1
|
Peter EK, Jaeger C, Lisec J, Peters RS, Mourot R, Rossel PE, Tranter M, Anesio AM, Benning LG. Endometabolic profiling of pigmented glacier ice algae: the impact of sample processing. Metabolomics 2024; 20:98. [PMID: 39123092 PMCID: PMC11315761 DOI: 10.1007/s11306-024-02147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Glacier ice algae, mainly Ancylonema alaskanum and Ancylonema nordenskiöldi, bloom on Greenland Ice Sheet bare ice surfaces. They significantly decrease surface albedo due to their purple-brown pigmentation, thus increasing melt. Little is known about their metabolic adaptation and factors controlling algal growth dynamics and pigment formation. A challenge in obtaining such data is the necessity of melting samples, which delays preservation and introduces bias to metabolomic analysis. There is a need to evaluate the physiological response of algae to melting and establish consistent sample processing strategies for metabolomics of ice microbial communities. OBJECTIVES To address the impact of sample melting procedure on metabolic characterization and establish a processing and analytical workflow for endometabolic profiling of glacier ice algae. METHODS We employed untargeted, high-resolution mass spectrometry and tested the effect of sample melt temperature (10, 15, 20 °C) and processing delay (up to 49 h) on the metabolome and lipidome, and complemented this approach with cell counts (FlowCam), photophysiological analysis (PAM) and diversity characterization. RESULTS AND CONCLUSION We putatively identified 804 metabolites, with glycerolipids, glycerophospholipids and fatty acyls being the most prominent superclasses (> 50% of identified metabolites). Among the polar metabolome, carbohydrates and amino acid-derivatives were the most abundant. We show that 8% of the metabolome is affected by melt duration, with a pronounced decrease in betaine membrane lipids and pigment precursors, and an increase in phospholipids. Controlled fast melting at 10 °C resulted in the highest consistency, and is our recommendation for future supraglacial metabolomics studies.
Collapse
Affiliation(s)
- Elisa K Peter
- German Research Centre for Geosciences - GFZ, 14473, Potsdam, Germany.
- Department of Earth Sciences, Freie Universität Berlin, 12249, Berlin, Germany.
| | - Carsten Jaeger
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12489, Berlin, Germany
| | - Jan Lisec
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12489, Berlin, Germany
| | - R Sven Peters
- German Research Centre for Geosciences - GFZ, 14473, Potsdam, Germany
| | - Rey Mourot
- German Research Centre for Geosciences - GFZ, 14473, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249, Berlin, Germany
| | - Pamela E Rossel
- German Research Centre for Geosciences - GFZ, 14473, Potsdam, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Liane G Benning
- German Research Centre for Geosciences - GFZ, 14473, Potsdam, Germany.
- Department of Earth Sciences, Freie Universität Berlin, 12249, Berlin, Germany.
| |
Collapse
|
2
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
3
|
Glass SE, McCourt RM, Gottschalk SD, Lewis LA, Karol KG. Chloroplast genome evolution and phylogeny of the early-diverging charophycean green algae with a focus on the Klebsormidiophyceae and Streptofilum. JOURNAL OF PHYCOLOGY 2023; 59:1133-1146. [PMID: 37548118 DOI: 10.1111/jpy.13359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution.
Collapse
Affiliation(s)
- Sarah E Glass
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, New York, New York, USA
| | - Richard M McCourt
- Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, USA
| | - Stephen D Gottschalk
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Kenneth G Karol
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
| |
Collapse
|
4
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
5
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
6
|
Rybalka N, Blanke M, Tzvetkova A, Noll A, Roos C, Boy J, Boy D, Nimptsch D, Godoy R, Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island). Front Microbiol 2023; 14:1118747. [PMID: 37434717 PMCID: PMC10332270 DOI: 10.3389/fmicb.2023.1118747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Matthias Blanke
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg August University, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics and Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz University, Hanover, Germany
| | - Diana Boy
- Institute of Microbiology, Leibniz University, Hanover, Germany
| | - Daniel Nimptsch
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| |
Collapse
|
7
|
Novis PM, Dhami M, Podolyan A, Matsumoto M, Kodner R. The austral biflagellate Chloromonas rubroleosa (Chlorophyceae) is the closest relative of the unusual quadriflagellate genus Chlainomonas, both found in snow. JOURNAL OF PHYCOLOGY 2023; 59:342-355. [PMID: 36680562 DOI: 10.1111/jpy.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/28/2023]
Abstract
The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of "Group D" snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.
Collapse
Affiliation(s)
- Phil M Novis
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | | | - Maya Matsumoto
- Department of Biology and Environmental Science, Western Washington University, Washington, USA
| | - Robin Kodner
- Department of Biology and Environmental Science, Western Washington University, Washington, USA
| |
Collapse
|
8
|
Kryvenda A, Tischner R, Steudel B, Griehl C, Armon R, Friedl T. Testing for terrestrial and freshwater microalgae productivity under elevated CO 2 conditions and nutrient limitation. BMC PLANT BIOLOGY 2023; 23:27. [PMID: 36635620 PMCID: PMC9837994 DOI: 10.1186/s12870-023-04042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microalgae CO2 fixation results in the production of biomass rich in high-valuable products, such as fatty acids and carotenoids. Enhanced productivity of valuable compounds can be achieved through the microalgae's ability to capture CO2 efficiently from sources of high CO2 contents, but it depends on the species. Culture collections of microalgae offer a wide variety of defined strains. However, an inadequate understanding of which groups of microalgae and from which habitats they originate offer high productivity under increased CO2 concentrations hampers exploiting microalgae as a sustainable source in the bioeconomy. RESULTS A large variety of 81 defined algal strains, including new green algal isolates from various terrestrial environments, were studied for their growth under atmospheres with CO2 levels of 5-25% in air. They were from a pool of 200 strains that had been pre-selected for phylogenetic diversity and high productivity under ambient CO2. Green algae from terrestrial environments exhibited enhanced growth up to 25% CO2. In contrast, in unicellular red algae and stramenopile algae, which originated through the endosymbiotic uptake of a red algal cell, growth at CO2 concentrations above 5% was suppressed. While terrestrial stramenopile algae generally tolerated such CO2 concentrations, their counterparts from marine phytoplankton did not. The tests of four new strains in liquid culture revealed enhanced biomass and chlorophyll production under elevated CO2 levels. The 15% CO2 aeration increased their total carotenoid and fatty acid contents, which were further stimulated when combined with the starvation of macronutrients, i.e., less with phosphate and more with nitrogen-depleted culture media. CONCLUSION Green algae originating from terrestrial environments, Chlorophyceae and Trebouxiophyceae, exhibit enhanced productivity of carotenoids and fatty acids under elevated CO2 concentrations. This ability supports the economic and sustainable production of valuable compounds from these microalgae using inexpensive sources of high CO2 concentrations, such as industrial exhaust fumes.
Collapse
Affiliation(s)
- Anastasiia Kryvenda
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
- Present address: Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft, 01683 Nossen, Germany
| | - Rudolf Tischner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
| | - Bastian Steudel
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
- Present address: Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123 Jiangsu Province China
| | - Carola Griehl
- Department of Applied Biosciences and Process Technology, Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Robert Armon
- Technion-Israel Institute of Technology, Faculty of Civil and Environmental Engineering, 32000 Haifa, Israel
| | - Thomas Friedl
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
| |
Collapse
|
9
|
Winkel M, Trivedi CB, Mourot R, Bradley JA, Vieth-Hillebrand A, Benning LG. Seasonality of Glacial Snow and Ice Microbial Communities. Front Microbiol 2022; 13:876848. [PMID: 35651494 PMCID: PMC9149292 DOI: 10.3389/fmicb.2022.876848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
Blooms of microalgae on glaciers and ice sheets are amplifying surface ice melting rates, which are already affected by climate change. Most studies on glacial microorganisms (including snow and glacier ice algae) have so far focused on the spring and summer melt season, leading to a temporal bias, and a knowledge gap in our understanding of the variations in microbial diversity, productivity, and physiology on glacier surfaces year-round. Here, we investigated the microbial communities from Icelandic glacier surface snow and bare ice habitats, with sampling spanning two consecutive years and carried out in both winter and two summer seasons. We evaluated the seasonal differences in microbial community composition using Illumina sequencing of the 16S rRNA, 18S rRNA, and ITS marker genes and correlating them with geochemical signals in the snow and ice. During summer, Chloromonas, Chlainomonas, Raphidonema, and Hydrurus dominated surface snow algal communities, while Ancylonema and Mesotaenium dominated the surface bare ice habitats. In winter, algae could not be detected, and the community composition was dominated by bacteria and fungi. The dominant bacterial taxa found in both winter and summer samples were Bacteriodetes, Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria. The winter bacterial communities showed high similarities to airborne and fresh snow bacteria reported in other studies. This points toward the importance of dry and wet deposition as a wintertime source of microorganisms to the glacier surface. Winter samples were also richer in nutrients than summer samples, except for dissolved organic carbon-which was highest in summer snow and ice samples with blooming microalgae, suggesting that nutrients are accumulated during winter but primarily used by the microbial communities in the summer. Overall, our study shows that glacial snow and ice microbial communities are highly variable on a seasonal basis.
Collapse
Affiliation(s)
- Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - Christopher B Trivedi
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - Rey Mourot
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - James A Bradley
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany.,School of Geography, Queen Mary University of London, London, United Kingdom
| | - Andrea Vieth-Hillebrand
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany
| | - Liane G Benning
- GFZ German Research Centre for Geosciences, Helmholtz Centre for Geosciences, Potsdam, Germany.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Shinohara N, Nishitani K. Cryogenian Origin and Subsequent Diversification of the Plant Cell-Wall Enzyme XTH Family. PLANT & CELL PHYSIOLOGY 2021; 62:1874-1889. [PMID: 34197607 PMCID: PMC8711696 DOI: 10.1093/pcp/pcab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 05/22/2023]
Abstract
All land plants encode large multigene families of xyloglucan endotransglucosylase/hydrolases (XTHs), plant-specific enzymes that cleave and reconnect plant cell-wall polysaccharides. Despite the ubiquity of these enzymes, considerable uncertainty remains regarding the evolutionary history of the XTH family. Phylogenomic and comparative analyses in this study traced the non-plant origins of the XTH family to Alphaproteobacteria ExoKs, bacterial enzymes involved in loosening biofilms, rather than Firmicutes licheninases, plant biomass digesting enzymes, as previously supposed. The relevant horizontal gene transfer (HGT) event was mapped to the divergence of non-swimming charophycean algae in the Cryogenian geological period. This HGT event was the likely origin of charophycean EG16-2s, which are putative intermediates between ExoKs and XTHs. Another HGT event in the Cryogenian may have led from EG16-2s or ExoKs to fungal Congo Red Hypersensitive proteins (CRHs) to fungal CRHs, enzymes that cleave and reconnect chitin and glucans in fungal cell walls. This successive transfer of enzyme-encoding genes may have supported the adaptation of plants and fungi to the ancient icy environment by facilitating their sessile lifestyles. Furthermore, several protein evolutionary steps, including coevolution of substrate-interacting residues and putative intra-family gene fusion, occurred in the land plant lineage and drove diversification of the XTH family. At least some of those events correlated with the evolutionary gain of broader substrate specificities, which may have underpinned the expansion of the XTH family by enhancing duplicated gene survival. Together, this study highlights the Precambrian evolution of life and the mode of multigene family expansion in the evolutionary history of the XTH family.
Collapse
Affiliation(s)
- Naoki Shinohara
- *Corresponding authors: Naoki Shinohara, E-mail, ; Kazuhiko Nishitani, E-mail,
| | - Kazuhiko Nishitani
- *Corresponding authors: Naoki Shinohara, E-mail, ; Kazuhiko Nishitani, E-mail,
| |
Collapse
|
11
|
Morphological features of the Geminella protogenita (Kützing) West (Chlorophyta, Trebouxiophyceae): a rare freshwater green alga found in southern of Brazil. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Yakimovich KM, Gauthier NPG, Engstrom CB, Leya T, Quarmby LM. A Molecular Analysis of Microalgae from Around the Globe to Revise Raphidonema (Trebouxiophyceae, Chlorophyta). JOURNAL OF PHYCOLOGY 2021; 57:1419-1432. [PMID: 33988850 DOI: 10.1111/jpy.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
We isolated five microalgal strains from alpine snow near Vancouver, Canada, which display morphological features suggestive of the genera Koliella and Raphidonema. Due to variations in cell size and shape, we could not make a clear delimitation based on morphology. We proceeded to a molecular analysis and included 22 strains from the CCCryo culture collection, previously identified as members of four closely related genera: Raphidonema, Koliella, Stichococcus, and Pseudochlorella. For greater taxonomic context in our phylogenetic analysis, we also obtained authentic strains for the type species of Koliella and Pseudochlorella, but were unable to find one for Raphidonema. To examine generic boundaries, we did a phylogenetic analysis on the rbcL gene for all strains, establishing distinct lineages. Our novel isolates fell within Raphidonema, and so we analyzed the ITS2 gene of all Raphidonema strains to delimit species. To support species delimitations, we did a Compensatory Base Change analysis using the secondary structure of the ITS2 gene to assist in aligning the sequence. We also computed a maximum likelihood phylogenetic tree to examine species clades of Raphidonema. We assigned epitypes for two Raphidonema species based on the best morphological match to strains in the ITS2 clades. We then amended their diagnoses so they can be more reliably identified using DNA sequence data. We also propose two new species, R. catena and R. monicae, that formed their own species clades according to our ITS2 analysis.
Collapse
Affiliation(s)
- Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nick P G Gauthier
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research & Biobank CCCryo, Am Muehlenberg 13, Potsdam-Golm, 14476, Germany
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Sciences Building room 8166, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
13
|
Carvalhido V, Bessa da Silva M, Santos M, Tamagnini P, Melo P, Pereira R. Development of an ecotoxicological test procedure for soil microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147006. [PMID: 33872898 DOI: 10.1016/j.scitotenv.2021.147006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Since the 80s, ISO and OECD organizations have been developing guidelines for assessing the toxicity of new and existing chemical substances to soil biota. Up to now, any of these guidelines had soil algae as test organisms. Nevertheless, microalgae are relevant components of soil microbial communities and soil biological crusts (BSC) with a great contribution to different soil functions and ecosystem services. In an attempt to bridge the gap, the present work aimed to develop, describe and validate a standard operating procedure for an ecotoxicological test with soil microalgae. Three phases were performed, each one with specific objectives. First, soil microalgae and cyanobacteria were isolated from BSC and then genetically and morphologically characterized. The green microalga Micractinium inermum was selected because it is a species with a wide geographic distribution. Secondly, M. inermum growth curves were obtained in liquid (BG11 and Woods-Hole MBL) and solid media (OECD artificial soil) to determine test duration. The growth curves were also used to analyze the reproducibility of the test's endpoint and to propose a validation criterion. Ultimately, a range of concentrations of two reference substances (glyphosate and copper) were tested, both in soil and liquid media, to assess procedure's reproducibility. The tests made in liquid medium followed the standard guideline for ecotoxicological tests with freshwater microalgae and cyanobacteria (OECD 201:2011). The results obtained prove that when the artificial soil is used, as a test substrate, the sensitivity of M. inermum increases. The tests performed with both reference substances demonstrate that the procedure described for testing in soil was reproducible. Additionally, it will be relevant to test with other reference substances and adjust the procedure for natural soils. It will be also interesting to validate the test procedure with soil cyanobacteria.
Collapse
Affiliation(s)
- Vânia Carvalhido
- GreenUPorto - Sustainable Agrifood Production Research Centre, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Márcia Bessa da Silva
- GreenUPorto - Sustainable Agrifood Production Research Centre, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paula Melo
- GreenUPorto - Sustainable Agrifood Production Research Centre, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ruth Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
14
|
Gálvez FE, Saldarriaga-Córdoba M, Huovinen P, Silva AX, Gómez I. Revealing the Characteristics of the Antarctic Snow Alga Chlorominima collina gen. et sp. nov. Through Taxonomy, Physiology, and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2021; 12:662298. [PMID: 34163502 PMCID: PMC8215615 DOI: 10.3389/fpls.2021.662298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
Snow algae play crucial roles in cold ecosystems, however, many aspects related to their biology, adaptations and especially their diversity are not well known. To improve the identification of snow algae from colored snow, in the present study we used a polyphasic approach to describe a new Antarctic genus, Chlorominima with the species type Chlorominima collina. This new taxon was isolated of colored snow collected from the Collins Glacier (King George Island) in the Maritime Antarctic region. Microscopy revealed biflagellated ellipsoidal cells with a rounded posterior end, a C-shaped parietal chloroplast without a pyrenoid, eyespot, and discrete papillae. Several of these characteristics are typical of the genus Chloromonas, but the new isolate differs from the described species of this genus by the unusual small size of the cells, the presence of several vacuoles, the position of the nucleus and the shape of the chloroplast. Molecular analyzes confirm that the isolated alga does not belong to Chloromonas and therefore forms an independent lineage, which is closely related to other unidentified Antarctic and Arctic strains, forming a polar subclade in the Stephanosphaerinia phylogroup within the Chlamydomonadales. Secondary structure comparisons of the ITS2 rDNA marker support the idea that new strain is a distinct taxon within of Caudivolvoxa. Physiological experiments revealed psychrophilic characteristics, which are typical of true snow algae. This status was confirmed by the partial transcriptome obtained at 2°C, in which various cold-responsive and cryoprotective genes were identified. This study explores the systematics, cold acclimatization strategies and their implications for the Antarctic snow flora.
Collapse
Affiliation(s)
- Francisca E. Gálvez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
- *Correspondence: Francisca E. Gálvez,
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Andrea X. Silva
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
15
|
Biodiversity of Algae and Cyanobacteria in Biological Soil Crusts Collected Along a Climatic Gradient in Chile Using an Integrative Approach. Microorganisms 2020; 8:microorganisms8071047. [PMID: 32674483 PMCID: PMC7409284 DOI: 10.3390/microorganisms8071047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.
Collapse
|
16
|
Hartmann A, Glaser K, Holzinger A, Ganzera M, Karsten U. Klebsormidin A and B, Two New UV-Sunscreen Compounds in Green Microalgal Interfilum and Klebsormidium Species (Streptophyta) From Terrestrial Habitats. Front Microbiol 2020; 11:499. [PMID: 32292396 PMCID: PMC7118736 DOI: 10.3389/fmicb.2020.00499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 01/16/2023] Open
Abstract
The terrestrial green algal members of the genera Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta) are found in biological soil crusts of extreme habitats around the world where they are regularly exposed, among other abiotic stress factors, to high levels of ultraviolet radiation (UVR). As a consequence those species synthesize and accumulate either one or two mycosporine-like amino acids (MAAs), but with a missing structural elucidation up to now. Therefore, in the present study both MAAs were chemically isolated and structurally elucidated. The two new compounds exhibit absorption maxima of 324 nm. MAA 1 has a molecular weight of 467 and MAA 2 of 305, and the latter (MAA 2) was identified as N-(4,5-dihydroxy-5-(hydroxymethyl)-2-methoxy-3-oxocyclohex-1-en-1-yl)-N-methylserine using one- and two-dimensional 1H and 13C-NMR spectroscopy. MAA 1 contains an additional sugar moiety. As trivial names for these two novel MAAs we suggest klebsormidin A and klebsormidin B. Different species from all previously described phylogenetic clades of Klebsormidiophyceae were chemically screened for their MAA composition in aqueous extracts using RP-HPLC and LC-MS. The novel klebsormidin A was present throughout all clades and hence could be suitable as a chemotaxonomic marker. Additionally, controlled UVR-exposure experiments with all investigated species showed that MAA biosynthesis and intracellular enrichment is strongly induced by short wavelengths, supporting the function of these compounds as natural UV-sunscreen as well as explaining the cosmopolitan distribution and ecological success of Interfilum and Klebsormidium in terrestrial habitats.
Collapse
Affiliation(s)
- Anja Hartmann
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Karin Glaser
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | | | - Markus Ganzera
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Ulf Karsten
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
17
|
Lutz S, Procházková L, Benning LG, Nedbalová L, Remias D. Evaluating High-Throughput Sequencing Data of Microalgae Living in Melting Snow: Improvements and Limitations 1. FOTTEA (PRAHA) 2019; 19:115-131. [PMID: 33414851 PMCID: PMC7116558 DOI: 10.5507/fot.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Melting snow fields are an extremophilic habitat dominated by closely related Chlamydomonadaceae (Chlorophyta). Microscopy-based classification of these cryophilic microalgae is challenging and may not reveal the true diversity. High-throughput sequencing (HTS) allows for a more comprehensive evaluation of the community. However, HTS approaches have been rarely used in such ecosystems and the output of their application has not been evaluated. Furthermore, there is no consensus on the choice for a suitable DNA marker or data processing workflow. We found that the correct placement of taxonomic strings onto OTUs strongly depends on the quality of the reference databases. We improved the assignments of the HST data by generating additional reference sequences of the locally abundant taxa, guided by light microscopy. Furthermore, a manual inspection of all automated OTU assignments, oligotyping of the most abundant 18S OTUs, as well as ITS2 secondary structure analyses were necessary for accurate species assignments. Moreover, the sole use of one marker can cause misleading results, either because of insufficient variability within the locus (18S) or the scarcity of reference sequences (ITS2). Our evaluation reveals that HTS output needs to be thoroughly checked when the studied habitats or organisms are poorly represented in publicly available databases. We recommend an optimized workflow for an improved biodiversity evaluation of not only snow algal communities, but generally 'exotic' ecosystems where similar problems arise. A consistent sampling strategy, two- molecular marker approach, light microscopy-based guidance, generation of appropriate reference sequences and final manual verification of all taxonomic assignments are highly recommended.
Collapse
Affiliation(s)
| | | | - Liane G. Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany School of Earth & Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
| |
Collapse
|
18
|
Hotter V, Glaser K, Hartmann A, Ganzera M, Karsten U, Henley W. Polyols and UV-sunscreens in the Prasiola-clade (Trebouxiophyceae, Chlorophyta) as metabolites for stress response and chemotaxonomy. JOURNAL OF PHYCOLOGY 2018; 54:264-274. [PMID: 29345725 PMCID: PMC5947255 DOI: 10.1111/jpy.12619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/07/2018] [Indexed: 05/22/2023]
Abstract
In many regions of the world, aeroterrestrial green algae of the Trebouxiophyceae (Chlorophyta) represent very abundant soil microorganisms, and hence their taxonomy is crucial to investigate their physiological performance and ecological importance. Due to a lack in morphological features, taxonomic and phylogenetic studies of Trebouxiophycean algae can be a challenging task. Since chemotaxonomic markers could be a great assistance in this regard, 22 strains of aeroterrestrial Trebouxiophyceae were chemically screened for their polyol-patterns as well as for mycosporine-like amino acids (MAAs) in their aqueous extracts using RP-HPLC and LC-MS. d-sorbitol was exclusively detected in members of the Prasiolaceae family. The novel MAA prasiolin and a related compound ("prasiolin-like") were present in all investigated members of the Prasiola-clade, but missing in all other tested Trebouxiophyceae. While prasiolin could only be detected in field material directly after extraction, the "prasiolin-like" compound present in the other algae was fully converted into prasiolin after 24 h. These findings suggest d-sorbitol and prasiolin-like compounds are suitable chemotaxonomic markers for the Prasiolaceae and Prasiola-clade, respectively. Additional UV-exposure experiments with selected strains show that MAA formation and accumulation can be induced, supporting their role as UV-sunscreen.
Collapse
Affiliation(s)
- Vivien Hotter
- Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockAlbert‐Einstein‐Straße 3D‐18059RostockGermany
| | - Karin Glaser
- Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockAlbert‐Einstein‐Straße 3D‐18059RostockGermany
| | - Anja Hartmann
- Institute of Pharmacy, PharmacognosyUniversity of InnsbruckInnrain 80‐82/IVA‐6020InnsbruckAustria
| | - Markus Ganzera
- Institute of Pharmacy, PharmacognosyUniversity of InnsbruckInnrain 80‐82/IVA‐6020InnsbruckAustria
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockAlbert‐Einstein‐Straße 3D‐18059RostockGermany
| | | |
Collapse
|
19
|
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). FOTTEA (PRAHA) 2018; 18:1-18. [PMID: 30976329 PMCID: PMC6456015 DOI: 10.5507/fot.2017.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Melting snow fields populated by aplanozygotes of the genus Chloromonas (Chlamydomonadales, Chlorophyta) are found in polar and alpine habitats. In the High Tatra Mountains (Slovakia), cells causing blooms of brownish-red snow designated as Scotiella tatrae kol turned out to be genetically (18S, ITS1 and ITS2 rDNA, rbcL) very closely related to Chloromonas nivalis (Chodat) Hoham et Mullet from the Austrian Alps. Therefore, Sc. tatrae is transferred into the latter taxon and reduced to a subspecies as Cr. nivalis subsp. tatrae. Both exhibit a similar photosynthetic performance, thrive in similar habitats at open sites above timberline, but differ in astaxanthin accumulation and number of aplanozygote cell wall flanges. In a field sample of Cr. nivalis subsp. tatrae, polyunsaturated fatty acids formed nearly 50 % of total lipids, dominating in phospholipids and glycolipids. Cr. nivalis subsp. tatrae represents likely a variation of a common cryoflora species with distinct morphology.
Collapse
Affiliation(s)
- Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, CZ–128 44 Prague, Czech Republic
- Corresponding author
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, A–4600 Wels, Austria
| | - Tomáš Řezanka
- Institute of Microbiology CAS, Vídeňská 1083, CZ–142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, CZ–128 44 Prague, Czech Republic
| |
Collapse
|
20
|
Mikhailyuk T, Lukešová A, Glaser K, Holzinger A, Obwegeser S, Nyporko S, Friedl T, Karsten U. New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach. Protist 2018; 169:406-431. [PMID: 29860113 PMCID: PMC6071840 DOI: 10.1016/j.protis.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/25/2022]
Abstract
Two new genera (Streptosarcina and Streptofilum) and three new species (Streptosarcina arenaria, S. costaricana and Streptofilum capillatum) of streptophyte algae were detected in cultures isolated from terrestrial habitats of Europe and Central America and described using an integrative approach. Additionally, a strain isolated from soil in North America was identified as Hormidiella parvula and proposed as an epitype of this species. The molecular phylogeny based on 18S rRNA and rbcL genes, secondary structure of ITS-2, as well as the morphology of vegetative and reproductive stages, cell ultrastructure, ecology and distribution of the investigated strains were assessed. The new genus Streptosarcina forms a sister lineage to the genus Hormidiella (Klebsormidiophyceae). Streptosarcina is characterized by packet-like (sarcinoid) and filamentous thalli with true branching and a cell organization typical for Klebsormidiophyceae. Streptofilum forms a separate lineage within Streptophyta. This genus represents an easily disintegrating filamentous alga which exhibits a cell coverage of unique structure: layers of submicroscopic scales of piliform shape covering the plasmalemma and exfoliate inside the mucilage envelope surrounding cells. The implications of the discovery of the new taxa for understanding evolutionary tendencies in the Streptophyta, a group of great evolutionary interest, are discussed.
Collapse
Affiliation(s)
- Tatiana Mikhailyuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv 01004, Ukraine.
| | - Alena Lukešová
- Biology Centre of the Czech Academy of Sciences, v.v.i., Institute of Soil Biology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Karin Glaser
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Sabrina Obwegeser
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Svetlana Nyporko
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv 01004, Ukraine
| | - Thomas Friedl
- Experimental Phycology and Culture Collection of Algae, Georg-August University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| |
Collapse
|
21
|
Lutz S, McCutcheon J, McQuaid JB, Benning LG. The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping. Microb Genom 2018; 4. [PMID: 29547098 PMCID: PMC5885011 DOI: 10.1099/mgen.0.000159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Arctic is being disproportionally affected by climate change compared with other geographic locations, and is currently experiencing unprecedented melt rates. The Greenland Ice Sheet (GrIS) can be regarded as the largest supraglacial ecosystem on Earth, and ice algae are the dominant primary producers on bare ice surfaces throughout the course of a melt season. Ice-algal-derived pigments cause a darkening of the ice surface, which in turn decreases albedo and increases melt rates. The important role of ice algae in changing melt rates has only recently been recognized, and we currently know little about their community compositions and functions. Here, we present the first analysis of ice algal communities across a 100 km transect on the GrIS by high-throughput sequencing and subsequent oligotyping of the most abundant taxa. Our data reveal an extremely low algal diversity with Ancylonema nordenskiöldii and a Mesotaenium species being by far the dominant taxa at all sites. We employed an oligotyping approach and revealed a hidden diversity not detectable by conventional clustering of operational taxonomic units and taxonomic classification. Oligotypes of the dominant taxa exhibit a site-specific distribution, which may be linked to differences in temperatures and subsequently the extent of the melting. Our results help to better understand the distribution patterns of ice algal communities that play a crucial role in the GrIS ecosystem.
Collapse
Affiliation(s)
- Stefanie Lutz
- 1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Jenine McCutcheon
- 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - James B McQuaid
- 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Liane G Benning
- 1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
22
|
Barcytė D, Hodač L, Nedbalová L, Elster J. Chloromonas arctica sp. nov., a psychrotolerant alga from snow in the High Arctic (Chlamydomonadales, Chlorophyta). Int J Syst Evol Microbiol 2018; 68:851-859. [PMID: 29458669 DOI: 10.1099/ijsem.0.002595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With the advent of molecular phylogenetic methods, it has become possible to assess the bioversity of snow algae more accurately. In this study, we focused on a morphological, ultrastructural and taxonomic description of a new Chloromonas-like alga isolated from snow in the High Arctic (Svalbard). Light and transmission electron microscopy revealed broad ellipsoidal or ellipsoidal-cylindrical, occasionally spherical cells with a chloroplast without a pyrenoid, an inconspicuous eyespot and a papilla. The size difference and the aforementioned morphological traits clearly distinguished the alga from its closest counterparts within the genus Chloromonas. Moreover, we were able to cultivate the alga at both 5 and 20 °C, revealing the psychrotolerant nature of the strain. Phylogenetic analyses of the plastid rbcL and nuclear 18S rRNA gene showed that the alga is nested within a clade containing a number of psychrotolerant strains within the Chloromonadinia phylogroup (Chlorophyceae). In the rbcL phylogeny, the alga formed an independent lineage, sister to the freshwater species Chloromonas paraserbinowii. Comparisons of secondary structure models of a highly variable ITS2 rDNA marker showed support for a distinct species identity for the new strain. The ITS2 secondary structure of the new isolate differed from the closest matches 'Chlamydomonas' gerloffii and Choloromonas reticulata by three and five compensatory base changes, respectively. Considering the morphological and molecular differences from its closest relatives, a new psychrotolerant species from the Arctic, Choromonas arctica sp. nov., is proposed.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic.,The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic
| | - Josef Elster
- The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic.,Centre for Polar Ecology, University of South Bohemia, Na Zlaté stoce 3, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
23
|
Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological Soil Crusts of Arctic Svalbard-Water Availability as Potential Controlling Factor for Microalgal Biodiversity. Front Microbiol 2017; 8:1485. [PMID: 28848507 PMCID: PMC5550688 DOI: 10.3389/fmicb.2017.01485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/24/2017] [Indexed: 11/22/2022] Open
Abstract
In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.
Collapse
Affiliation(s)
- Nadine Borchhardt
- Applied Ecology and Phycology, Institute of Biological Sciences, University of RostockRostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of RostockRostock, Germany
| | - Tatiana Mikhailyuk
- Applied Ecology and Phycology, Institute of Biological Sciences, University of RostockRostock, Germany.,Department of Phycology, Lichenology and Bryology, M.H. Kholodny Institute of Botany, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of RostockRostock, Germany
| |
Collapse
|
24
|
Donner A, Glaser K, Borchhardt N, Karsten U. Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests. MICROBIAL ECOLOGY 2017; 73:850-864. [PMID: 28011994 DOI: 10.1007/s00248-016-0917-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/09/2016] [Indexed: 05/22/2023]
Abstract
The green algal genus Klebsormidium (Klebsormidiophyceae, Streptophyta) is a typical member of biological soil crusts (BSCs) worldwide. Ecophysiological studies focused so far on individual strains and thus gave only limited insight on the plasticity of this genus. In the present study, 21 Klebsormidium strains (K. dissectum, K. flaccidum, K. nitens, K. subtile) from temperate BSCs in Central European grassland and forest sites were investigated. Photosynthetic performance under desiccation and temperature stress was measured under identical controlled conditions. Photosynthesis decreased during desiccation within 335-505 min. After controlled rehydration, most isolates recovered, but with large variances between single strains and species. However, all K. dissectum strains had high recovery rates (>69%). All 21 Klebsormidium isolates exhibited the capability to grow under a wide temperature range. Except one strain, all others grew at 8.5 °C and four strains were even able to grow at 6.2 °C. Twenty out of 21 Klebsormidium isolates revealed an optimum growth temperature >17 °C, indicating psychrotrophic features. Growth rates at optimal temperatures varied between strains from 0.26 to 0.77 μ day-1. Integrating phylogeny and ecophysiological traits, we found no phylogenetic signal in the traits investigated. However, multivariate statistical analysis indicated an influence of the recovery rate and growth rate. The results demonstrate a high infraspecific and interspecific physiological plasticity, and thus wide ecophysiological ability to cope with strong environmental gradients. This might be the reason why members of the genus Klebsormidium successfully colonize terrestrial habitats worldwide.
Collapse
Affiliation(s)
- Antje Donner
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany.
| | - Karin Glaser
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Nadine Borchhardt
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
25
|
Barcytė D, Nedbalová L. Coccomyxa: a dominant planktic alga in two acid lakes of different origin. Extremophiles 2016; 21:245-257. [PMID: 27942983 DOI: 10.1007/s00792-016-0899-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
The aim of this study was to reveal the taxonomic position and phylogenetic relationships of the dominant planktic algae in two acid metal-rich lakes of different origin (Hromnice Lake and Plešné Lake, Czech Republic) and to investigate their morphology and ultrastructure under natural and laboratory conditions. Phylogenetic analyses (18S rRNA and ITS-2) revealed that the strain isolated from Hromnice Lake belongs to the species Coccomyxa elongata, while Coccomyxa from Plešné Lake was described as a new species C. silvae-gabretae. It is the first evidence that representatives of this genus are capable of becoming the dominant primary producers in the extreme environment of acid lakes with an increased supply of phosphorus. There were clear differences in cell morphology under different growth conditions, revealing the high phenotypic plasticity of the strains. The ability to change the morphology may help the cells of Coccomyxa to survive harsh conditions in the aforementioned acid lakes.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague 2, 128 44, Czech Republic.
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague 2, 128 44, Czech Republic
| |
Collapse
|
26
|
Hallmann C, Hoppert M, Mudimu O, Friedl T. Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: a case study using molecular approaches. JOURNAL OF PHYCOLOGY 2016; 52:732-744. [PMID: 27288109 DOI: 10.1111/jpy.12437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
In Middle European suburban environments green algae often cover open surfaces of artificial hard substrates. Microscopy reveals the Apatococcus/Desmococcus morphotype predominant over smaller coccoid forms. Adverse conditions such as limited water availability connected with high PAR and UV irradiance may narrow the algal diversity to a few specialists in these subaerial habitats. We used rRNA gene cloning/sequencing from both DNA extracts of the biofilms without culturing as well as cultures, for the unambiguous determination of the algal composition and to assess the algal diversity more comprehensively. The culture independent approach revealed mainly just two genera (Apatococcus, Trebouxia) for all study sites and five molecular operational taxonomic units (OTUs) for a particular study site, which based on microscopic observation was the one with the highest morphological diversity. The culture approach, however, revealed seven additional OTUs from five genera (Chloroidium, Coccomyxa, Coenochloris, Pabia, Klebsormidium) and an unidentified trebouxiophyte lineage for that same site; only two OTUs were shared by both approaches. Two OTUs or species were recovered for which references have been isolated only from Antarctica so far. However, the internal transcribed spacer (ITS) sequence differences among them supported they are representing distinct populations of the same species. Within Apatococcus five clearly distinct groups of ITS sequences, each putatively representing a distinct species, were recovered with three or four such ITS types co-occurring at the same study site. Except for the streptophyte Klebsormidium only members of Trebouxiophyceae were detected suggesting these algae may be particularly well-adapted to subaerial habitats.
Collapse
Affiliation(s)
- Christine Hallmann
- Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Opayi Mudimu
- Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Thomas Friedl
- Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| |
Collapse
|
27
|
Wetherbee R, Verbruggen H. Kraftionema allantoideum, a new genus and family of Ulotrichales (Chlorophyta) adapted for survival in high intertidal pools. JOURNAL OF PHYCOLOGY 2016; 52:704-715. [PMID: 27403596 DOI: 10.1111/jpy.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
The marine, sand-dwelling green alga Kraftionema allantoideum gen. et sp. nov. is described from clonal cultures established from samples collected in coastal, high intertidal pools from south eastern Australia. The species forms microscopic, uniseriate, unbranched, 6-8 μm wide filaments surrounded by a gelatinous capsule of varying thickness. Filaments are twisted, knotted, and variable in length from 4 to 50 cells in field samples but straighter and much longer in culture, up to 1.5 mm in length. Cell division occurs in several planes, resulting in daughter cells of varying shape, from square to rectangular to triangular, giving rise to gnarled filaments. Mature cells become allantoid, elongate with rounded ends, before dividing one time to form bicells comprised of two domed cells. Adjacent bicells separate from one another and mature filaments appeared as a string of loosely arranged sausages. A massive, single, banded chloroplast covered 3/4 of the wall circumference, and contained a single large pyrenoid encased in a starch envelope that measures 1.5-2.5 μm. Filaments were not adhesive nor did they produce specialized adhesive cells or structures. Reproduction was by fragmentation with all cells capable of producing a new filament. No motile or reproductive cells were observed. Filaments in culture grew equally well in freshwater or marine media, as well as at high salinity, and cells quickly recovered from desiccation. Phylogenetic analysis based on the nuclear-encoded small subunit ribosomal RNA (18S) shows the early branching nature of the Kraftionema lineage among Ulotrichales, warranting its recognition as a family (Kraftionemaceae).
Collapse
Affiliation(s)
- Richard Wetherbee
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
28
|
Herburger K, Karsten U, Holzinger A. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. PROTOPLASMA 2016; 253:1309-23. [PMID: 26439247 PMCID: PMC4710678 DOI: 10.1007/s00709-015-0889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 05/22/2023]
Abstract
The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.
Collapse
Affiliation(s)
- Klaus Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| |
Collapse
|
29
|
Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). JOURNAL OF PHYCOLOGY 2016; 52:599-617. [PMID: 27135898 DOI: 10.1111/jpy.12422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/15/2016] [Indexed: 05/25/2023]
Abstract
Coccoid green algae traditionally classified in Dictyochloropsis have a complex, reticulate chloroplast, when mature, without a pyrenoid. They occupy remarkably diverse ecological niches as free-living organisms or in association with lichen-forming fungi and were recently shown to form two distinct lineages within Trebouxiophyceae. We used a polyphasic approach to revise the taxonomy of the genus. Based on phylogenetic analysis of the 18S rRNA gene, and detailed morphological investigation using comparative conventional light and confocal microscopy, we have assigned these lineages to two genera, Dictyochloropsis and Symbiochloris gen. nov. We have reconsidered the diagnostic generic features as follows: Dictyochloropsis comprises only free-living algae with a reticulate chloroplast, forming lobes in a parallel arrangement at some ontogenetic stages, and which reproduce only by means of autospores. This agrees with Geitler's original diagnosis of Dictyochloropsis, but not with the later emendation by Tschermak-Woess. Consequently, the species of Dictyochloropsis sensu Tschermak-Woess are assigned to Symbiochloris, with new combinations proposed. Symbiochloris encompasses free-living and/or lichenized algae with lobed chloroplasts and that reproduce by forming zoospores characterized by two subapical isokont flagella that emerge symmetrically near the flattened apex. In addition, using coalescent-based approaches, morphological characters and secondary structure of ITS transcripts, we inferred species boundaries and taxonomic relationships within the newly proposed genera. Two species of Dictyochloropsis and nine species of Symbiochloris are delimited, including the newly described species D. asterochloroides, S. handae, S. tropica, and S. tschermakiae. Our results further support the non-monophyly of autosporine taxa within Trebouxiophyceae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801, Praha 2, Czech Republic
| | - Thomas Friedl
- Experimental Phycology and Culture Collection of Algae, Georg-August University Göttingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Christine Hallmann
- Experimental Phycology and Culture Collection of Algae, Georg-August University Göttingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Andreas Beck
- Department of Lichenology and Bryology, Botanische Staatssammlung München, D-80638, München, Germany
- GeoBio-Center, Ludwig-Maximilians Universität München, Richard-Wagner-Str. 10, D-80333, München, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Lemieux C, Otis C, Turmel M. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. FRONTIERS IN PLANT SCIENCE 2016; 7:697. [PMID: 27252715 PMCID: PMC4877394 DOI: 10.3389/fpls.2016.00697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 05/18/2023]
Abstract
The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus far; it lacks eight genes relative to its Chaetosphaeridium globosum homolog, four of which represent unique events in the evolutionary scenario of gene losses we reconstructed for streptophyte algae. The 10 compared zygnematophycean cpDNAs display tremendous variations at all levels, except gene content. During zygnematophycean evolution, the IR disappeared a minimum of five times, the rDNA operon was broken at four distinct sites, group II introns were lost on at least 43 occasions, and putative foreign genes, mainly of phage/viral origin, were gained.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QuébecQC, Canada
| | | | | |
Collapse
|
31
|
Karsten U, Herburger K, Holzinger A. Living in biological soil crust communities of African deserts-Physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. JOURNAL OF PLANT PHYSIOLOGY 2016; 194:2-12. [PMID: 26422081 PMCID: PMC4710676 DOI: 10.1016/j.jplph.2015.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 05/20/2023]
Abstract
Green algae of the genus Klebsormidium (Klebsormidiales, Streptophyta) are typical members of biological soil crusts (BSCs) worldwide. The phylogeny and ecophysiology of Klebsormidium has been intensively studied in recent years, and a new lineage called superclade G, which was isolated from BSCs in arid southern Africa and comprising undescribed species, was reported. Three different African strains, that have previously been isolated from hot-desert BSCs and molecular-taxonomically characterized, were comparatively investigated. In addition, Klebsormidium subtilissimum from a cold-desert habitat (Alaska, USA, superclade E) was included in the study as well. Photosynthetic performance was measured under different controlled abiotic conditions, including dehydration and rehydration, as well as under a light and temperature gradient. All Klebsormidium strains exhibited optimum photosynthetic oxygen production at low photon fluence rates, but with no indication of photoinhibition under high light conditions pointing to flexible acclimation mechanisms of the photosynthetic apparatus. Respiration under lower temperatures was generally much less effective than photosynthesis, while the opposite was true for higher temperatures. The Klebsormidium strains tested showed a decrease and inhibition of the effective quantum yield during desiccation, however with different kinetics. While the single celled and small filamentous strains exhibited relatively fast inhibition, the uniserate filament forming isolates desiccated slower. Except one, all other strains fully recovered effective quantum yield after rehydration. The presented data provide an explanation for the regular occurrence of Klebsormidium strains or species in hot and cold deserts, which are characterized by low water availability and other stressful conditions.
Collapse
Affiliation(s)
- Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology & Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany.
| | - Klaus Herburger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
32
|
Domozych DS, Popper ZA, Sørensen I. Charophytes: Evolutionary Giants and Emerging Model Organisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1470. [PMID: 27777578 PMCID: PMC5056234 DOI: 10.3389/fpls.2016.01470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/15/2016] [Indexed: 05/20/2023]
Abstract
Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on "Charophytes" provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology, Skidmore College, Saratoga SpringsNY, USA
- *Correspondence: David S. Domozych,
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Science, National University of IrelandGalway, Ireland
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| |
Collapse
|
33
|
Mikhailyuk T, Holzinger A, Massalski A, Karsten U. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation. EUROPEAN JOURNAL OF PHYCOLOGY 2014; 49:395-412. [PMID: 26504365 PMCID: PMC4618308 DOI: 10.1080/09670262.2014.949308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 05/21/2023]
Abstract
Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions.
Collapse
Affiliation(s)
- Tatiana Mikhailyuk
- M.H. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska St. 2, KyivUA-01001, Ukraine
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059Rostock, Germany
- Correspondence to: Tatiana Mikhailyuk. E-mail:
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020Innsbruck, Austria
| | - Andrzej Massalski
- Jan Kochanowski University, Institute of Biology, Dept of Botany, Świetokrzyska St. 15, PL-25-406, Kielce, Poland
| | - Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059Rostock, Germany
| |
Collapse
|
34
|
Karsten U, Herburger K, Holzinger A. Dehydration, temperature, and light tolerance in members of the aeroterrestrial green algal genus interfilum (streptophyta) from biogeographically different temperate soils. JOURNAL OF PHYCOLOGY 2014; 50:804-16. [PMID: 25810561 PMCID: PMC4370238 DOI: 10.1111/jpy.12210] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/17/2014] [Indexed: 05/20/2023]
Abstract
Unicellular green algae of the genus Interfilum (Klebsormidiales, Streptophyta) are typical components of biological soil crusts. Four different aeroterrestrial Interfilum strains that have previously been molecular-taxonomically characterized and isolated from temperate soils in Belgium, Czech Republic, New Zealand, and Ukraine were investigated. Photosynthetic performance was evaluated under different controlled abiotic conditions, including dehydration, as well as under a light and temperature gradient. For standardized desiccation experiments, a new methodological approach with silica gel filled polystyrol boxes and effective quantum yield measurements from the outside were successfully applied. All Interfilum isolates showed a decrease and inhibition of the effective quantum yield under this treatment, however with different kinetics. While the single cell strains exhibited relatively fast inhibition, the cell packet forming isolates dried slower. Most strains fully recovered effective quantum yield after rehydration. All Interfilum isolates exhibited optimum photosynthesis at low photon fluence rates, but with no indication of photoinhibition under high light conditions suggesting flexible acclimation mechanisms of the photosynthetic machinery. Photosynthesis under lower temperatures was generally more active than respiration, while the opposite was true for higher temperatures. The presented data provide an explanation for the regular occurrence of Interfilum species in soil habitats where environmental factors can be particularly harsh.
Collapse
Affiliation(s)
- Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of RostockAlbert-Einstein-Strasse 3, Rostock, D-18059, Germany
- Author for correspondence: e-mail
| | - Klaus Herburger
- Institute of Botany, Functional Plant Biology, University of InnsbruckSternwartestrasse 15, Innsbruck, A-6020, Austria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of InnsbruckSternwartestrasse 15, Innsbruck, A-6020, Austria
| |
Collapse
|
35
|
Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. FRONTIERS IN PLANT SCIENCE 2013; 4:327. [PMID: 23986769 PMCID: PMC3749462 DOI: 10.3389/fpls.2013.00327] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/02/2013] [Indexed: 05/18/2023]
Abstract
Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review.
Collapse
Affiliation(s)
- Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of InnsbruckInnsbruck, Austria
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of RostockRostock, Germany
| |
Collapse
|
36
|
Škaloud P, Rindi F. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukaryot Microbiol 2013; 60:350-62. [PMID: 23648118 DOI: 10.1111/jeu.12040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 11/05/2012] [Accepted: 01/25/2013] [Indexed: 11/29/2022]
Abstract
Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium, specifically the lineage E (K. flaccidum/K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbcL data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro-repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well-defined cryptic species is enabled by the mechanism of selective sweep.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha CZ 128 01, Czech Republic.
| | | |
Collapse
|
37
|
Rybalka N, Wolf M, Andersen RA, Friedl T. Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae). BMC Evol Biol 2013; 13:39. [PMID: 23402662 PMCID: PMC3598724 DOI: 10.1186/1471-2148-13-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 02/05/2013] [Indexed: 11/15/2022] Open
Abstract
Background Heterococcus is a microalgal genus of Xanthophyceae (Stramenopiles) that is common and widespread in soils, especially from cold regions. Species are characterized by extensively branched filaments produced when grown on agarized culture medium. Despite the large number of species described exclusively using light microscopic morphology, the assessment of species diversity is hampered by extensive morphological plasticity. Results Two independent types of molecular data, the chloroplast-encoded psbA/rbcL spacer complemented by rbcL gene and the internal transcribed spacer 2 of the nuclear rDNA cistron (ITS2), congruently recovered a robust phylogenetic structure. With ITS2 considerable sequence and secondary structure divergence existed among the eight species, but a combined sequence and secondary structure phylogenetic analysis confined to helix II of ITS2 corroborated relationships as inferred from the rbcL gene phylogeny. Intra-genomic divergence of ITS2 sequences was revealed in many strains. The ‘monophyletic species concept’, appropriate for microalgae without known sexual reproduction, revealed eight different species. Species boundaries established using the molecular-based monophyletic species concept were more conservative than the traditional morphological species concept. Within a species, almost identical chloroplast marker sequences (genotypes) were repeatedly recovered from strains of different origins. At least two species had widespread geographical distributions; however, within a given species, genotypes recovered from Antarctic strains were distinct from those in temperate habitats. Furthermore, the sequence diversity may correspond to adaptation to different types of habitats or climates. Conclusions We established a method and a reference data base for the unambiguous identification of species of the common soil microalgal genus Heterococcus which uses DNA sequence variation in markers from plastid and nuclear genomes. The molecular data were more reliable and more conservative than morphological data.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Experimental Phycology and Culture Collection of Algae (SAG), Georg August University Göttingen, Untere Karspüle 2a, Göttingen, 37073, Germany
| | | | | | | |
Collapse
|
38
|
Turmel M, Otis C, Lemieux C. Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biol Evol 2013; 5:1817-35. [PMID: 24022472 PMCID: PMC3814193 DOI: 10.1093/gbe/evt135] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 11/12/2022] Open
Abstract
Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants.
Collapse
Affiliation(s)
- Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, Canada
| | | | | |
Collapse
|
39
|
Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23986769 DOI: 10.3389/fpls.2013.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review.
Collapse
Affiliation(s)
- Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck Innsbruck, Austria
| | | |
Collapse
|
40
|
Moniz MBJ, Rindi F, Novis PM, Broady PA, Guiry MD. MOLECULAR PHYLOGENY OF ANTARCTIC PRASIOLA (PRASIOLALES, TREBOUXIOPHYCEAE) REVEALS EXTENSIVE CRYPTIC DIVERSITY(1). JOURNAL OF PHYCOLOGY 2012; 48:940-955. [PMID: 27009004 DOI: 10.1111/j.1529-8817.2012.01172.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Trebouxiophytes of the genus Prasiola are well known in Antarctica, where they are among the most important primary producers. Although many aspects of their biology have been thoroughly investigated, the scarcity of molecular data has so far prevented an accurate assessment of their taxonomy and phylogenetic position. Using sequences of the chloroplast genes rbcL and psaB, we demonstrate the existence of three cryptic species that were previously confused under Prasiola crispa (Lightfoot) Kützing. Genuine P. crispa occurs in Antarctica; its presence was confirmed by comparison with the rbcL sequence of the type specimen (from the Isle of Skye, Scotland). Prasiola antarctica Kützing is resurrected as an independent species to designate algae with gross morphology identical to P. crispa but robustly placed in a separate lineage. The third species is represented by specimens identified as P. calophylla (Carmichael ex Greville) Kützing in previous studies, but clearly separated from European P. calophylla (type locality: Argyll, Scotland); this alga is described as P. glacialis sp. nov. The molecular data demonstrated the presence of P. crispa in Maritime and Continental Antarctica. P. antarctica was recorded from the Antarctic Peninsula and Shetland Islands, and P. glacialis from the Southern Ocean islands and coast. Such unexpected cryptic diversity highlights the need for a taxonomic reassessment of many published Antarctic records of P. crispa. The results also indicate that marine species of Prasiola form a well-supported monophyletic group, whereas the phylogenetic diversity of freshwater species is higher than previously suspected (at least three separate lineages within the genus include species living in this type of environments).
Collapse
Affiliation(s)
- Mónica B J Moniz
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, IrelandDipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyAllan Herbarium, Landcare Research, P.O. Box 40, Lincoln 7640, New ZealandSchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New ZealandAlgaeBase, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| | - Fabio Rindi
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, IrelandDipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyAllan Herbarium, Landcare Research, P.O. Box 40, Lincoln 7640, New ZealandSchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New ZealandAlgaeBase, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| | - Phil M Novis
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, IrelandDipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyAllan Herbarium, Landcare Research, P.O. Box 40, Lincoln 7640, New ZealandSchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New ZealandAlgaeBase, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| | - Paul A Broady
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, IrelandDipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyAllan Herbarium, Landcare Research, P.O. Box 40, Lincoln 7640, New ZealandSchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New ZealandAlgaeBase, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| | - Michael D Guiry
- Irish Seaweed Research Group, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, IrelandDipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyAllan Herbarium, Landcare Research, P.O. Box 40, Lincoln 7640, New ZealandSchool of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New ZealandAlgaeBase, Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
41
|
Friedl T, Rybalka N. Systematics of the Green Algae: A Brief Introduction to the Current Status. PROGRESS IN BOTANY 2012. [DOI: 10.1007/978-3-642-22746-2_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Weber B, Scherr C, Bicker F, Friedl T, Büdel B. Respiration-induced weathering patterns of two endolithically growing lichens. GEOBIOLOGY 2011; 9:34-43. [PMID: 20735487 DOI: 10.1111/j.1472-4669.2010.00256.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The two endolithic lichen species Hymenelia prevostii and Hymenelia coerulea were investigated with regard to their thallus morphology and their effects on the surrounding substrate. The physiological processes responsible for the observed alterations of the rock were identified. Whereas the thallus surface of H. coerulea was level, H. prevostii formed small depressions that were deepest in the thallus center. In a cross-section, both species revealed an algal zone consisting of algal cavities parallel to the substrate surface and a fungal zone below. However, H. prevostii revealed significantly larger cavities with more than twice the cell number and a denser pattern of cavities than H. coerulea, resulting in a biomass per surface area being more than twice as large. Below H. prevostii the layer of macroscopically visibly altered rock material was about twice as deep and within this layer, the depletion of calcium and manganese was considerably higher. In simultaneous measurements of the oxygen uptake/oxygen release and pH shift, the isolated algal strains of both lichens revealed respiration-induced acidification of the medium in the dark. At higher light intensities, H. coerulea and to a lesser extent also H. prevostii alkalized the medium which may lessen the acidification effect somewhat under natural conditions. In a long-term growth experiment, the isolated algal strains of both lichens revealed acidification of the medium to a similar extent. Neither acidic lichen substances nor oxalic acid was identified. The significant differences between the weathering patterns of both species are based on the same respiration-induced acidification mechanism, with H. prevostii having a greater effect due to its higher biomass per area.
Collapse
Affiliation(s)
- Bettina Weber
- Department of Biology, Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
43
|
Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, López-Bautista JM. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol 2010; 58:218-31. [PMID: 21145975 DOI: 10.1016/j.ympev.2010.11.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 11/26/2022]
Abstract
Members of the genus Klebsormidium have cosmopolitan distribution and occur in a very wide range of freshwater and terrestrial habitats. Due to its simple filamentous morphology, this genus represents a taxonomically and systematically complex taxon in which phylogenetic relationships are still poorly understood. The phylogeny of Klebsormidium and closely related taxa was investigated using new ITS rRNA and rbcL sequences generated from 75 strains (isolated from field samples or obtained from culture collections). These sequences were analyzed both as single-marker datasets and in a concatenated dataset. Seven main superclades were observed in the analyses, which included sixteen well-supported clades. Some species of Klebsormidium, including the type species Klebsormidium flaccidum, were polyphyletic. Interfilum was recovered with high statistical support as sister taxon to a clade of Klebsormidium formed mainly by strains identified as K. flaccidum. Whereas some clades could be easily associated with described species, this was not possible for other clades. A new lineage of Klebsormidium, isolated from arid soils in southern Africa and comprising undescribed species, was discovered. Several morphological characters traditionally used for taxonomic purposes were found to have no phylogenetic significance and in some cases showed intra-clade variation. The capacity to form packet-like aggregates (typical of Interfilum), features of the morphology of the chloroplast and the type of habitat were the main phylogenetically relevant characters. Overall, Klebsormidium and Interfilum formed a more diverse algal group than was previously appreciated, with some lineages apparently undergoing active evolutionary radiation; in these lineages the genetic variation observed did not match the morphological and ecological diversity.
Collapse
Affiliation(s)
- Fabio Rindi
- Universitá Politecnica delle Marche, Dipartimento di Scienze del Mare, Via Brecce Bianche, Ancona, Italy.
| | | | | | | | | |
Collapse
|
44
|
Letsch MR, Muller-Parker G, Friedl T, Lewis LA. ELLIPTOCHLORIS MARINA SP. NOV. (TREBOUXIOPHYCEAE, CHLOROPHYTA), SYMBIOTIC GREEN ALGA OF THE TEMPERATE PACIFIC SEA ANEMONES ANTHOPLEURA XANTHOGRAMMICA AND A. ELEGANTISSIMA (ANTHOZOA, CNIDARIA)(1). JOURNAL OF PHYCOLOGY 2009; 45:1127-1135. [PMID: 27032358 DOI: 10.1111/j.1529-8817.2009.00727.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Symbiotic green algae from two species of intertidal Pacific sea anemones, Anthopleura elegantissima and Anthopleura xanthogrammica, were collected from the northeastern Pacific coast of North America across the known range of the symbiont. Freshly isolated Anthopleura symbionts were used for both morphological and molecular analyses because Anthopleura symbiont cultures were not available. Light and transmission electron microscopy supported previous morphological studies, showing the symbionts consist of spherical unicells from 5 to 10 μm in diameter, with numerous vesicles, and a single bilobed chloroplast. Pyrenoids were not seen in LM, but a thylakoid-free area was observed in TEM, consistent with previous findings. Many algal cells extracted from fresh anemone tissue were observed in the process of division, producing two autospores within a maternal cell wall. The morphology of the green symbionts matches that of Elliptochloris Tscherm.-Woess. Molecular phylogenetic analyses of the nuclear SSU rDNA and the plastid encoded gene for the large subunit of RUBISCO (rbcL) support the monophyly of these green algal symbionts, regardless of host species and geographic origin. Phylogenetically, sequences of the Anthopleura symbionts are nested within the genus Elliptochloris and are distinct from sequences of all other Elliptochloris spp. examined. Given the ecological and phylogenetic distinctions among the green algal symbionts in Anthopleura spp. and the named species of Elliptochloris, we designate the green algal symbionts as a new species, Elliptochloris marina (Trebouxiophyceae, Chlorophyta).
Collapse
Affiliation(s)
- Molly R Letsch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USADepartment of Biology and Shannon Point Marine Center, Western Washington University, Bellingham, Washington 98225-9160, USAExperimental Phycology and Culture Collection of Algae, Georg-August University Göttingen, Untere Karspüle 2, 37073 Göttingen, GermanyDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Gisèle Muller-Parker
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USADepartment of Biology and Shannon Point Marine Center, Western Washington University, Bellingham, Washington 98225-9160, USAExperimental Phycology and Culture Collection of Algae, Georg-August University Göttingen, Untere Karspüle 2, 37073 Göttingen, GermanyDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Thomas Friedl
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USADepartment of Biology and Shannon Point Marine Center, Western Washington University, Bellingham, Washington 98225-9160, USAExperimental Phycology and Culture Collection of Algae, Georg-August University Göttingen, Untere Karspüle 2, 37073 Göttingen, GermanyDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USADepartment of Biology and Shannon Point Marine Center, Western Washington University, Bellingham, Washington 98225-9160, USAExperimental Phycology and Culture Collection of Algae, Georg-August University Göttingen, Untere Karspüle 2, 37073 Göttingen, GermanyDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|