
Charradi K, Elkahoui S, Karkouch I, Limam F, Hassine FB, Aouani E. Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat. Neurochem Res 2012; 37:2004-13. [PMID: 22684284 DOI: 10.1007/s11064-012-0821-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/26/2012] [Accepted: 05/28/2012] [Indexed: 11/30/2022]
Abstract
Obesity is related to an elevated risk of dementia and the physiologic mechanisms whereby fat adversely affects the brain are poorly understood. The present investigation analyzed the effect of a high fat diet (HFD) on brain steatosis and oxidative stress and the intracellular mediators involved in signal transduction, as well as the protection offered by grape seed and skin extract (GSSE). HFD induced ectopic deposition of cholesterol and phospholipid but not triglyceride. Moreover brain lipotoxicity is linked to an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of glutathione peroxidase and superoxide dismutase activities, depletion of manganese and a concomitant increase in ionizable calcium and acetylcholinesterase activity. Importantly GSSE alleviated all the deleterious effects of HFD treatment. Altogether our data indicated that HFD could find some potential application in the treatment of manganism and that GSSE should be used as a safe anti-lipotoxic agent in the prevention and treatment of fat-induced brain injury.
Collapse
Affiliation(s)
- Kamel Charradi
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisia
| | | | | | | | | | | |
Collapse
|