1
|
Gutierrez-Pineda F, Jaramillo-Canastero MV, Lozano-Garcia L, Alvarez-Restrepo JF, Zapata-Berruecos JF, Jaramillo-Betancur HA. Resective epilepsy surgery in pediatric patients with normal MRI: outcomes, challenges, and cost-effectiveness in low-resource settings. Childs Nerv Syst 2025; 41:152. [PMID: 40186785 DOI: 10.1007/s00381-025-06814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pediatric patients with drug-resistant epilepsy and normal preoperative MRIs present significant challenges in surgical planning. Advanced diagnostic techniques, including PET, SPECT, and intraoperative ECOG, are used to localize seizure foci, but their high cost and limited availability pose challenges, especially in low-resource settings. This study aims to evaluate the outcomes of resective epilepsy surgery in these cases and assess the role of advanced imaging in a middle-income country. METHODS This retrospective cohort study included 12 pediatric patients (mean age 10.21 years) with normal preoperative 3 T MRI who underwent resective epilepsy surgery or functional hemispherectomy between 2007 and 2021 at two centers in Medellín, Colombia. Demographic, clinical, and surgical data were collected, including the use of advanced imaging techniques (PET, SPECT) and intraoperative ECOG. Seizure outcomes were assessed using the Engel Epilepsy Surgery Outcome Scale. RESULTS Of the 12 patients, 10 underwent extratemporal resections, and 2 underwent temporal lobe surgery. Seven patients had advanced imaging, and 5 were evaluated with intraoperative ECOG. At 2-year follow-up, 83.3% of patients who underwent resective surgery achieved favorable outcomes (Engel Classes I and II). Temporal lobe resections had a higher rate of seizure freedom (50%) compared to extratemporal resections (30%), although the difference was not statistically significant (p = 0.47). Reoperations due to seizure recurrence were required in 30% of extratemporal resections (p = 0.02). Complications were minimal, with three superficial wound infections. Histopathology revealed cortical dysplasia in 33.3% of cases. CONCLUSION Epilepsy surgery in pediatric patients with normal MRIs can yield favorable outcomes, especially with temporal lobe resections. Advanced imaging improves localization but remains costly, highlighting the need for cost-effective surgical strategies in resource-limited settings.
Collapse
Affiliation(s)
- Felipe Gutierrez-Pineda
- Department of Neurosurgery, School of Medicine, University of Antioquia, Medellin, Colombia.
- Department of Neurosurgery, Colombian Neurological Institute, Medellin, Colombia.
| | | | - Lucas Lozano-Garcia
- Department of Neurology and Epilepsy, Colombian Neurological Institute, Medellin, Colombia
| | | | | | - Héctor Alfredo Jaramillo-Betancur
- Department of Neurosurgery, Colombian Neurological Institute, Medellin, Colombia
- Department of Neurology and Epilepsy, Colombian Neurological Institute, Medellin, Colombia
| |
Collapse
|
2
|
Sharma A, Serletis D, Gupta A. Surgical: Resection/Destructive Procedures. Semin Neurol 2025; 45:232-240. [PMID: 40097168 DOI: 10.1055/a-2559-7520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Surgical resection and ablation are powerful tools in the treatment of medically refractory epilepsy. In this study, we review a broad array of resective and ablative procedures available to the epilepsy surgeon to address surgical epileptic disease. Here, we aim to provide a brief overview of a very broad category of treatments to provide a better understanding of the breadth of treatments available to providers and patients.
Collapse
Affiliation(s)
- Akshay Sharma
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Ohio
| | - Demitre Serletis
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Ohio
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio
| |
Collapse
|
3
|
Yang X, Ge M, Chen S, Wang K, Cheng H, Zhang Z. A specific model of resting-state functional brain network in MRI-negative temporal lobe epilepsy. Heliyon 2025; 11:e42695. [PMID: 40040985 PMCID: PMC11876875 DOI: 10.1016/j.heliyon.2025.e42695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose Without any visible indicator on structure magnetic resonance imaging (MRI), the diagnosis of MRI-negative temporal lobe epilepsy (NTLE) gets harder. By considering healthy control (HC), a specific functional connectivity (FC) model was constructed in a network topology to improve FC computation to a high-level. Methods MRI data of 20 NTLE patients and 60 HC were pre-processed. Relative to HC, a network-level specific FC model of each network index was built to score the network functions for each NTLE patient. The specific brain areas (regarded as ROIs) were extracted for NTLE by sensitivity analysis of scores. By considering scores of specific ROIs as feature vectors to input into a SVM respectively, a specific NTLE classifier was constructed. Both 10-fold cross validation and hold-out method were utilized to validate the classification and to evaluate the effectiveness of our specific FC models. Simultaneously, the specific FC model was compared to the conventional FC model of Pearson correlation. Results By the constructed model for specific FC at a network-level, 11 specific ROIs, such as, frontal lobe, temporal lobe, parietal lobe, hippocampus, and occipital lobe, were extracted for NTLE. Accuracy of our specific NTLE classifier could reach up nearly 93 %, over 6 % greater than conventional FC model of Pearson correlation. Conclusions The network-level specific FC model might provide a new methodology for machine-aiding detection of functional abnormal lesions of NTLE by resting-state functional MRI.
Collapse
Affiliation(s)
- Xue Yang
- School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, China
| | - Manling Ge
- Hebei Province Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China
| | - Shenghua Chen
- Hebei Province Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China
| | - Kaiwei Wang
- School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, China
| | - Hao Cheng
- School of Life Science and Health Engineering, Hebei University of Technology, Tianjin, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Clinical School of Nanjing University School of Medicine (affiliated to Jinling Hospital), Nanjing, China
| |
Collapse
|
4
|
Skidmore CT. Neuroimaging in Epilepsy. Continuum (Minneap Minn) 2025; 31:61-80. [PMID: 39899096 DOI: 10.1212/con.0000000000001527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
OBJECTIVE The goal of this article is to review the use of neuroimaging in the treatment of new-onset seizures and epilepsy. The article will focus predominantly on MRI because this is the most common modality, but it will also review others that are often used in individuals being considered for epilepsy surgery. The article also reviews common causes of epilepsy and their appearance on imaging and various imaging tools that can be combined to assist in the care of people with epilepsy. LATEST DEVELOPMENTS MRI has revolutionized the ability to diagnose the cause of many forms of epilepsy. However, to maximize the diagnostic power of MRI, it is essential to order the correct imaging sequences. In this article, the harmonized neuroimaging of epilepsy structural sequences (HARNESS) MRI protocol proposed by the International League Against Epilepsy is discussed. ESSENTIAL POINTS MRI is the preferred imaging modality to identify lesions associated with epilepsy. Protocols should include thin-cut, no-gap sequences to permit the identification of small epileptogenic lesions, and studies should be reviewed with an understanding of all the clinical information to help guide the identification of potential lesions.
Collapse
|
5
|
Guo K, Hu J, Cui B, Wang Z, Hou Y, Yang H, Lu J. Simultaneous 18F-FDG PET/MRI predicting favourable surgical outcome in refractory epilepsy patients. Neuroradiology 2025; 67:89-97. [PMID: 39172166 DOI: 10.1007/s00234-024-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES To evaluate the (1) successful surgery proportion in patients with clear structural lesions on MRI and single abnormality on 18F-fluorodeoxyglucose positron emission tomography/Magnetic resonance imaging (18F-FDG PET/MRI); (2) predictive value of 18F-FDG PET/MRI for postsurgical outcome in refractory epilepsy patients. METHODS A retrospective study was conducted on 123 patients diagnosed with refractory epilepsy who underwent presurgical evaluation involving 18F-FDG PET/MRI and were followed for one-year post-surgery. Two neuroradiologists interpreted the PET/MRI images using visual analysis and an asymmetry index based on the standard uptake value. The Engel classification was used to assess surgical outcomes one-year post-surgery. Prognostic factors predicting post-surgical seizure outcomes were explored using univariate and binary logistic regression. RESULTS Definitely single lesion abnormality was observed in 35.0% (43/123) of the patients on the MRI portion of PET/MRI. The proportion increased to 74.0% (91/123) when 18 F-FDG PET portion was added. About 75% (69/91) of patients displaying a clear-cut lesion on 18 F-FDG PET/MRI were classified as Engel Class I one-year post-surgery. The proportion of Engel Class I patients was not significantly different when comparing MRI-single lesion patients with MRI-negative, PET-single lesion patients one year after surgery (81.4% vs. 70.0%, P = 0.24). Binary logistic regression analysis revealed that the detection of a clear single lesion on 18 F-FDG PET/MRI was a strong positive predictor of a favorable surgical outcome (OR 3.518, 95% CI 1.363-9.077, p = 0.009). CONCLUSION Single lesion detected on 18 F-FDG PET/MRI is useful to predict good surgical outcome for refractory epilepsy patients; Those patients should be considered as candidates for surgery.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Hu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
6
|
Flaus A, Guedj E, Horowitz T, Semah F, Verger A, Hammers A. Brain PET Imaging in the Presurgical Evaluation of Drug-Resistant Focal Epilepsy. PET Clin 2025; 20:57-66. [PMID: 39426849 DOI: 10.1016/j.cpet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Presurgical evaluation aims to localize the seizure onset zone (SOZ) for a tailored resection. Interictal [18F]fluorodeoxyglucose PET is now an established test to lateralize and/or localize the SOZ, particularly if MR imaging is negative or if the noninvasive assessment shows discrepancies. PET can show hypometabolic areas associated with SOZ and the potential altered metabolic brain networks. It is very sensitive, and this is increased if images are read coregistered to the patient's MR imaging. PET hypometabolic intensity and pattern show prognostic value.
Collapse
Affiliation(s)
- Anthime Flaus
- Nuclear Medicine Department, Hospices Civils de Lyon, Medical Faculty of Lyon Est, University Claude Bernard Lyon 1, Lyon, France; Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France.
| | - Eric Guedj
- Biophysics and Nuclear Medicine, Aix Marseille University; APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France
| | - Tatiana Horowitz
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Service de Médecine Nucléaire, CHU Timone, 264 Rue Sainte Pierre, Marseille 13005, France; CERIMED, Nuclear Medicine Department, Marseille, France; Aix Marseille University
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, Service de Médecine Nucléaire, Hôpital Salengro, CHU de Lille, Lille Cedex 59037, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, rue du morvan, 54511 Vandoeuvre-les-Nancy, Nancy, France; Université de Lorraine, IADI, INSERM U1254, Nancy, France; Nuclear Medecine Department, Hôpitaux de Brabois, CHRU de Nancy, Rue du Morvan, Vandoeuvre les Nancy 54500, France
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Office Suite 6, 4th Floor Lambeth Wing, London, UK; St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
7
|
Teichner EM, Subtirelu RC, Patil S, Parikh C, Ashok AB, Talasila S, Anderson VA, Khan T, Su Y, Werner T, Alavi A, Revheim ME. Positron Emission Tomography (PET) in presurgical planning of anterior temporal lobectomy: A systematic review of efficacy and limitations. Clin Neurol Neurosurg 2024; 246:108562. [PMID: 39326280 DOI: 10.1016/j.clineuro.2024.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Temporal lobe epilepsy (TLE), a debilitating neurological disorder, necessitates refined diagnostic and treatment strategies. This comprehensive review appraises the potential of positron emission tomography (PET) in enhancing the presurgical planning of Anterior Temporal Lobectomy (ATL) for patients afflicted with TLE. METHODS A comprehensive literature search was conducted using the PubMed, SCOPUS, and ScienceDirect databases from 1985 to 2022, following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for studies investigating PET and ATL. This review studied a range of radiotracers, including FDG, H2O, FMZ, MPPF, and FCWAY, analyzing their efficacy in detecting epileptogenic foci, establishing resection boundaries, and predicting postoperative outcomes. The study paid special attention to cases where MRI findings were inconclusive. RESULTS A total of 52 studies were included in the final analysis. Our analysis revealed that FDG-PET imaging was instrumental in identifying seizure foci and predicting postoperative results. It exhibited significant value in situations where structural abnormalities were absent on MRI scans. Furthermore, newer radiotracers such as 5-HT1A antagonists, FCWAY and MPPF, presented promising potential for localizing seizure foci, particularly in MRI-negative TLE, despite their comparatively limited current usage. CONCLUSION PET imaging, although challenged by issues such as radiation exposure, limited accessibility, and high costs, offers considerable promise. Integration with other imaging modalities, such as EEG and MRI, has contributed to improved localization of epileptogenic foci and subsequently, enhanced surgical outcomes. Further research must focus on establishing the relative efficacy and optimal combinations of these radiotracers in the orchestration of ATL surgical planning and prognostication of postoperative outcomes for TLE patients. Encouragingly, these advancements hold the potential to revolutionize the management of TLE, delivering a better quality of life for patients.
Collapse
Affiliation(s)
- Eric M Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert C Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shiv Patil
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arjun B Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victoria A Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Talha Khan
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Su
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
9
|
Dickey AS, Bullinger KL, Grogan D, Asmar MM, Alwaki A, Kheder A, Shivamurthy VKN, Faraj RR, Greven A, Willie JT, Drane DL, Gross RE. An ordinal clinical score predicts seizure freedom after minimally invasive epilepsy surgery. Ann Clin Transl Neurol 2024; 11:2327-2336. [PMID: 39001603 PMCID: PMC11537148 DOI: 10.1002/acn3.52146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE To predict one-year seizure freedom, using a combination of relevant clinical variables, following stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy in a series of 101 patients. METHODS Eight predictors of seizure freedom were selected based on their association with medial temporal lobe epilepsy: (1) MRI evidence of mesial temporal sclerosis (MTS); (2) unitemporal interictal epileptiform discharges; (3) absence of generalized tonic-clonic seizures; (4) history of febrile seizures; (5) onset of epilepsy ≤16 years; (6) absence of an auditory, visual, or vertiginous aura; and (7) unitemporal ictal onset; (8) unitemporal PET hypometabolism. We compared four multivariate models: "MTS," using just evidence of MTS; "FULL," using all eight binary predictors; "AIC" using backwards selection of variables; and "SCORE," using a 0-to-8-point ordinal score awarding one point for each binary predictor. RESULTS In univariate analysis, significant predictors for seizure freedom were evidence of mesial temporal sclerosis (p = 0.011, Fisher exact) and unitemporal interictal discharges (p = 0.005). For multivariate prediction (using leave one-out cross-validation), the ordinal SCORE model had a significantly higher area under the curve (AUC 0.70) than the other three models: MTS (AUC 0.54, p = 0.002, Delong's test), FULL (AUC 0.62, p = 0.003), or AIC (AUC 0.53, p < 0.001). INTERPRETATION An ordinal score incorporating eight independent binary clinical variables predicted seizure freedom better on novel data than a model using MTS alone, a full multivariate model, or a backwards selected model. The ordinal score model represents a simple clinical heuristic to identify which patients should be offered minimally invasive laser surgery.
Collapse
Affiliation(s)
- Adam S. Dickey
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Dayton Grogan
- Department of NeurosurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Melissa M. Asmar
- Department of NeurologyUC Davis Medical CenterSacramentoCaliforniaUSA
| | - Abdulrahman Alwaki
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ammar Kheder
- Department of PediatricsHelen DeVos Children's HospitalGrand RapidsMichiganUSA
| | | | | | - Alexander Greven
- Department of NeurosurgeryBarrow Neurological InstitutePhoenixArizonaUSA
| | - Jon T. Willie
- Department of NeurosurgeryWashington UniversitySt. LouisMissouriUSA
| | - Daniel L. Drane
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
- Department of NeurologyUniversity of Washington School of MedicineSeattleWashingtonUSA
- Department of PediatricsEmory UniversityAtlantaGeorgiaUSA
| | - Robert E. Gross
- Department of NeurosurgeryEmory UniversityAtlantaGeorgiaUSA
- Department of NeurosurgeryRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| |
Collapse
|
10
|
Bustros S, Kaur M, Ritchey E, Szaflarski JP, McGwin GJ, Riley KO, Bentley JN, Memon AA, Jaisani Z. Non-lesional epilepsy does not necessarily convey poor outcomes after invasive monitoring followed by resection or thermal ablation. Neurol Res 2024; 46:653-661. [PMID: 38602305 DOI: 10.1080/01616412.2024.2340879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE We aimed to compare outcomes including seizure-free status at the last follow-up in adult patients with medically refractory focal epilepsy identified as lesional vs. non-lesional based on their magnetic resonance imaging (MRI) findings who underwent invasive evaluation followed by subsequent resection or thermal ablation (LiTT). METHODS We identified 88 adult patients who underwent intracranial monitoring between 2014 and 2021. Of those, 40 received resection or LiTT, and they were dichotomized based on MRI findings, as lesional (N = 28) and non-lesional (N = 12). Patient demographics, seizure characteristics, non-invasive interventions, intracranial monitoring, and surgical variables were compared between the groups. Postsurgical seizure outcome at the last follow-up was rated according to the Engel classification, and postoperative seizure freedom was determined by Kaplan-Meyer survival analysis. Statistical analyses employed Fisher's exact test to compare categorical variables, while a t-test was used for continuous variables. RESULTS There were no differences in baseline characteristics between groups except for more often noted PET abnormality in the lesional group (p = 0.0003). 64% of the lesional group and 57% of the non-lesional group received surgical resection or LiTT (p = 0.78). At the last follow-up, 78.5% of the patients with lesional MRI findings achieved Engel I outcomes compared to 66.7% of non-lesional patients (p = 0.45). Kaplan-Meier curves did not show a significant difference in seizure-free duration between both groups after surgical intervention (p = 0.49). SIGNIFICANCE In our sample, the absence of lesion on brain MRI was not associated with worse seizure outcomes in adult patients who underwent invasive intracranial monitoring followed by resection or thermal ablation.
Collapse
Affiliation(s)
- Stephanie Bustros
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Manmeet Kaur
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Elizabeth Ritchey
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gerald Jr McGwin
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen O Riley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - J Nicole Bentley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel A Memon
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Zeenat Jaisani
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
11
|
Huang H, Zhang M, Zhao Y, Li Y, Jin W, Guo R, Liu W, Cai B, Li J, Yuan S, Huang X, Lin X, Liang ZP, Li B, Luo J. Simultaneous high-resolution whole-brain MR spectroscopy and [ 18F]FDG PET for temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 2024; 51:721-733. [PMID: 37823910 DOI: 10.1007/s00259-023-06465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Precise lateralizing the epileptogenic zone in patients with drug-resistant mesial temporal lobe epilepsy (mTLE) remains challenging, particularly when routine MRI scans are inconclusive (MRI-negative). This study aimed to investigate the synergy of fast, high-resolution, whole-brain MRSI in conjunction with simultaneous [18F]FDG PET for the lateralization of mTLE. METHODS Forty-eight drug-resistant mTLE patients (M/F 31/17, age 12-58) underwent MRSI and [18F]FDG PET on a hybrid PET/MR scanner. Lateralization of mTLE was evaluated by visual inspection and statistical classifiers of metabolic mappings against routine MRI. Additionally, this study explored how disease status influences the associations between altered N-acetyl aspartate (NAA) and FDG uptake using hierarchical moderated multiple regression. RESULTS The high-resolution whole-brain MRSI data offers metabolite maps at comparable resolution to [18F]FDG PET. Visual examinations of combined MRSI and [18F]FDG PET showed an mTLE lateralization accuracy rate of 91.7% in a 48-patient cohort, surpassing routine MRI (52.1%). Notably, out of 23 MRI-negative mTLE, combined MRSI and [18F]FDG PET helped detect 19 cases. Logistical regression models combining hippocampal NAA level and FDG uptake improved lateralization performance (AUC=0.856), while further incorporating extrahippocampal regions such as amygdala, thalamus, and superior temporal gyrus increased the AUC to 0.939. Concurrent MRSI/PET revealed a moderating influence of disease duration and hippocampal atrophy on the association between hippocampal NAA and glucose uptake, providing significant new insights into the disease's trajectory. CONCLUSION This paper reports the first metabolic imaging study using simultaneous high-resolution MRSI and [18F]FDG PET, which help visualize MRI-unidentifiable lesions and may thus advance diagnostic tools and management strategies for drug-resistant mTLE.
Collapse
Affiliation(s)
- Hui Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yibo Zhao
- Beckman Institute for Advanced Sciences and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Yudu Li
- Beckman Institute for Advanced Sciences and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Wen Jin
- Beckman Institute for Advanced Sciences and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Rong Guo
- Beckman Institute for Advanced Sciences and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- Siemens Medical Solutions USA, Inc, Urbana, IL, 61801, USA
| | - Wei Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingyang Cai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiwei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siyu Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Sciences and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Herlopian A. Multifocal, Non-lesional Epilepsy. EPILEPSY SURGERY: A PRACTICAL CASE-BASED APPROACH 2024:907-918. [DOI: 10.1007/978-3-031-23828-4_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Giraudo C, Carraro S, Zucchetta P, Cecchin D. Pediatric Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:625-636. [PMID: 37741646 DOI: 10.1016/j.mric.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
PET/MR imaging is a one-stop shop technique for pediatric diseases allowing not only an accurate clinical assessment of tumors at staging and restaging but also the diagnosis of neurologic, inflammatory, and infectious diseases in complex cases. Moreover, applying PET kinetic analyses and sequences such as diffusion-weighted imaging as well as quantitative analysis investigating the relationship between disease metabolic activity and cellularity can be applied. Complex radiomics analysis can also be performed.
Collapse
Affiliation(s)
- Chiara Giraudo
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health Department, University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Pietro Zucchetta
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Diego Cecchin
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
14
|
Guo Z, Zhang C, Wang X, Liu C, Zhao B, Mo J, Zheng Z, Shao X, Zhang J, Zhang K, Hu W. Is intracranial electroencephalography mandatory for MRI-negative neocortical epilepsy surgery? J Neurosurg 2023; 138:1720-1730. [PMID: 36242573 DOI: 10.3171/2022.8.jns22995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE MRI-negative focal epilepsy is one of the most challenging cases in surgical epilepsy treatment. Many epilepsy centers recommend intracranial electroencephalography (EEG) for MRI-negative cases, especially neocortical epilepsy. This retrospective study aimed to explore whether intracranial monitoring is mandatory in MRI-negative neocortical epilepsy surgery and the factors that significantly influence the decision on whether to perform intracranial recording. METHODS In this study, consecutive surgical patients with focal MRI-negative neocortical epilepsy were recruited. All patients underwent routine preoperative evaluation according to the dedicated protocol of the authors' epilepsy center to determine the treatment strategy. Patients were divided into two groups according to the surgical strategy, i.e., a direct group and a stereo-EEG (SEEG)-guided group. History of epilepsy, seizure frequency, interictal and ictal EEG data, PET data, PET/MRI coregistration data, neuropathological findings, and surgical outcomes were compared between the two groups. Multivariate analysis was performed to identify factors influencing the decision to perform SEEG monitoring. RESULTS Sixty-four patients were included in this study, 19 and 45 of whom underwent direct and SEEG-guided cortical resection, respectively. At an average follow-up of 3.9 years postoperatively, 56 patients (87.5%) had Engel class I results without permanent neurological deficits. Surgical outcomes were not significantly different between the direct and SEEG-guided groups (94.7% vs 84.4%). PET hypometabolic abnormalities were detected in all patients. There were significant differences between the two groups in the extent of hypometabolism (focal vs nonfocal, p < 0.01) and pathological subtype (focal cortical dysplasia type II vs others, p = 0.03). Multivariate analysis revealed that the extent of hypometabolism (OR 0.01, 95% CI 0.00-0.15; p = 0.001) was the only independent factor affecting the treatment strategy. CONCLUSIONS Careful selection of patients with MRI-negative neocortical epilepsy may yield favorable outcomes after direct cortical resection without intracranial monitoring. PET/MRI coregistration plays an essential role in the preoperative evaluation and subsequent resection of these patients. Intracranial monitoring is not a mandatory requirement for surgery if the focal hypometabolic areas are consistent with the findings of semiology and scalp EEG.
Collapse
Affiliation(s)
| | | | - Xiu Wang
- 1Departments of Neurosurgery and
| | | | | | | | - Zhong Zheng
- 4Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Xiaoqiu Shao
- 5Neurology, Beijing Tiantan Hospital, Capital Medical University
| | - Jianguo Zhang
- 1Departments of Neurosurgery and
- 3Beijing Key Laboratory of Neurostimulation; and
| | - Kai Zhang
- 1Departments of Neurosurgery and
- 3Beijing Key Laboratory of Neurostimulation; and
| | - Wenhan Hu
- 1Departments of Neurosurgery and
- 3Beijing Key Laboratory of Neurostimulation; and
| |
Collapse
|
15
|
Expression of fructose-1,6-bisphosphatase 1 is associated with [ 18F]FDG uptake and prognosis in patients with mesial temporal lobe epilepsy. Eur Radiol 2023; 33:3396-3406. [PMID: 36692596 DOI: 10.1007/s00330-023-09422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To determine whether fructose-1,6-bisphosphatase 1 (FBP1) expression is associated with [18F]FDG PET uptake and postsurgical outcomes in patients with mesial temporal lobe epilepsy (mTLE) and to investigate whether the molecular mechanism involving gamma-aminobutyric acid type A receptor (GABAAR), glucose transporter-3 (GLUT-3), and hexokinase-II (HK-II). METHODS Forty-three patients with mTLE underwent [18F]FDG PET/CT. Patients were divided into Ia (Engel class Ia) and non-Ia (Engel class Ib-IV) groups according to more than 1 year of follow-up after surgery. The maximum standard uptake value (SUVmax) and asymmetry index (AI) of hippocampus were measured. The relationship among the SUVmax, AI, prognosis, and FBP1 expression was analyzed. A lithium-pilocarpine acute mTLE rat model was subjected to [18F]FDG micro-PET/CT. Hippocampal SUVmax and FBP1, GABAAR, GLUT-3, and HK-II expression were analyzed. RESULTS SUVmax was higher in the Ia group than in the non-Ia group (7.31 ± 0.97 vs. 6.56 ± 0.96, p < 0.05) and FBP1 expression was lower in the Ia group (0.24 ± 0.03 vs. 0.27 ± 0.03, p < 0.01). FBP1 expression was negatively associated with SUVmax and AI (p < 0.01). In mTLE rats, the hippocampal FBP1 increased (0.26 ± 0.00 vs. 0.17 ± 0.00, p < 0.0001), and SUVmax, GLUT-3 and GABAAR levels decreased significantly (0.73 ± 0.12 vs. 1.46 ± 0.23, 0.20 ± 0.01 vs. 0.32 ± 0.05, 0.26 ± 0.02 vs. 0.35 ± 0.02, p < 0.05); no significant difference in HK-II levels was observed. In mTLE patients and rats, FBP1 negatively correlated with SUVmax and GLUT-3 and GABAAR levels (p < 0.05). CONCLUSION FBP1 expression was inversely associated with SUVmax in mTLE, which might inhibit [18F]FDG uptake by regulating GLUT-3 expression. High FBP1 expression was indicative of low GABAAR expression and poor prognosis. KEY POINTS • It is of paramount importance to explore the deep pathophysiological mechanisms underlying the pathogenesis of mesial temporal lobe epilepsy and find potential therapeutic targets. • [18F]FDG PET has demonstrated low metabolism in epileptic regions during the interictal period, and hypometabolism may be associated with prognosis, but the pathomechanism of this association remains uncertain. • Our results support the possibility that FBP1 might be simultaneously involved in the regulation of glucose metabolism levels and the excitability of neurons and suggest that targeting FBP1 may be a viable strategy in the diagnosis and treatment of mesial temporal lobe epilepsy.
Collapse
|
16
|
Mohanty D, Quach M. The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractMinimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.
Collapse
Affiliation(s)
- Deepankar Mohanty
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Michael Quach
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
17
|
González Otárula KA, Tan YL, Hall JA, Chang EF, Correa JA, Dubeau F, Sziklas V, Soucy JP, Guiot MC, Knowlton RC, Kobayashi E. Postsurgical seizure outcome in temporal lobe epilepsy patients with normal or subtle, nonspecific MRI findings. J Neurosurg 2022; 137:442-448. [PMID: 34972090 DOI: 10.3171/2021.10.jns2127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors' objective was to report postsurgical seizure outcome of temporal lobe epilepsy (TLE) patients with normal or subtle, nonspecific MRI findings and to identify prognostic factors related to seizure control after surgery. METHODS This was a retrospective study of patients who underwent surgery from 1999 to 2014 at two comprehensive epilepsy centers. Patients with a clear MRI lesion according to team discussion and consensus were excluded. Presurgical information, surgery details, pathological data, and postsurgical outcomes were retrospectively collected from medical charts. Multiple logistic regression analysis was used to assess the effect of clinical, surgical, and neuroimaging factors on the probability of Engel class I (favorable) versus class II-IV (unfavorable) outcome at last follow-up. RESULTS The authors included 73 patients (59% were female; median age at surgery 35.9 years) who underwent operations after a median duration of epilepsy of 13 years. The median follow-up after surgery was 30.6 months. At latest follow-up, 44% of patients had Engel class I outcome. Favorable prognostic factors were focal nonmotor aware seizures and unilateral or no spikes on interictal scalp EEG. CONCLUSIONS Favorable outcome can be achieved in a good proportion of TLE patients with normal or subtle, nonspecific MRI findings, particularly when presurgical investigation suggests a rather circumscribed generator. Presurgical factors such as the presence of focal nonmotor aware seizures and unilateral or no spikes on interictal EEG may indicate a higher probability of seizure freedom.
Collapse
Affiliation(s)
- Karina A González Otárula
- 1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Yee-Leng Tan
- 1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- 3Department of Neurology, National Neuroscience Institute, Singapore
| | - Jeffery A Hall
- 1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Edward F Chang
- 2Department of Neurology, University of California, San Francisco Medical Center, San Francisco, California
| | - José A Correa
- 4Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - François Dubeau
- 1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Viviane Sziklas
- 1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- 6PET Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- 5Department of Pathology, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and
| | - Robert C Knowlton
- 2Department of Neurology, University of California, San Francisco Medical Center, San Francisco, California
| | - Eliane Kobayashi
- 1Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Carvalho MS, Alvim MKM, Etchebehere E, Santos ADO, Ramos CD, Argenton JLP, Cendes F, Amorim BJ. Interictal and postictal 18F-FDG PET/CT in epileptogenic zone localization. Radiol Bras 2022; 55:273-279. [PMID: 36320375 PMCID: PMC9620847 DOI: 10.1590/0100-3984.2021.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To evaluate the performance of 18F-fluorodeoxyglucose
positron-emission tomography/computed tomography ( 18F-FDG
PET/CT) in localizing epileptogenic zones, comparing 18F-FDG
injection performed in the traditional interictal period with that performed
near the time of a seizure. Materials and Methods We evaluated patients with refractory epilepsy who underwent
18F-FDG PET/CT. The reference standards for localization of the
epileptogenic zone were histopathology and follow-up examinations (in
patients who underwent surgery) or serial electroencephalography (EEG)
recordings, long-term video EEG, and magnetic resonance imaging (in patients
who did not). The 18F-FDG injection was performed whether the
patient had an epileptic seizure during the EEG monitoring period or not.
The 18F-FDG PET/CT results were categorized as concordant or
discordant with the reference standards. Results Of the 110 patients evaluated, 10 were in a postictal group (FDG injection
after a seizure) and 100 were in the interictal group. The
18F-FDG PET/CT was concordant with the reference standards in
nine (90%) of the postictal group patients and in 60 (60%) of the interictal
group patients. Among the nine postictal group patients in whom the results
were concordant, the 18F-FDG PET/CT showed hypermetabolism and
hypometabolism in the epileptogenic zone in four (44.4%) and five (55.6%),
respectively. Conclusion Our data indicate that 18F-FDG PET/CT is a helpful tool for
localization of the epileptogenic zone and that EEG monitoring is an
important means of correlating the findings. In addition, postictal
18F-FDG PET/CT is able to identify the epileptogenic zone by
showing either hypometabolism or hypermetabolism.
Collapse
|
19
|
Yang F, Jia W, Kukun H, Ding S, Zhang H, Wang Y. A Study of Spontaneous Brain Activity on Resting-State Functional Magnetic Resonance Imaging in Adults with MRI-Negative Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2022; 18:1107-1116. [PMID: 35677937 PMCID: PMC9170234 DOI: 10.2147/ndt.s366189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE-N) represent an important subgroup of temporal lobe epilepsy (TLE). Here, we aimed to combine three voxel-based local brain area analysis methods of resting-state functional MRI (rs-fMRI), to examine the TLE-N patients' resting brain function based on neural synchronization and intensity of local brain areas. Methods The study included 47 patients with TLE, including 28 cases of drug-controlled TLE (cTLE-N) and 19 cases of drug-resistant TLE-N (rTLE-N), as well as 30 participants in the healthy control (HC) group. To comprehensively assess the altered brain function associated with TLE-N patients, we analyzed three data-driven rs-fMRI algorithms for amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF) and regional homogeneity (ReHo). Results Compared to the HC group, the distribution of abnormal functional brain areas in cTLE-N patients was dominated by occipital lobe activation, as measured by increased fALFF values in the superior occipital gyrus (SOG) and increased ReHo values in the lingual gyrus (Lin), fusiform gyrus, and middle occipital gyrus. Patients with rTLE-N exhibited a diffuse distribution of abnormal functional brain areas, showing increased fALFF values in the SOG, Lin, superior temporal gyrus, and postcentral gyrus, and decreased fALFF values in the inferior frontal gyrus orbital, parahippocampal gyrus, and superior frontal gyrus orbital. The ReHo values were reduced in the orbital region of the middle frontal gyrus, the precuneus, and the parietal inferior angular gyrus; while ReHo values were elevated values in several frontal, temporal, occipital, and subcortical brain areas. Conclusion Patients with rTLE-N have local brain activity changes in the prefrontal limbic system and default model network dysfunction, while cTLE-N patients have local brain activity changes in the visual functional areas. Different epilepsy networks exist between cTLE-N and rTLE-N.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Wenxiao Jia
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Hanjiaerbieke Kukun
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Shuang Ding
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Haotian Zhang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| |
Collapse
|
20
|
Sinclair B, Cahill V, Seah J, Kitchen A, Vivash LE, Chen Z, Malpas CB, O'Shea MF, Desmond PM, Hicks RJ, Morokoff AP, King JA, Fabinyi GC, Kaye AH, Kwan P, Berkovic SF, Law M, O'Brien TJ. Machine Learning Approaches for Imaging-Based Prognostication of the Outcome of Surgery for Mesial Temporal Lobe Epilepsy. Epilepsia 2022; 63:1081-1092. [PMID: 35266138 PMCID: PMC9545680 DOI: 10.1111/epi.17217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Objectives Around 30% of patients undergoing surgical resection for drug‐resistant mesial temporal lobe epilepsy (MTLE) do not obtain seizure freedom. Success of anterior temporal lobe resection (ATLR) critically depends on the careful selection of surgical candidates, aiming at optimizing seizure freedom while minimizing postoperative morbidity. Structural MRI and FDG‐PET neuroimaging are routinely used in presurgical assessment and guide the decision to proceed to surgery. In this study, we evaluate the potential of machine learning techniques applied to standard presurgical MRI and PET imaging features to provide enhanced prognostic value relative to current practice. Methods Eighty two patients with drug resistant MTLE were scanned with FDG‐PET pre‐surgery and T1‐weighted MRI pre‐ and postsurgery. From these images the following features of interest were derived: volume of temporal lobe (TL) hypometabolism, % of extratemporal hypometabolism, presence of contralateral TL hypometabolism, presence of hippocampal sclerosis, laterality of seizure onset volume of tissue resected and % of temporal lobe hypometabolism resected. These measures were used as predictor variables in logistic regression, support vector machines, random forests and artificial neural networks. Results In the study cohort, 24 of 82 (28.3%) who underwent an ATLR for drug‐resistant MTLE did not achieve Engel Class I (i.e., free of disabling seizures) outcome at a minimum of 2 years of postoperative follow‐up. We found that machine learning approaches were able to predict up to 73% of the 24 ATLR surgical patients who did not achieve a Class I outcome, at the expense of incorrect prediction for up to 31% of patients who did achieve a Class I outcome. Overall accuracies ranged from 70% to 80%, with an area under the receiver operating characteristic curve (AUC) of .75–.81. We additionally found that information regarding overall extent of both total and significantly hypometabolic tissue resected was crucial to predictive performance, with AUC dropping to .59–.62 using presurgical information alone. Incorporating the laterality of seizure onset and the choice of machine learning algorithm did not significantly change predictive performance. Significance Collectively, these results indicate that "acceptable" to "good" patient‐specific prognostication for drug‐resistant MTLE surgery is feasible with machine learning approaches utilizing commonly collected imaging modalities, but that information on the surgical resection region is critical for optimal prognostication.
Collapse
Affiliation(s)
- Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Varduhi Cahill
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Department of Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Jarrel Seah
- Department of Radiology, Alfred Health, Melbourne, Victoria, Australia
| | - Andy Kitchen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lucy E Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles B Malpas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Marie F O'Shea
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia.,Comprehensive Epilepsy Program, Austin Health, Melbourne, Victoria, Australia
| | - Patricia M Desmond
- Department of Radiology, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew P Morokoff
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - James A King
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Gavin C Fabinyi
- Department of Surgery, University of Melbourne, Austin Hospital, Melbourne, Victoria, Australia
| | - Andrew H Kaye
- Department of Neurosurgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Hospital, Melbourne, Victoria, Australia.,Comprehensive Epilepsy Program, Austin Health, Melbourne, Victoria, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Radiology, Alfred Health, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department Neurology, Alfred Health, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Steinbrenner M, Duncan JS, Dickson J, Rathore C, Wächter B, Aygun N, Menon RN, Radhakrishnan A, Holtkamp M, Ilyas-Feldmann M. Utility of 18F-fluorodeoxyglucose positron emission tomography in presurgical evaluation of patients with epilepsy: A multicenter study. Epilepsia 2022; 63:1238-1252. [PMID: 35166379 DOI: 10.1111/epi.17194] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) is widely used in presurgical assessment in patients with drug-resistant focal epilepsy (DRE) if magnetic resonance imaging (MRI) and scalp electroencephalography (EEG) do not localize the seizure onset zone or are discordant. METHODS In this multicenter, retrospective observational cohort study, we included consecutive patients with DRE who had undergone FDG-PET as part of their presurgical workup. We assessed the utility of FDG-PET, which was defined as contributing to the decision-making process to refer for resection or intracranial EEG (iEEG) or to conclude surgery was not feasible. RESULTS We included 951 patients in this study; 479 had temporal lobe epilepsy (TLE), 219 extratemporal epilepsy (ETLE), and 253 epilepsy of uncertain lobar origin. FDG-PET showed a distinct hypometabolism in 62% and was concordant with ictal EEG in 74% in TLE and in 56% in ETLE (p < .001). FDG-PET was useful in presurgical decision-making in 396 patients (47%) and most beneficial in TLE compared to ETLE (58% vs. 44%, p = .001). Overall, FDG-PET contributed to recommending resection in 78 cases (20%) and iEEG in 187 cases (47%); in 131 patients (33%), FDG-PET resulted in a conclusion that resection was not feasible. In TLE, seizure-freedom 1 year after surgery did not differ significantly (p = .48) between patients with negative MRI and EEG-PET concordance (n = 30, 65%) and those with positive MRI and concordant EEG (n = 46, 68%). In ETLE, half of patients with negative MRI and EEG-PET concordance and three quarters with positive MRI and concordant EEG were seizure-free postsurgery (n = 5 vs. n = 6, p = .28). SIGNIFICANCE This is the largest reported cohort of patients with DRE who received presurgical FDG-PET, showing that FDG-PET is a useful diagnostic tool. MRI-negative and MRI-positive cases with concordant FDG-PET results (with either EEG or MRI) had a comparable outcome after surgery. These findings confirm the significance of FDG-PET in presurgical epilepsy diagnostics.
Collapse
Affiliation(s)
- Mirja Steinbrenner
- Department of Neurology and Experimental Neurology, Epilepsy Center Berlin-Brandenburg, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Chaturbhuj Rathore
- Department of Neurology, Smt. B. K. Shah (SBKS) Medical College, Sumandeep Vidyapeeth, Vadodara, India
| | - Bettina Wächter
- Epilepsy Center Berlin-Brandenburg, Evangelische Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Nafi Aygun
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ashalatha Radhakrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Martin Holtkamp
- Department of Neurology and Experimental Neurology, Epilepsy Center Berlin-Brandenburg, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Epilepsy Center Berlin-Brandenburg, Evangelische Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Maria Ilyas-Feldmann
- Department of Neurology and Experimental Neurology, Epilepsy Center Berlin-Brandenburg, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Tang Y, Li W, Tao L, Li J, Long T, Li Y, Chen D, Hu S. Machine Learning-Derived Multimodal Neuroimaging of Presurgical Target Area to Predict Individual's Seizure Outcomes After Epilepsy Surgery. Front Cell Dev Biol 2022; 9:669795. [PMID: 35127691 PMCID: PMC8814443 DOI: 10.3389/fcell.2021.669795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Half of the patients who have tailored resection of the suspected epileptogenic zone for drug-resistant epilepsy have recurrent postoperative seizures. Although neuroimaging has become an indispensable part of delineating the epileptogenic zone, no validated method uses neuroimaging of presurgical target area to predict an individual's post-surgery seizure outcome. We aimed to develop and validate a machine learning-powered approach incorporating multimodal neuroimaging of a presurgical target area to predict an individual's post-surgery seizure outcome in patients with drug-resistant focal epilepsy. Materials and Methods: One hundred and forty-one patients with drug-resistant focal epilepsy were classified either as having seizure-free (Engel class I) or seizure-recurrence (Engel class II through IV) at least 1 year after surgery. The presurgical magnetic resonance imaging, positron emission tomography, computed tomography, and postsurgical magnetic resonance imaging were co-registered for surgical target volume of interest (VOI) segmentation; all VOIs were decomposed into nine fixed views, then were inputted into the deep residual network (DRN) that was pretrained on Tiny-ImageNet dataset to extract and transfer deep features. A multi-kernel support vector machine (MKSVM) was used to integrate multiple views of feature sets and to predict seizure outcomes of the targeted VOIs. Leave-one-out validation was applied to develop a model for verifying the prediction. In the end, performance using this approach was assessed by calculating accuracy, sensitivity, and specificity. Receiver operating characteristic curves were generated, and the optimal area under the receiver operating characteristic curve (AUC) was calculated as a metric for classifying outcomes. Results: Application of DRN-MKSVM model based on presurgical target area neuroimaging demonstrated good performance in predicting seizure outcomes. The AUC ranged from 0.799 to 0.952. Importantly, the classification performance DRN-MKSVM model using data from multiple neuroimaging showed an accuracy of 91.5%, a sensitivity of 96.2%, a specificity of 85.5%, and AUCs of 0.95, which were significantly better than any other single-modal neuroimaging (all p ˂ 0.05). Conclusion: DRN-MKSVM, using multimodal compared with unimodal neuroimaging from the surgical target area, accurately predicted postsurgical outcomes. The preoperative individualized prediction of seizure outcomes in patients who have been judged eligible for epilepsy surgery could be conveniently facilitated. This may aid epileptologists in presurgical evaluation by providing a tool to explore various surgical options, offering complementary information to existing clinical techniques.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Weikai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Lue Tao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
23
|
Kumar A, Shandal V, Juhász C, Chugani HT. PET imaging in epilepsy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
24
|
Ka A, Taher A, D'Souza S, Barnes EH, Gupta S, Troedson C, Wade F, Teo O, Dale RC, Wong C, Bleasel AF, Dexter M, Kothur K, Gill D. Predictors of longitudinal seizure outcomes after epilepsy surgery in childhood. Epilepsy Behav Rep 2022; 19:100561. [PMID: 35899185 PMCID: PMC9309686 DOI: 10.1016/j.ebr.2022.100561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/31/2022] Open
Abstract
Long term seizure outcome in children following epilepsy surgery is favorable. Histopathology is an independent determinant of long-term seizure outcome. Long-term seizure outcome remains stable in children with tumours and FCD type 2b, whereas seizure freedom declines with time in children with other types of FCD and cortical malformations. Children with moderate to severe developmental disability and younger age of seizure onset have higher seizure recurrence reflecting broader epileptic networks.
There is a paucity of data on longitudinal seizure outcome of children undergoing epilepsy surgery. All children (n = 132) who underwent resective epilepsy surgery from January 1998 to December 2015 were identified. Relevant clinical, neurophysiological, imaging, surgical and seizure outcome data were extracted. Multivariable logistic regression analysis and Kaplan-Meier survival with Cox proportional hazard modelling were performed. The mean age at surgery was 7.8 years (range 0.2–17.9). 71% were seizure-free at a mean follow up of 5.3 ± 2.7 years. Of those who were seizure-free, 65 patients were able to completely wean off anti- seizure medications successfully. Using survival analysis, the probability of Engel Class I outcome at one year after surgery was 81% (95% confidence interval [CI] 87%–75%). This dropped to 73% at two years (95% CI 81%–65%), 58% at five years (95% CI 67.8%–48%), and 47% at ten years. Proportional hazard modelling showed that the presence of moderate to severe developmental disability (HR 6.5; p = 0.02) and lack of complete resection (HR 0.4; p = 0.02) maintain association as negative predictors of seizure-free outcome. Our study demonstrates favorable long-term seizure control following pediatric epilepsy surgery and highlights important predictors of seizure outcome guiding case selection and counseling of expectations prior to surgery.
Collapse
|
25
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
26
|
Abstract
Temporal lobe epilepsy (TLE) is the most common cause of refractory epilepsy amenable for surgical treatment and seizure control. Surgery for TLE is a safe and effective strategy. The seizure-free rate after surgical resection in patients with mesial or neocortical TLE is about 70%. Resective surgery has an advantage over stereotactic radiosurgery in terms of seizure outcomes for mesial TLE patients. Both techniques have similar results for safety, cognitive outcomes, and associated costs. Stereotactic radiosurgery should therefore be seen as an alternative to open surgery for patients with contraindications for or with reluctance to undergo open surgery. Laser interstitial thermal therapy (LITT) has also shown promising results as a curative technique in mesial TLE but needs to be more deeply evaluated. Brain-responsive stimulation represents a palliative treatment option for patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior mesial temporal lobe resection. Overall, despite the expansion of innovative techniques in recent years, resective surgery remains the reference treatment for TLE and should be proposed as the first-line surgical modality. In the future, ultrasound therapies could become a credible therapeutic option for refractory TLE patients.
Collapse
Affiliation(s)
- Bertrand Mathon
- Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France; Sorbonne University, Paris, France; Paris Brain Institute, Paris, France
| | - Stéphane Clemenceau
- Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
27
|
Kang L, Chen J, Huang J, Zhang T, Xu J. Identifying epilepsy based on machine-learning technique with diffusion kurtosis tensor. CNS Neurosci Ther 2021; 28:354-363. [PMID: 34939745 PMCID: PMC8841295 DOI: 10.1111/cns.13773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Epilepsy is a serious hazard to human health. Minimally invasive surgery is an extremely effective treatment to refractory epilepsy currently if the location of epileptic foci is given. However, it is challenging to locate the epileptic foci since a multitude of patients are MRI‐negative. It is well known that DKI (diffusion kurtosis imaging) can analyze the pathological changes of local tissues and other regions of epileptic foci at the molecular level. In this article, we propose a new localization way for epileptic foci based on machine‐learning method with kurtosis tensor in DKI. Methods We recruited 59 children with hippocampus epilepsy and 70 age‐ and sex‐matched normal controls; their T1‐weighted images and DKI were collected simultaneously. Then, the hippocampus in DKI is segmented based on a mask as a local brain region, and DKE is utilized to estimate the kurtosis tensor of each subject's hippocampus. Finally, the kurtosis tensor is fed into SVM (support vector machine) to identify epilepsy. Results The classifier produced 95.24% accuracy for patient versus normal controls, which is higher than that obtained with FA (fractional anisotropy) and MK (mean kurtosis). Experimental results show that the kurtosis tensor is a kind of remarkable feature to identify epilepsy, which indicates that DKI images can act as an important biomarker for epilepsy from the view of clinical diagnosis. Conclusion Although the classification task for epileptic patients and normal controls discussed in this article did not directly achieve the location of epileptic foci and only identified epilepsy on certain brain region, the epileptic foci can be located with the results of identifying results on other brain regions.
Collapse
Affiliation(s)
- Li Kang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.,The Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
| | - Jin Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.,The Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
| | - Jianjun Huang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.,The Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
| | - Tijiang Zhang
- The Affiliate Hospital of Zunyi Medical University, Zunyi, China
| | - Jiahui Xu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.,The Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
| |
Collapse
|
28
|
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, Brendel M, Cecchin D, Ekmekcioglu O, Garibotto V, Lammertsma AA, Law I, Peñuelas I, Semah F, Traub-Weidinger T, van de Giessen E, Van Weehaeghe D, Morbelli S. EANM procedure guidelines for brain PET imaging using [ 18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021; 49:632-651. [PMID: 34882261 PMCID: PMC8803744 DOI: 10.1007/s00259-021-05603-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France. .,Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, 264 rue Saint Pierre, 13005, Marseille, France.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Healthcare Services, Stockholm, Sweden
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Centre of Neurodegenerative Diseases (DZNE), Site Munich, Bonn, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Ozgul Ekmekcioglu
- Sisli Hamidiye Etfal Education and Research Hospital, Nuclear Medicine Dept., University of Health Sciences, Istanbul, Turkey
| | - Valentina Garibotto
- NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clinica Universidad de Navarra, IdiSNA, University of Navarra, Pamplona, Spain
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Lille, France
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Thomas B, Aupy J, Penchet G, De Montaudouin M, Bartolomei F, Biraben A, Catenoix H, Chassoux F, Dupont S, Valton L, Michel V, Marchal C. Predictive factors of postoperative outcome in the elderly after resective epilepsy surgery. Rev Neurol (Paris) 2021; 178:609-615. [PMID: 34801264 DOI: 10.1016/j.neurol.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/25/2021] [Accepted: 08/31/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the efficiency of resective epilepsy surgery (RES) in patients over 50 years and determine prognostic factors. RESULTS Over the 147 patients over 50 years (54.9±3.8 years [50-69]) coming from 8 specialized French centres for epilepsy surgery, 72.1%, patients were seizure-free and 91.2% had a good outcome 12 months after RES. Seizure freedom was not associated with the age at surgery or duration of epilepsy. In multivariate analysis, seizure freedom was associated with MRI and neuropathological hippocampal sclerosis (HS) (P=0.009 and P=0.028 respectively), PET hypometabolism (P=0.013), temporal epilepsy (P=0.01). On the contrary, the need for intracranial exploration was associated with a poorer prognosis (P=0.001). Postoperative number of antiepileptic drugs was significantly lower in the seizure-free group (P=0.001). Neurological adverse event rate after surgery was 21.1% and 11.7% of patients had neuropsychological adverse effects overall transient. CONCLUSIONS RES is effective procedure in the elderly. Even safe it remains at higher risk of complication and population should be carefully selected. Nevertheless, age should not be considered as a limiting factor, especially when good prognostic factors are identified.
Collapse
Affiliation(s)
- B Thomas
- Department of Clinical Neurosciences, Bordeaux University Hospital, Bordeaux, France
| | - J Aupy
- Department of Clinical Neurosciences, Bordeaux University Hospital, Bordeaux, France; IMN, UMR CNRS 5293, University of Bordeaux, Bordeaux Neurocampus, Bordeaux, France.
| | - G Penchet
- Department of Neurosurgery, Bordeaux University Hospital, Bordeaux, France
| | - M De Montaudouin
- Department of Clinical Neurosciences, Bordeaux University Hospital, Bordeaux, France
| | - F Bartolomei
- Clinical Neurophysiology and Epileptology Department, APHM, Timone Hospital, Marseille, France; INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - A Biraben
- Department of Neurology, University Hospital of Rennes, Rennes, France
| | - H Catenoix
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - F Chassoux
- Department of Neurosurgery, Sainte-Anne Hospital Centre, Paris, France
| | - S Dupont
- Epilepsy Unit, La Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| | - L Valton
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - V Michel
- Department of Clinical Neurosciences, Bordeaux University Hospital, Bordeaux, France
| | - C Marchal
- Department of Clinical Neurosciences, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
30
|
Resting-State MEG Source Space Network Metrics Associated with the Duration of Temporal Lobe Epilepsy. Brain Topogr 2021; 34:731-744. [PMID: 34652579 DOI: 10.1007/s10548-021-00875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
To evaluate the relationship between the network metrics of 68 brain regions and duration of temporal lobe epilepsy (TLE). Magnetoencephalography (MEG) data from 53 patients with TLE (28 left TLE, 25 right TLE) were recorded between seizures at resting state and analyzed in six frequency bands: delta (0.1-4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-13 Hz), beta (13-30 Hz), and lower gamma (30-48 Hz). Three local network metrics, betweenness centrality, nodal degree, and nodal efficiency, were chosen to analyze the functional brain network. In Left, Right, and All (Left + Right) TLE groups, different metrics provide significant positive or negative correlations with the duration of TLE, in different frequency bands, and in different brain regions. In the Left TLE group, significant correlation between TLE duration and metric exists in the delta, beta, or lower gamma band, with network betweenness centrality, nodal degree, or nodal efficiency, in left caudal middle frontal, left middle temporal, or left supramarginal. In the Right TLE group, significant correlation exists in lower gamma or delta band, with nodal degree, or nodal efficiency, in left precuneus or right temporal pole. In the All TLE group, the significant correlation exists in delta, theta, beta, or lower gamma band, with nodal degree, or betweenness centrality, in either left or right hemisphere. Network metrics for some specific brain regions changed in patients with TLE as the duration of their TLE increased. Further researching these changes may be important for studying the pathogenesis, presurgical evaluation, and clinical treatment of long-term TLE.
Collapse
|
31
|
Cheong EN, Park JE, Jung DE, Shim WH. Extrahippocampal Radiomics Analysis Can Potentially Identify Laterality in Patients With MRI-Negative Temporal Lobe Epilepsy. Front Neurol 2021; 12:706576. [PMID: 34421804 PMCID: PMC8372821 DOI: 10.3389/fneur.2021.706576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/14/2022] Open
Abstract
Objective: The objective of the study was to investigate whether radiomics features of extrahippocampal regions differ between patients with epilepsy and healthy controls, and whether any differences can identify patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE). Methods: Data from 36 patients with hippocampal sclerosis (HS) and 50 healthy controls were used to construct a radiomics model. A total of 1,618 radiomics features from the affected hippocampal and extrahippocampal regions were compared with features from healthy controls and the unaffected side of patients. Using a stepwise selection method with a univariate t-test and elastic net penalization, significant predictors for identifying TLE were separately selected for the hippocampus (H+) and extrahippocampal region (H–). Each model was independently validated with an internal set of MRI-negative adult TLE patients (n = 22) and pediatric validation cohort with MRI-negative TLE (n = 20) from another tertiary center; diagnostic performance was calculated using area under the curve (AUC) of the receiver-operating-characteristic curve analysis. Results: Forty-eight significant H+ radiomic features and 99 significant H– radiomic features were selected from the affected side of patients and used to create a hippocampus model and an extrahippocampal model, respectively. Texture features were the most frequently selected feature. Training set showed slightly higher accuracy between hippocampal (AUC = 0.99) and extrahippocampal model (AUC = 0.97). In the internal validation and external validation sets, the extrahippocampal model (AUC = 0.80 and 0.92, respectively) showed higher diagnostic performance for identifying the affected side of patients than the hippocampus model (AUC = 0.67 and 0.69). Significance: Radiomics revealed extrahippocampal abnormality in the affected side of patients with TLE and could potentially help to identify MRI-negative TLE. Classification of Evidence: Class IV Criteria for Rating Diagnostic Accuracy Studies.
Collapse
Affiliation(s)
- E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Da Eun Jung
- Department of Pediatrics, Ajou University School of Medicine, Suwon, South Korea
| | - Woo Hyun Shim
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
32
|
Burkholder DB, Ritaccio AL, Shin C. Pre‐surgical Evaluation. EPILEPSY 2021:345-365. [DOI: 10.1002/9781119431893.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Li X, Yu T, Ren Z, Wang X, Yan J, Chen X, Yan X, Wang W, Xing Y, Zhang X, Zhang H, Loh HH, Zhang G, Yang X. Localization of the Epileptogenic Zone by Multimodal Neuroimaging and High-Frequency Oscillation. Front Hum Neurosci 2021; 15:677840. [PMID: 34168546 PMCID: PMC8217465 DOI: 10.3389/fnhum.2021.677840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Accurate localization of the epileptogenic zone (EZ) is a key factor to obtain good surgical outcome for refractory epilepsy patients. However, no technique, so far, can precisely locate the EZ, and there are barely any reports on the combined application of multiple technologies to improve the localization accuracy of the EZ. In this study, we aimed to explore the use of a multimodal method combining PET-MRI, fluid and white matter suppression (FLAWS)—a novel MRI sequence, and high-frequency oscillation (HFO) automated analysis to delineate EZ. We retrospectively collected 15 patients with refractory epilepsy who underwent surgery and used the above three methods to detect abnormal brain areas of all patients. We compared the PET-MRI, FLAWS, and HFO results with traditional methods to evaluate their diagnostic value. The sensitivities, specificities of locating the EZ, and marking extent removed versus not removed [RatioChann(ev)] of each method were compared with surgical outcome. We also tested the possibility of using different combinations to locate the EZ. The marked areas in every patient established using each method were also compared to determine the correlations among the three methods. The results showed that PET-MRI, FLAWS, and HFOs can provide more information about potential epileptic areas than traditional methods. When detecting the EZs, the sensitivities of PET-MRI, FLAWS, and HFOs were 68.75, 53.85, and 87.50%, and the specificities were 80.00, 33.33, and 100.00%. The RatioChann(ev) of HFO-marked contacts was significantly higher in patients with good outcome than those with poor outcome (p< 0.05). When intracranial electrodes covered all the abnormal areas indicated by neuroimaging with the overlapping EZs being completely removed referred to HFO analysis, patients could reach seizure-free (p < 0.01). The periphery of the lesion marked by neuroimaging may be epileptic, but not every lesion contributes to seizures. Therefore, approaches in multimodality can detect EZ more accurately, and HFO analysis may help in defining real epileptic areas that may be missed in the neuroimaging results. The implantation of intracranial electrodes guided by non-invasive PET-MRI and FLAWS findings as well as HFO analysis would be an optimized multimodal approach for locating EZ.
Collapse
Affiliation(s)
- Xiaonan Li
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| | - Tao Yu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Xin Chen
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| | - Yue Xing
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| | | | | | | | - Guojun Zhang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Xuanwu Hospital, Capital Medical University, Beijing, China.,Bioland Laboratory, Guangzhou, China
| |
Collapse
|
34
|
Zeng JY, Hu XQ, Xu JF, Zhu WJ, Wu HY, Dong FJ. Diagnostic Accuracy of Arterial Spin-Labeling MR Imaging in Detecting the Epileptogenic Zone: Systematic Review and Meta-analysis. AJNR Am J Neuroradiol 2021; 42:1052-1060. [PMID: 33766822 PMCID: PMC8191675 DOI: 10.3174/ajnr.a7061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND A noninvasive, safe, and economic imaging technique is required to identify epileptogenic lesions in the brain. PURPOSE Our aim was to perform a meta-analysis evaluating the accuracy of arterial spin-labeling in localizing the epileptic focus in the brain and the changes in the blood perfusion in these regions. DATA SOURCES Our sources were the PubMed and EMBASE data bases. STUDY SELECTION English language studies that assessed the diagnostic accuracy of arterial spin-labeling for detecting the epileptogenic zone up to July 2019 were included. DATA ANALYSIS The symptomatogenic foci of seizures in the brain were determined and used as the references. The relevant studies were evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The outcomes were evaluated using the pooled sensitivity, pooled specificity, pooled accuracy, diagnostic odds ratio, area under the summary receiver operating characteristic curve, and likelihood ratio. DATA SYNTHESIS Six studies that included 174 patients qualified for this meta-analysis. The pooled sensitivity, pooled specificity, and area under the summary receiver operating characteristic curve were 0.74 (95% CI, 0.65-0.82), 0.35 (95% CI, 0.03-0.90), and 0.73 (95% CI, 0.69-0.76), respectively. The accuracy of arterial spin-labeling for localizing the epileptic focus was 0.88 (accuracy in arterial spin-labeling/all perfusion changes in arterial spin-labeling) in cases of a positive arterial spin-labeling result. The epileptogenic zone exhibited hyperperfusion or hypoperfusion. LIMITATIONS Only a few studies were enrolled due to the strict inclusion criteria. CONCLUSIONS Arterial spin-labeling can be used for assessing, monitoring, and reviewing, postoperatively, patients with epilepsy. Blood perfusion changes in the brain may be closely related to the seizure time and pattern.
Collapse
Affiliation(s)
- J Y Zeng
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| | - X Q Hu
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station (X.H.), Jinan University, Guangzhou, China
| | - J F Xu
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| | - W J Zhu
- QQ Music Business group of Tencent Music Entertainment Group (W.Z.), Shenzhen People's Hospital, Shenzhen, China
| | - H Y Wu
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| | - F J Dong
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
35
|
Fiani B, Jarrah R, Doan T, Shields J, Houston R, Sarno E. Stereoelectroencephalography versus Subdural Electrode Implantation to Determine Whether Patients with Drug-resistant Epilepsy Are Candidates for Epilepsy Surgery. Neurol Med Chir (Tokyo) 2021; 61:347-355. [PMID: 33967179 PMCID: PMC8258005 DOI: 10.2176/nmc.ra.2020-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a chronic condition that affects about 50 million individuals worldwide. While its challenges are profound, there are increasing instances where antiepileptic drugs (AEDs) fail to provide relief to epileptic manifestations. For these pharmacoresistant cases, epilepsy surgery often is an effective route for treatment. However, the complexity and challenges associated with presurgical evaluations have prevented more widespread utilization of epilepsy surgery in pharmacoresistant cases. While preliminary work-ups and non-invasive diagnostic imaging have allowed for limited identification of the epileptogenic zone (EZ), there is yet to be an established pre-determined algorithm for surgical evaluation of patients with epilepsy. However, two modalities are currently being used for localization of the EZ and in determining candidates for surgery: stereoelectroencephalography (SEEG) and subdural electrodes (SDEs). SDE has been used in the United States for decades; however, SEEG now provides a less invasive option for mapping brain regions. We seek to address which intracranial monitoring technique is superior. Through a review of the outcomes of various clinical studies, SEEG was found to have greater safety and efficiency benefits than SDE, such as lower morbidity rates, lower prevalence of neurological deficits, and shorter recovery times. Moreover, SEEG was also found to have further functional benefits by allowing for deeper targeting of cerebral tissue along with bilateral hemispheric monitoring. This has led to increased rates of seizure freedom and control among SEEG patients. Nevertheless, further studies on the limitations and advancements of SEEG and SDE are still required to provide a more comprehensive understanding regarding their application.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center
| | | | | | | | | | - Erika Sarno
- Michigan State University College of Osteopathic Medicine
| |
Collapse
|
36
|
Trofimova A, Milla SS, Ryan ME, Pruthi S, Blount JP, Desai NK, Glenn OA, Islam MP, Kadom N, Mirsky DM, Myseros JS, Partap S, Radhakrishnan R, Rose E, Soares BP, Trout AT, Udayasankar UK, Whitehead MT, Karmazyn B. ACR Appropriateness Criteria® Seizures-Child. J Am Coll Radiol 2021; 18:S199-S211. [PMID: 33958113 DOI: 10.1016/j.jacr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
In children, seizures represent an extremely heterogeneous group of medical conditions ranging from benign cases, such as a simple febrile seizure, to life-threatening situations, such as status epilepticus. Underlying causes of seizures also represent a wide range of pathologies from idiopathic cases, usually genetic, to a variety of acute and chronic intracranial or systemic abnormalities. This document discusses appropriate utilization of neuroimaging tests in a child with seizures. The clinical scenarios in this document take into consideration different circumstances at the time of a child's presentation including the patient's age, precipitating event (if any), and clinical and electroencephalogram findings and include neonatal seizures, simple and complex febrile seizures, post-traumatic seizures, focal seizures, primary generalized seizures in a neurologically normal child, and generalized seizures in neurologically abnormal child. This practical approach aims to guide clinicians in clinical decision-making and to help identify efficient and appropriate imaging workup. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Sarah S Milla
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Maura E Ryan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sumit Pruthi
- Panel Chair, Vanderbilt Children's Hospital, Nashville, Tennessee
| | | | | | - Orit A Glenn
- University of California San Francisco, San Francisco, California
| | - Monica P Islam
- Nationwide Children's Hospital, Columbus, Ohio, American Academy of Neurology, Acting Director, Nationwide Children's Hospital Epilepsy Program, Director, Nationwide Children's Hospital Evoked Potential and Neurophysiologic Intraoperative Monitoring Program; Director, Nationwide Children's Hospital Tuberous Sclerosis Complex Clinic
| | - Nadja Kadom
- Emory University and Children's of Atlanta (Egleston), Atlanta, Georgia
| | | | - John S Myseros
- Children's National Hospital, Children's National Health System, Washington, District of Columbia, Neurosurgery expert, Vice Chief, Neurosurgery, Children's National Hospital
| | - Sonia Partap
- Stanford University, Stanford, California, American Academy of Pediatrics
| | | | - Emily Rose
- Keck School of Medicine of USC, Los Angeles, California, American College of Emergency Physicians
| | - Bruno P Soares
- University of Vermont Medical Center, Burlington, Vermont, Division Director, Neuroradiology, Vice Chair of Imaging Research, University of Vermont Medical Center
| | - Andrew T Trout
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Officer, Joint Review Committee on Educational Programs in Nuclear Medicine Technology
| | | | | | - Boaz Karmazyn
- Specialty Chair, Riley Hospital for Children Indiana University, Indianapolis, Indiana
| |
Collapse
|
37
|
Alsumaili M, Alkhateeb M, Khoja A, Alkhaja M, Alsulami A, Alqadi K, Baz S, Abalkhail T, Babtain F, Althubaiti I, Abu-Ata M, Alotaibi F. Seizure outcome after epilepsy surgery for patients with normal MRI: A Single center experience. Epilepsy Res 2021; 173:106620. [PMID: 33780709 DOI: 10.1016/j.eplepsyres.2021.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To analyze the surgical outcome in non-lesional intractable focal epilepsies in our center and to find possible predictors for better outcome. METHODS This is a retrospective study for 40 adult patients with intractable focal epilepsy following at KFSHRC-Riyadh, who underwent presurgical evaluation followed by resective surgery and continued follow up for a minimum of 2 years. The surgery outcome was evaluated based on the type of surgical procedure and histopathology results. RESULTS Out of all 40 patients studied, seizure freedom was achieved in 19 (47.5 %) and 17 (42.5 %) patients at the first and second year respectively in all non-lesional cases. Seizure freedom in non-lesional temporal lobe surgery was achieved in 10 (45 %) of patients at 2 years, 5 (38 %) in non-lesional frontal lobe patients at 2 years and 8 (44 %), 7 (38 %) for all extratemporal at 1 and 2 years respectively. Good prognosis was seen in patients with localized positron emission tomography (PET), had no aura and had a clear ictal onset either on scalp electroencephalogram (EEG) or subdural invasive electroencephalogram. SIGNIFICANCE The best surgical outcome is achievable in patients with non-lesional focal epilepsy. This study highlights the prognostic value of the PET scan and ictal scalp/subdural invasive EEG.
Collapse
Affiliation(s)
- Mohammad Alsumaili
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Pediatric Department, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia.
| | - Mashael Alkhateeb
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Abeer Khoja
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Neurology Section, Medical Department, King Abdulaziz University, Building 10, Second Floor, Jeddah, Saudi Arabia.
| | - Mohammed Alkhaja
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Department of Internal Medicine, King Hamad University Hospital, House 2811, Road 445, Block 1204, Hamad Town, Busaiteen, Bahrain.
| | - Ashwaq Alsulami
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Khalid Alqadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| | - Salah Baz
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Tariq Abalkhail
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Fawzi Babtain
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| | - Ibrahim Althubaiti
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Mahmoud Abu-Ata
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia.
| | - Faisal Alotaibi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, Saudi Arabia; Neurology Section, Medical Department, Aldara Hospital and Medical Center, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Quantitative [18]FDG PET asymmetry features predict long-term seizure recurrence in refractory epilepsy. Epilepsy Behav 2021; 116:107714. [PMID: 33485794 PMCID: PMC8344068 DOI: 10.1016/j.yebeh.2020.107714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Fluorodeoxyglucose-positron emission tomography (FDG-PET) is an established, independent, strong predictor of surgical outcome in refractory epilepsy. In this study, we explored the added value of quantitative [18F]FDG-PET features combined with clinical variables, including electroencephalography (EEG), [18F]FDG-PET, and magnetic resonance imaging (MRI) qualitative interpretations, to predict long-term seizure recurrence (mean post-op follow-up of 5.85 ± 3.77 years). METHODS Machine learning predictive models of surgical outcome were created using a random forest classifier trained on quantitative features in 89 patients with drug-refractory temporal lobe epilepsy evaluated at the Hospital of the University of Pennsylvania epilepsy surgery program (2003-2016). Quantitative features were calculated from asymmetry features derived from image processing using Advanced Normalization Tools (ANTs). RESULTS The best-performing model used quantification and had an out-of-bag accuracy of 0.71 in identifying patients with seizure recurrence (Engel IB or worse) which outperformed that using qualitative clinical data by 10%. This model is shared through open-source software for research use. In addition, several asymmetry features in temporal and extratemporal regions that were significantly associated with seizure freedom are identified for future study. SIGNIFICANCE Complex quantitative [18F]FDG-PET imaging features can predict seizure recurrence in patients with refractory temporal lobe epilepsy. These initial retrospective results in a cohort with long-term follow-up suggest that using quantitative imaging features from regions in the epileptogenic network can inform the clinical decision-making process.
Collapse
|
39
|
Assessment of localization accuracy and postsurgical prediction of simultaneous 18F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 2021; 31:6974-6982. [PMID: 33638688 DOI: 10.1007/s00330-021-07738-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the accuracies of simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) in preoperative localization and the postsurgical prediction. METHODS This retrospective study was performed on ninety-eight patients diagnosed with refractory epilepsy whose presurgical evaluation included [18F]-FDG PET/MRI, with 1-year post-surgery follow-up between August 2016 and December 2018. PET/MRI images were interpreted by two radiologists and a nuclear medicine physician to localize the EOZ using standard visual analysis and asymmetry index based on standard uptake value (SUV). The localization accuracy and predictive performance of simultaneous 18F-FDG PET/MRI based on the surgial pathology and postsurgical outcome were evaluated. RESULTS A total of 41.8% (41/98) patients were found to have a definitely structural abnormality on the MR portion of PET/MRI; 93.9% (92/98) were shown hypometabolism on the PET portion of the hybrid PET/MRI. PET/MRI identified 18 cases with subtle structural abnormalities on MRI re-read. Six percent (6/98) of patients PET/MRI were negative. A total of 65.3% (64/98) patients showed seizure-free at 1-year follow-up after epilepsy surgery. The sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI was 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. Multivariate regression analysis indicated that concordant of EOZ localization between PET/MRI and surgical resection range, which was a good positive predictor of seizure freedom (Engel I) (OR = 14.741, 95% CI 3.934-55.033, p < 0.001). CONCLUSIONS [18F]-FDG PET/MRI used as two combined modalities providing additional sensitivity when detecting possible epileptic foci and will probably improve the surgical outcome. KEY POINTS • Sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI were 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. • Concordance of EOZ localization between PET/MRI and surgical resection range was a good positive predictor of seizure freedom; presurgical [18F]-FDG PET/MRI will probably improve the surgical outcome.
Collapse
|
40
|
Princich JP, Donnelly-Kehoe PA, Deleglise A, Vallejo-Azar MN, Pascariello GO, Seoane P, Veron Do Santos JG, Collavini S, Nasimbera AH, Kochen S. Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm. Front Neurol 2021; 12:613967. [PMID: 33692740 PMCID: PMC7937810 DOI: 10.3389/fneur.2021.613967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS. Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy. Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions. Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.
Collapse
Affiliation(s)
- Juan Pablo Princich
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Hospital de Pediatría J.P Garrahan, Departamento de Neuroimágenes, Buenos Aires, Argentina
| | - Patricio Andres Donnelly-Kehoe
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Procesamiento de Señales Multimedia - División Neuroimágenes, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alvaro Deleglise
- Instituto de Fisiología y Biofísica B. Houssay (IFIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Fisiología y Biofísica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Nahir Vallejo-Azar
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina
| | - Guido Orlando Pascariello
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Procesamiento de Señales Multimedia - División Neuroimágenes, Universidad Nacional de Rosario, Rosario, Argentina
| | - Pablo Seoane
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Hospital J.M Ramos Mejía, Centro de Epilepsia, Buenos Aires, Argentina
| | - Jose Gabriel Veron Do Santos
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina
| | - Santiago Collavini
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Instituto de investigación en Electrónica, Control y Procesamiento de Señales (LEICI), Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina.,Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Alejandro Hugo Nasimbera
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina.,Hospital J.M Ramos Mejía, Centro de Epilepsia, Buenos Aires, Argentina
| | - Silvia Kochen
- ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, Argentina
| |
Collapse
|
41
|
18 F-FDG-PET hypometabolic pattern reveals multifocal epileptic foci despite limited unique stereotyped seizures. Epilepsy Res 2021; 172:106589. [PMID: 33640665 DOI: 10.1016/j.eplepsyres.2021.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Interictal positron emission tomography (PET) with 18F-FDG has largely proved its utility in presurgical evaluation of drug-resistant epilepsies (DRE) and in the surgical outcomes. Interictal hypometabolism topography is related to the neuronal networks involved in the seizure onset zone (SOZ) and spread pathways. 18F-FDG PET has a good prognostic value for post-surgical outcome, especially in cases with unique focal ictal semiology and a limited extent of hypometabolism. Surprisingly few patients have similar limited ictal features but extended hypometabolism. The objective of this study is to show that stereoelectro encephalography (SEEG) provides an explanation for this large hypometabolism, which impacts the surgical strategy. METHODS A cohort of 248 patients underwent 18F-FDG PET and SEEG to explore for refractory epilepsy in two close tertiary epilepsy centers between January 2009 and December 2017. From this cohort, a subset of patients was selected with extended PET metabolism despite showing unique and limited ictal features in scalp EEG. The surgical outcome of this subset of patients has been analysed with respect to their FDG-PET and SEEG to understand the relationship between PET/SEEG/ presentation and surgical outcome. RESULTS We report a series of seven patients with DRE and unique stereotyped ictal semiology but extensive 18F-FDG-PET hypometabolism revealing unexpected multifocal SOZ using SEEG. All SOZ were encompassed by the hypometabolic area. CONCLUSION Our results demonstrate the necessity of accounting for the discrepancy between limited symptoms and widespread hypometabolism which can reveal multifocal SOZ. In those patients, surgical possibilities should be considered carefully.
Collapse
|
42
|
Tang Y, Liao G, Li J, Long T, Li Y, Feng L, Chen D, Tang B, Hu S. FDG-PET Profiles of Extratemporal Metabolism as a Predictor of Surgical Failure in Temporal Lobe Epilepsy. Front Med (Lausanne) 2020; 7:605002. [PMID: 33425950 PMCID: PMC7793721 DOI: 10.3389/fmed.2020.605002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Objective: Metabolic abnormality in the extratemporal area on fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is not an uncommon finding in drug-resistant temporal lobe epilepsy (TLE), however the correlation between extratemporal metabolic abnormalities and surgical long-term prognosis has not been fully elucidated. We aim to investigate FDG-PET extratemporal metabolic profiles predictive of failure in surgery for TLE patients. Methods: Eighty-two patients with unilateral TLE (48 female, 34 male; 25.6 ± 10.6 years old; 37 left TLE, 45 right TLE) and 30 healthy age-matched controls were enrolled. Patients were classified either as experiencing seizure-recurrence (SZR, Engel class II through IV) or seizure-free (SZF, Engel class I) at least 1 year after surgery. Regional cerebral metabolism was evaluated by FDG-PET with statistical parametric mapping (SPM12). Abnormal metabolic profiles and patterns on FDG-PET in SZR group were evaluated and compared with those of healthy control and SZF subjects on SPM12. Volume and intensity as well as special brain areas of abnormal metabolism in temporal and extratemporal regions were quantified and visualized. Results: With a median follow-up of 1.5 years, 60% of patients achieved Engel class I (SZF). SZR was associated with left TLE and widespread hypometabolism in FDG-PET visual assessment (both p < 0.05). All patients had hypometabolism in the ipsilateral temporal lobe but SZR was not correlated with volume or intensity of temporal hypometabolism (median, 1,456 vs. 1,040 mm3; p > 0.05). SZR was correlated with extratemporal metabolic abnormalities that differed according to lateralization: in right TLE, SZR exhibited larger volume in extratemporal areas compared to SZF (median, 11,060 vs. 2,112 mm3; p < 0.05). Surgical failure was characterized by Cingulum_Ant_R/L, Frontal_Inf_Orb_R abnormal metabolism in extratemporal regions. In left TLE, SZR presented a larger involvement of extratemporal areas similar to right TLE but with no significant (median, 5,873 vs. 3,464 mm3; p > 0.05), Cingulum_Ant_ R/L, Parietal_Inf_L, Postcentral_L, and Precuneus_R involved metabolic abnormalities were correlated with SZR. Conclusions: Extratemporal metabolic profiles detected by FDG-PET may indicate a prominent cause of TLE surgery failure and should be considered in predictive models for epilepsy surgery. Seizure control after surgery might be improved by investigating extratemporal areas as candidates for resection or neuromodulation.
Collapse
Affiliation(s)
- Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Liao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Long
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yulai Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Cascino GD, Brinkmann BH. Advances in the Surgical Management of Epilepsy: Drug-Resistant Focal Epilepsy in the Adult Patient. Neurol Clin 2020; 39:181-196. [PMID: 33223082 DOI: 10.1016/j.ncl.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pharmacoresistant seizures occur in nearly one-third of people with epilepsy. Medial temporal lobe and lesional epilepsy are the most favorable surgically remediable epileptic syndromes. Successful surgery may render the patient seizure-free, reduce antiseizure drug(s) adverse effects, improve quality of life, and decrease mortality. Surgical management should not be considered a procedure of "last resort." Despite the results of randomized controlled trials, surgery remains an underutilized treatment modality for patients with drug-resistant epilepsy (DRE). Important disparities affect patient referral and selection for surgical treatment. This article discusses the advances in surgical treatment of DRE in adults with focal seizures.
Collapse
Affiliation(s)
| | - Benjamin H Brinkmann
- Mayo Clinic, Department of Neurology, 200 First Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
44
|
Beheshti I, Sone D, Maikusa N, Kimura Y, Shigemoto Y, Sato N, Matsuda H. FLAIR-Wise Machine-Learning Classification and Lateralization of MRI-Negative 18F-FDG PET-Positive Temporal Lobe Epilepsy. Front Neurol 2020; 11:580713. [PMID: 33224093 PMCID: PMC7669910 DOI: 10.3389/fneur.2020.580713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: In this study, we investigated the ability of fluid-attenuated inversion recovery (FLAIR) data coupled with machine-leaning algorithms to differentiate normal and epileptic brains and identify the laterality of focus side in temporal lobe epilepsy (TLE) patients with visually negative MRI. Materials and Methods: The MRI data were acquired on a 3-T MR system (Philips Medical Systems). After pre-proceeding stage, the FLAIR signal intensities were extracted from specific regions of interest, such as the amygdala, cerebral white matter, inferior temporal gyrus, middle temporal gyrus, parahippocampal gyrus, superior temporal gyrus, and temporal pole, and fed into a classification framework followed by a support vector machine as classifier. The proposed lateralization framework was assessed in a group of MRI-negative unilateral TLE patients (N = 42; 23 left TLE and 19 right TLE) and 34 healthy controls (HCs) based on a leave-one-out cross-validation strategy. Results: Using the FLAIR data, we obtained a 75% accuracy for discriminating the three groups, as well as 87.71, 83.01, and 76.19% accuracies for HC/right TLE, HC/left TLE, and left TLE/right TLE tasks, respectively. Interpretation: The experimental results show that FLAIR data can potentially be considered an informative biomarker for improving the pre-surgical diagnostic confidence in patients with MRI-negative TLE.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Cyclotron and Drug Discovery Research Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Matsuda
- Cyclotron and Drug Discovery Research Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan.,Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
45
|
Seong MJ, Hong SB, Seo DW, Joo EY, Hong SC, Lee SH, Shon YM. Correlations between interictal extratemporal spikes and clinical features, imaging characteristics, and surgical outcomes in patients with mesial temporal lobe epilepsy. Seizure 2020; 82:12-16. [PMID: 32957031 DOI: 10.1016/j.seizure.2020.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The significance of interictal epileptiform discharges (IEDs) observed in the extratemporal lobe has not been fully evaluated in patients with mesial temporal lobe epilepsy (MTLE). This study aimed to evaluate the surgical outcomes, clinical features, and functional neuroimaging characteristics of patients in relation to the presence or absence of extratemporal IED in MTLE with hippocampal sclerosis (HS). METHODS A total of 165 patients with HS-induced MTLE who had undergone anterior temporal lobectomy were enrolled and stratified into the extratemporal interictal epileptiform discharges (ETD) and the temporal lobe discharges (TD) groups. We analyzed the differentiating features of pre- and postsurgical evaluation data between the two groups. For outcome assessment, only patients with a follow-up of at least 2 years were enrolled, and the outcomes were classified based on Engel classification. RESULTS The ETD group showed extensive glucose hypometabolism involving the temporal lobe and extratemporal regions (p < 0.001), and IEDs were observed bilaterally or contralateral to the ictal focus (p = 0.02). However, there was no difference in the surgical outcomes between the two groups. On multivariate analysis, statistically significant variables related to ETD occurrence including seizure onset age were not identified nevertheless. CONCLUSION Our results indicate that ETD had a surgical outcome comparable to that of TD. Therefore, a surgical intervention need not be delayed even if extratemporal IED may be found in presurgical long-term scalp EEG monitoring.
Collapse
Affiliation(s)
- Min Jae Seong
- Department of Neurology, Myongji Hospital, Goyang, Republic of Korea
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Sunkyunkwan University, Seoul, Republic of Korea
| | - Seung Chyul Hong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Seung Hoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Sunkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Abstract
Candidates for epilepsy surgery must undergo presurgical evaluation to establish whether and how surgical treatment can stop seizures without causing neurological deficits. Various techniques, including MRI, PET, single-photon emission CT, video-EEG, magnetoencephalography and invasive EEG, aim to identify the diseased brain tissue and the involved network. Recent technical and methodological developments, encompassing both advances in existing techniques and new combinations of technologies, are enhancing the ability to define the optimal resection strategy. Multimodal interpretation and predictive computer models are expected to aid surgical planning and patient counselling, and multimodal intraoperative guidance is likely to increase surgical precision. In this Review, we discuss how the knowledge derived from these new approaches is challenging our way of thinking about surgery to stop focal seizures. In particular, we highlight the importance of looking beyond the EEG seizure onset zone and considering focal epilepsy as a brain network disease in which long-range connections need to be taken into account. We also explore how new diagnostic techniques are revealing essential information in the brain that was previously hidden from view.
Collapse
|
47
|
Patel NJ, Gavvala JR, Jimenez-Shahed J. Awake Testing to Confirm Target Engagement. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Baumgartner C, Koren JP, Britto-Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res 2019; 8. [PMID: 31700611 PMCID: PMC6820825 DOI: 10.12688/f1000research.17714.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
With a prevalence of 0.8 to 1.2%, epilepsy represents one of the most frequent chronic neurological disorders; 30 to 40% of patients suffer from drug-resistant epilepsy (that is, seizures cannot be controlled adequately with antiepileptic drugs). Epilepsy surgery represents a valuable treatment option for 10 to 50% of these patients. Epilepsy surgery aims to control seizures by resection of the epileptogenic tissue while avoiding neuropsychological and other neurological deficits by sparing essential brain areas. The most common histopathological findings in epilepsy surgery specimens are hippocampal sclerosis in adults and focal cortical dysplasia in children. Whereas presurgical evaluations and surgeries in patients with mesial temporal sclerosis and benign tumors recently decreased in most centers, non-lesional patients, patients requiring intracranial recordings, and neocortical resections increased. Recent developments in neurophysiological techniques (high-density electroencephalography [EEG], magnetoencephalography, electrical and magnetic source imaging, EEG-functional magnetic resonance imaging [EEG-fMRI], and recording of pathological high-frequency oscillations), structural magnetic resonance imaging (MRI) (ultra-high-field imaging at 7 Tesla, novel imaging acquisition protocols, and advanced image analysis [post-processing] techniques), functional imaging (positron emission tomography and single-photon emission computed tomography co-registered to MRI), and fMRI significantly improved non-invasive presurgical evaluation and have opened the option of epilepsy surgery to patients previously not considered surgical candidates. Technical improvements of resective surgery techniques facilitate successful and safe operations in highly delicate brain areas like the perisylvian area in operculoinsular epilepsy. Novel less-invasive surgical techniques include stereotactic radiosurgery, MR-guided laser interstitial thermal therapy, and stereotactic intracerebral EEG-guided radiofrequency thermocoagulation.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Johannes P Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Martha Britto-Arias
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Lea Zoche
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Susanne Pirker
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| |
Collapse
|
49
|
|
50
|
Arya R, Mangano FT, Horn PS, Kaul SK, Kaul SK, Roth C, Leach JL, Turner M, Holland KD, Greiner HM. Long-term seizure outcomes after pediatric temporal lobectomy: does brain MRI lesion matter? J Neurosurg Pediatr 2019; 24:200-208. [PMID: 31151097 DOI: 10.3171/2019.4.peds18677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There is emerging data that adults with temporal lobe epilepsy (TLE) without a discrete lesion on brain MRI have surgical outcomes comparable to those with hippocampal sclerosis (HS). However, pediatric TLE is different from its adult counterpart. In this study, the authors investigated if the presence of a potentially epileptogenic lesion on presurgical brain MRI influences the long-term seizure outcomes after pediatric temporal lobectomy. METHODS Children who underwent temporal lobectomy between 2007 and 2015 and had at least 1 year of seizure outcomes data were identified. These were classified into lesional and MRI-negative groups based on whether an epilepsy-protocol brain MRI showed a lesion sufficiently specific to guide surgical decisions. These patients were also categorized into pure TLE and temporal plus epilepsies based on the neurophysiological localization of the seizure-onset zone. Seizure outcomes at each follow-up visit were incorporated into a repeated-measures generalized linear mixed model (GLMM) with MRI status as a grouping variable. Clinical variables were incorporated into GLMM as covariates. RESULTS One hundred nine patients (44 females) were included, aged 5 to 21 years, and were classified as lesional (73%), MRI negative (27%), pure TLE (56%), and temporal plus (44%). After a mean follow-up of 3.2 years (range 1.2-8.8 years), 66% of the patients were seizure free for ≥ 1 year at last follow-up. GLMM analysis revealed that lesional patients were more likely to be seizure free over the long term compared to MRI-negative patients for the overall cohort (OR 2.58, p < 0.0001) and for temporal plus epilepsies (OR 1.85, p = 0.0052). The effect of MRI lesion was not significant for pure TLE (OR 2.64, p = 0.0635). Concordance of ictal electroencephalography (OR 3.46, p < 0.0001), magnetoencephalography (OR 4.26, p < 0.0001), and later age of seizure onset (OR 1.05, p = 0.0091) were associated with a higher likelihood of seizure freedom. The most common histological findings included cortical dysplasia types 1B and 2A, HS (40% with dual pathology), and tuberous sclerosis. CONCLUSIONS A lesion on presurgical brain MRI is an important determinant of long-term seizure freedom after pediatric temporal lobectomy. Pediatric TLE is heterogeneous regarding etiologies and organization of seizure-onset zones with many patients qualifying for temporal plus nosology. The presence of an MRI lesion determined seizure outcomes in patients with temporal plus epilepsies. However, pure TLE had comparable surgical seizure outcomes for lesional and MRI-negative groups.
Collapse
Affiliation(s)
- Ravindra Arya
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
- 2Department of Pediatrics, University of Cincinnati College of Medicine
| | | | - Paul S Horn
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
| | - Sabrina K Kaul
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
| | - Serena K Kaul
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
| | - Celie Roth
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
| | - James L Leach
- 4Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michele Turner
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
| | - Katherine D Holland
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
- 2Department of Pediatrics, University of Cincinnati College of Medicine
| | - Hansel M Greiner
- 1Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center
- 2Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|