1
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
2
|
Rieseberg TP, Dadras A, Bergschmidt LIN, Bierenbroodspot MJ, Fürst-Jansen JMR, Irisarri I, de Vries S, Darienko T, de Vries J. Divergent responses in desiccation experiments in two ecophysiologically different Zygnematophyceae. PHYSIOLOGIA PLANTARUM 2023; 175:e14056. [PMID: 38148198 DOI: 10.1111/ppl.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 12/28/2023]
Abstract
Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land. Here, we worked with two representatives of the Zygnematophyceae, Zygnema circumcarinatum SAG 698-1b and Mesotaenium endlicherianum SAG 12.97, who differ in habitats and drought resilience. We challenged both algal species with severe desiccation in a laboratory setup until photosynthesis ceased, followed by a recovery period. We assessed their morphological, photophysiological, and transcriptomic responses. Our data pinpoint global differential gene expression patterns that speak of conserved responses, from calcium-mediated signaling to the adjustment of plastid biology, cell envelopes, and amino acid pathways, between Zygnematophyceae and land plants despite their strong ecophysiological divergence. The main difference between the two species appears to rest in a readjustment of the photobiology of Zygnema, while Mesotaenium experiences stress beyond a tipping point.
Collapse
Affiliation(s)
- Tim P Rieseberg
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Armin Dadras
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Luisa I N Bergschmidt
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
Holzinger A, Plag N, Karsten U, Glaser K. Terrestrial Trentepohlia sp. (Ulvophyceae) from alpine and coastal collection sites show strong desiccation tolerance and broad light and temperature adaptation. PROTOPLASMA 2023; 260:1539-1553. [PMID: 37291393 PMCID: PMC10590310 DOI: 10.1007/s00709-023-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023]
Abstract
For the present study, we collected the Ulvophyceae species Trentepohlia aurea from limestone rock near Berchtesgaden, Germany, and the closely related taxa T. umbrina from Tilia cordata tree bark and T. jolithus from concrete wall both in Rostock, Germany. Freshly sampled material stained with Auramine O, DIOC6, and FM 1-43 showed an intact physiological status. Cell walls were depicted with calcofluor white and Carbotrace. When subjected to three repeated and controlled cycles of desiccation over silica gel (~ 10% relative humidity) followed by rehydration, T. aurea recovered about 50% of the initial photosynthetic yield of photosystem II (YII). In contrast, T. umbrina and T. jolithus recovered to 100% of the initial YII. HPLC and GC analysis of compatible solutes found highest proportions of erythritol in T. umbrina and mannitol/arabitol in T. jolithus. The lowest total compatible solute concentrations were detected in T. aurea, while the C/N ratio was highest in this species, indicative of nitrogen limitation. The prominent orange to red coloration of all Trentepohlia was due to extremely high carotenoid to Chl a ratio (15.9 in T. jolithus, 7.8 in T. aurea, and 6.6. in T. umbrina). Photosynthetic oxygen production was positive up to ~ 1500 µmol photons m-2 s-1 with the highest Pmax and alpha values in T. aurea. All strains showed a broad temperature tolerance with optima for gross photosynthesis between 20 and 35 °C. The presented data suggest that all investigated Trentepohlia species are well adapted to their terrestrial lifestyle on exposed to sunlight on a vertical substrate with little water holding capacity. Nevertheless, the three Trentepohlia species differed concerning their desiccation tolerance and compatible solute concentrations. The lower compatible solute contents in T. aurea explain the incomplete recovery of YII after rehydration.
Collapse
Affiliation(s)
- Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
| | - Niklas Plag
- Applied Phycology and Ecology, University of Rostock, Albert Einstein Strasse 3, 18059, Rostock, Germany
| | - Ulf Karsten
- Applied Phycology and Ecology, University of Rostock, Albert Einstein Strasse 3, 18059, Rostock, Germany
| | - Karin Glaser
- Applied Phycology and Ecology, University of Rostock, Albert Einstein Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
4
|
Arzac MI, Miranda-Apodaca J, Gasulla F, Arce-Guerrero M, Fernández-Marín B, García-Plazaola JI. Acquisition of Desiccation Tolerance Unveiled: Polar Lipid Profiles of Streptophyte Algae Offer Insights. PHYSIOLOGIA PLANTARUM 2023; 175:e14073. [PMID: 38148218 DOI: 10.1111/ppl.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - María Arce-Guerrero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), La Laguna, Canary Islands, Spain
| | | |
Collapse
|
5
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
6
|
Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J. A phylogenomically informed five-order system for the closest relatives of land plants. Curr Biol 2022; 32:4473-4482.e7. [PMID: 36055238 PMCID: PMC9632326 DOI: 10.1016/j.cub.2022.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.
Collapse
Affiliation(s)
- Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Shelby K Williams
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - Anna Busch
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, MD, USA
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax NS B3H 4R2, Canada
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
7
|
Oliveira MF, Maciel-Silva AS. Biological soil crusts and how they might colonize other worlds: insights from these Brazilian ecosystem engineers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4362-4379. [PMID: 35522077 DOI: 10.1093/jxb/erac162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
When bryophytes, lichens, eukaryotic algae, cyanobacteria, bacteria, and fungi live interacting intimately with the most superficial particles of the soil, they form a complex community of organisms called the biological soil crust (BSC or biocrust). These biocrusts occur predominantly in drylands, where they provide important ecological services such as soil aggregation, moisture retention, and nitrogen fixation. Unfortunately, many BSC communities remain poorly explored, especially in the tropics. This review summarizes studies about BSCs in Brazil, a tropical megadiverse country, and shows the importance of ecological, physiological, and taxonomic knowledge of biocrusts. We also compare Brazilian BSC communities with others around the world, describe why BSCs can be considered ecosystem engineers, and propose their use in the colonization of other worlds.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Adaíses Simone Maciel-Silva
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
8
|
Glaser K, Albrecht M, Baumann K, Overmann J, Sikorski J. Biological Soil Crust From Mesic Forests Promote a Specific Bacteria Community. Front Microbiol 2022; 13:769767. [PMID: 35369523 PMCID: PMC8966483 DOI: 10.3389/fmicb.2022.769767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/19/2022] [Indexed: 12/03/2022] Open
Abstract
Biological soil crusts (biocrusts) harbor a diverse community of various microorganisms with microalgae as primary producers and bacteria living in close association. In mesic regions, biocrusts emerge rapidly on disturbed surface soil in forest, typically after clear-cut or windfall. It is unclear whether the bacterial community in biocrusts is similar to the community of the surrounding soil or if biocrust formation promotes a specific bacterial community. Also, many of the interactions between bacteria and algae in biocrusts are largely unknown. Through high-throughput-sequencing analysis of the bacterial community composition, correlated drivers, and the interpretation of biological interactions in a biocrust of a forest ecosystem, we show that the bacterial community in the biocrust represents a subset of the community of the neighboring soil. Bacterial families connected with degradation of large carbon molecules, like cellulose and chitin, and the bacterivore Bdellovibrio were more abundant in the biocrust compared to bulk soil. This points to a closer interaction and nutrient recycling in the biocrust compared to bulk soil. Furthermore, the bacterial richness was positively correlated with the content of mucilage producing algae. The bacteria likely profit from the mucilage sheaths of the algae, either as a carbon source or protectant from grazing or desiccation. Comparative sequence analyses revealed pronounced differences between the biocrust bacterial microbiome. It seems that the bacterial community of the biocrust is recruited from the local soil, resulting in specific bacterial communities in different geographic regions.
Collapse
Affiliation(s)
- Karin Glaser
- Applied Ecology and Phycology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Martin Albrecht
- Applied Ecology and Phycology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Karen Baumann
- Department of Soil Science, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Jörg Overmann
- Department of Microbiology, Faculty of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
9
|
Arzac MI, Fernández-Marín B, García-Plazaola JI. More than just lipid balls: quantitative analysis of plastoglobule attributes and their stress-related responses. PLANTA 2022; 255:62. [PMID: 35141783 PMCID: PMC8828631 DOI: 10.1007/s00425-022-03848-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/28/2022] [Indexed: 05/15/2023]
Abstract
Plastoglobules are ubiquitous under non-stress conditions and their morphology, closely related to their composition, changes differently depending on the specific stress that the plant undergoes. Plastoglobules are lipoprotein structures attached to thylakoid membranes, which participate in chloroplast metabolism and stress responses. Their structure contains a coating lipid monolayer and a hydrophobic core that differ in composition. Their function in chloroplasts has been studied focussing on their composition. However, we currently lack a comprehensive study that quantitatively evaluates the occurrence and morphology of plastoglobules. Following a literature search strategy, we quantified the main morphological attributes of plastoglobules from photosynthetic chloroplasts of more than 1000 TEM images published over the last 53 years, covering more than 100 taxa and 15 stress types. The analysis shows that plastoglobules under non-stress conditions are spherical, with an average diameter of 100-200 nm and cover less than 3% of the chloroplast cross-section area. This percentage rises under almost every type of stress, particularly in senescence. Interestingly, an apparent trade-off between increasing either the number or the diameter of plastoglobules governs this response. Our results show that plastoglobules are ubiquitous in chloroplasts of higher plants under non-stress conditions. Besides, provided the specific molecular composition of the core and coat of plastoglobules, we conclude that specific stress-related variation in plastoglobules attributes may allow inferring precise responses of the chloroplast metabolism.
Collapse
Affiliation(s)
- Miren I. Arzac
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Beatriz Fernández-Marín
- Department Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - José I. García-Plazaola
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
10
|
Steiner P, Buchner O, Andosch A, Holzinger A, Lütz-Meindl U, Neuner G. Winter survival of the unicellular green alga Micrasterias denticulata: insights from field monitoring and simulation experiments. PROTOPLASMA 2021; 258:1335-1346. [PMID: 34304308 PMCID: PMC8523418 DOI: 10.1007/s00709-021-01682-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Peat bog pools around Tamsweg (Lungau, Austria) are typical habitats of the unicellular green alga Micrasterias denticulata. By measurement of water temperature and irradiation throughout a 1-year period (2018/2019), it was intended to assess the natural environmental strain in winter. Freezing resistance of Micrasterias cells and their ability to frost harden and become tolerant to ice encasement were determined after natural hardening and exposure to a cold acclimation treatment that simulated the natural temperature decrease in autumn. Transmission electron microscopy (TEM) was performed in laboratory-cultivated cells, after artificial cold acclimation treatment and in cells collected from field. Throughout winter, the peat bog pools inhabited by Micrasterias remained unfrozen. Despite air temperature minima down to -17.3 °C, the water temperature was mostly close to +0.8 °C. The alga was unable to frost harden, and upon ice encasement, the cells showed successive frost damage. Despite an unchanged freezing stress tolerance, significant ultrastructural changes were observed in field-sampled cells and in response to the artificial cold acclimation treatment: organelles such as the endoplasmic reticulum and thylakoids of the chloroplast showed distinct membrane bloating. Still, in the field samples, the Golgi apparatus appeared in an impeccable condition, and multivesicular bodies were less frequently observed suggesting a lower overall stress strain. The observed ultrastructural changes in winter and after cold acclimation are interpreted as cytological adjustments to winter or a resting state but are not related to frost hardening as Micrasterias cells were unable to improve their freezing stress tolerance.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Institute of Pharmacology, University of Linz, Huemerstrasse 3-5, 4020, Linz, Austria
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Ursula Lütz-Meindl
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Gilbert Neuner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| |
Collapse
|
11
|
Terlova EF, Holzinger A, Lewis LA. Terrestrial Green Algae Show Higher Tolerance to Dehydration than Do Their Aquatic Sister-Species. MICROBIAL ECOLOGY 2021; 82:770-782. [PMID: 33502573 PMCID: PMC7612456 DOI: 10.1007/s00248-020-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 05/09/2023]
Abstract
Diverse algae possess the ability to recover from extreme desiccation without forming specialized resting structures. Green algal genera such as Tetradesmus (Sphaeropleales, Chlorophyceae) contain temperate terrestrial, desert, and aquatic species, providing an opportunity to compare physiological traits associated with the transition to land in closely related taxa. We subjected six species from distinct habitats to three dehydration treatments varying in relative humidity (RH 5%, 65%, 80%) followed by short- and long-term rehydration. We tested the capacity of the algae to recover from dehydration using the effective quantum yield of photosystem II as a proxy for physiological activity. The degree of recovery was dependent both on the habitat of origin and the dehydration scenario, with terrestrial, but not aquatic, species recovering from dehydration. Distinct strains of each species responded similarly to dehydration and rehydration, with the exception of one aquatic strain that recovered from the mildest dehydration treatment. Cell ultrastructure was uniformly maintained in both aquatic and desert species during dehydration and rehydration, but staining with an amphiphilic styryl dye indicated damage to the plasma membrane from osmotically induced water loss in the aquatic species. These analyses demonstrate that terrestrial Tetradesmus possess a vegetative desiccation tolerance phenotype, making these species ideal for comparative omics studies.
Collapse
Affiliation(s)
- Elizaveta F Terlova
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
12
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
13
|
Perera-Castro AV, Nadal M, Flexas J. What drives photosynthesis during desiccation? Mosses and other outliers from the photosynthesis-elasticity trade-off. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6460-6470. [PMID: 32686831 DOI: 10.1093/jxb/eraa328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In vascular plants, more rigid leaves have been linked to lower photosynthetic capacity, associated with low CO2 diffusion across the mesophyll, indirectly resulting in a trade-off between photosynthetic capacity (An) and bulk modulus of elasticity (ε). However, we evaluated mosses, liverworts, and Chara sp., plus some lycophytes and ferns, and found that they behaved as clear outliers of the An-ε relationship. Despite this finding, when vascular and non-vascular plants were plotted together, ε still linearly determined the cessation of net photosynthesis during desiccation both in species with stomata (either actively or hydro-passively regulated) and in species lacking stomata, and regardless of their leaf structure. The latter result challenges our current view of photosynthetic responses to desiccation and/or water stress. Structural features and hydric strategy are discussed as possible explanations for the deviation of these species from the An-ε trade-off, as well as for the general linear dependency between ε and the full cessation of An during desiccation.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
14
|
Stegner M, Lackner B, Schäfernolte T, Buchner O, Xiao N, Gierlinger N, Holzinger A, Neuner G. Winter Nights during Summer Time: Stress Physiological Response to Ice and the Facilitation of Freezing Cytorrhysis by Elastic Cell Wall Components in the Leaves of a Nival Species. Int J Mol Sci 2020; 21:E7042. [PMID: 32987913 PMCID: PMC7582304 DOI: 10.3390/ijms21197042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
Ranunculus glacialis grows and reproduces successfully, although the snow-free time period is short (2-3 months) and night frosts are frequent. At a nival site (3185 m a.s.l.), we disentangled the interplay between the atmospheric temperature, leaf temperatures, and leaf freezing frequency to assess the actual strain. For a comprehensive understanding, the freezing behavior from the whole plant to the leaf and cellular level and its physiological after-effects as well as cell wall chemistry were studied. The atmospheric temperatures did not mirror the leaf temperatures, which could be 9.3 °C lower. Leaf freezing occurred even when the air temperature was above 0 °C. Ice nucleation at on average -2.6 °C started usually independently in each leaf, as the shoot is deep-seated in unfrozen soil. All the mesophyll cells were subjected to freezing cytorrhysis. Huge ice masses formed in the intercellular spaces of the spongy parenchyma. After thawing, photosynthesis was unaffected regardless of whether ice had formed. The cell walls were pectin-rich and triglycerides occurred, particularly in the spongy parenchyma. At high elevations, atmospheric temperatures fail to predict plant freezing. Shoot burial prevents ice spreading, specific tissue architecture enables ice management, and the flexibility of cell walls allows recurrent freezing cytorrhysis. The peculiar patterning of triglycerides close to ice rewards further investigation.
Collapse
Affiliation(s)
- Matthias Stegner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria; (B.L.); (T.S.); (A.H.); (G.N.)
| | - Barbara Lackner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria; (B.L.); (T.S.); (A.H.); (G.N.)
| | - Tanja Schäfernolte
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria; (B.L.); (T.S.); (A.H.); (G.N.)
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Nannan Xiao
- Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (N.X.); (N.G.)
| | - Notburga Gierlinger
- Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (N.X.); (N.G.)
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria; (B.L.); (T.S.); (A.H.); (G.N.)
| | - Gilbert Neuner
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria; (B.L.); (T.S.); (A.H.); (G.N.)
| |
Collapse
|
15
|
Becker B, Feng X, Yin Y, Holzinger A. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3270-3278. [PMID: 32107542 PMCID: PMC7289719 DOI: 10.1093/jxb/eraa105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.
Collapse
Affiliation(s)
| | - Xuehuan Feng
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yanbin Yin
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Innsbruck, Austria
- Correspondence:
| |
Collapse
|
16
|
Míguez F, Holzinger A, Fernandez-Marin B, García-Plazaola JI, Karsten U, Gustavs L. Ecophysiological changes and spore formation: two strategies in response to low-temperature and high-light stress in Klebsormidium cf. flaccidum (Klebsormidiophyceae, Streptophyta) 1. JOURNAL OF PHYCOLOGY 2020; 56:649-661. [PMID: 31957017 PMCID: PMC7612455 DOI: 10.1111/jpy.12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/06/2019] [Indexed: 05/04/2023]
Abstract
Members of the cosmopolitan streptophycean genus Klebsormidium live in various habitats, including sand dunes and polar/alpine environments. To survive in these harsh conditions they must possess an array of adaptive physiological and structural mechanisms, for example, to deal with chilling and photochilling stresses. Since these mechanisms have not been studied in detail, the objectives of this study were (i) to determine the physiological and biochemical responses of Klebsormidium cf. flaccidum (K. cf. flaccidum) to chilling (low temperature [LT]) and photochilling (LT in combination with high light [HL]) stresses; and (ii) to understand the cross-link between biochemical parameters and cellular ultrastructural changes. The results indicated that 5°C is a temperature threshold (i.e., at 5°C) but not at higher temperatures, physiological changes were observed (Fv /Fm and ETR decreased and energy-partitioning distribution changed, with an increase in Y[NPQ] under LT and an increase in Y[NO] under HL-LT). Also, pigment contents changed significantly, with increased concentrations of photoprotective pigments such as antheraxanthin, zeaxanthin, and total carotenes. All of these responses occurred under LT and, to a greater extent, under LT-HL, indicating that the two stresses (temperature and light) are additive. The cold treatment applied here induced the formation of spores under both LL and HL. The degree of photoinhibition was higher in spores than in vegetative cells, indicating that spores are less susceptible to photodamage. This study demonstrated a broad acclimation potential in different developmental stages of K. cf. flaccidum, which helps to explain the ecological success of this genus.
Collapse
Affiliation(s)
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Beatriz Fernandez-Marin
- Department of Plant Biology and Ecology, Faculty of Science and Technology, Leioa, Spain; Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200 La Laguna, Canarias, Spain
| | | | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| | - Lydia Gustavs
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany; Project Management Julich, Schweriner Str. 44, D-18069 Rostock, Germany
| |
Collapse
|
17
|
Sommer V, Karsten U, Glaser K. Halophilic Algal Communities in Biological Soil Crusts Isolated From Potash Tailings Pile Areas. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Buchner O, Steiner P, Andosch A, Holzinger A, Stegner M, Neuner G, Lütz-Meindl U. A new technical approach for preparing frozen biological samples for electron microscopy. PLANT METHODS 2020; 16:48. [PMID: 32280364 PMCID: PMC7137184 DOI: 10.1186/s13007-020-00586-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Many methodological approaches have focused so far on physiological and molecular responses of plant tissues to freezing but only little knowledge is available on the consequences of extracellular ice-formation on cellular ultrastructure that underlies physiological reactions. In this context, the preservation of a defined frozen state during the entire fixation procedure is an essential prerequisite. However, current techniques are not able to fix frozen plant tissues for transmission electron microscopy (TEM) without interrupting the cold chain. Chemical fixation by glutaraldehyde and osmium tetroxide is not possible at sub-zero temperatures. Cryo-fixation methods, such as high pressure freeze fixation (HPF) representing the state-of-the-art technique for best structural preservation, are not equipped for freezing frozen samples. In order to overcome this obstacle, a novel technical approach for maintaining the cold chain of already frozen plant samples prior and during HPF is presented. RESULTS Different algae (Micrasterias denticulata, Klebsormidium crenulatum) and higher plant tissues (Lemna sp., Ranunculus glacialis, Pinus mugo) were successfully frozen and prepared for HPF at freezing temperatures (- 2 °C, - 5 °C, - 6 °C) within a newly developed automatic freezing unit (AFU), that we manufactured from a standard laboratory freezer. Preceding tests on photosynthetic electron transport and ability to plasmolyse show that the temperatures applied did not impair electron transport in PSII nor cell vitality. The transfer of the frozen specimen from the AFU into the HPF-device and subsequently cryo-fixation were performed without intermediate thawing. After cryo-substitution and further processing, the resulting TEM-micrographs showed excellent ultrastructure preservation of the different organisms when compared to specimens fixed at ambient temperature. CONCLUSIONS The method presented allows preserving the ultrastructure of plant cells in the frozen state during cryo-fixation. The resulting high quality TEM-images represent an important step towards a better understanding of the consequences of extracellular ice formation on cellular ultrastructure. It has the potential to provide new insights into changes of organelle structure, identification of intracellular injuries during ice formation and may help to understand freezing and thawing processes in plant tissues. It may be combined with analytical TEM such as electron energy loss spectroscopy (EELS), X-ray analyses (EDX) and various other electron microscopic techniques.
Collapse
Affiliation(s)
- Othmar Buchner
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Philip Steiner
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Ancuela Andosch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Matthias Stegner
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Gilbert Neuner
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Ursula Lütz-Meindl
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
19
|
Steiner P, Obwegeser S, Wanner G, Buchner O, Lütz-Meindl U, Holzinger A. Cell Wall Reinforcements Accompany Chilling and Freezing Stress in the Streptophyte Green Alga Klebsormidium crenulatum. FRONTIERS IN PLANT SCIENCE 2020; 11:873. [PMID: 32714344 PMCID: PMC7344194 DOI: 10.3389/fpls.2020.00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Adaptation strategies in freezing resistance were investigated in Klebsormidium crenulatum, an early branching streptophyte green alga related to higher plants. Klebsormidium grows naturally in unfavorable environments like alpine biological soil crusts, exposed to desiccation, high irradiation and cold stress. Here, chilling and freezing induced alterations of the ultrastructure were investigated. Control samples (kept at 20°C) were compared to chilled (4°C) as well as extracellularly frozen algae (-2 and -4°C). A software-controlled laboratory freezer (AFU, automatic freezing unit) was used for algal exposure to various temperatures and freezing was manually induced. Samples were then high pressure frozen and cryo-substituted for electron microscopy. Control cells had a similar appearance in size and ultrastructure as previously reported. While chilling stressed algae only showed minor ultrastructural alterations, such as small inward facing cell wall plugs and minor alterations of organelles, drastic changes of the cell wall and in organelle distribution were found in extracellularly frozen samples (-2°C and -4°C). In frozen samples, the cytoplasm was not retracted from the cell wall, but extensive three-dimensional cell wall layers were formed, most prominently in the corners of the cells, as determined by FIB-SEM and TEM tomography. Similar alterations/adaptations of the cell wall were not reported or visualized in Klebsormidium before, neither in controls, nor during other stress scenarios. This indicates that the cell wall is reinforced by these additional wall layers during freezing stress. Cells allowed to recover from freezing stress (-2°C) for 5 h at 20°C lost these additional cell wall layers, suggesting their dynamic formation. The composition of these cell wall reinforcement areas was investigated by immuno-TEM. In addition, alterations of structure and distribution of mitochondria, dictyosomes and a drastically increased endoplasmic reticulum were observed in frozen cells by TEM and TEM tomography. Measurements of the photosynthetic oxygen production showed an acclimation of Klebsormidium to chilling stress, which correlates with our findings on ultrastructural alterations of morphology and distribution of organelles. The cell wall reinforcement areas, together with the observed changes in organelle structure and distribution, are likely to contribute to maintenance of an undisturbed cell physiology and to adaptation to chilling and freezing stress.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sabrina Obwegeser
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig-Maximilians-University, Munich, Germany
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Andreas Holzinger,
| |
Collapse
|
20
|
Shi J, Wang W, Lin Y, Xu K, Xu Y, Ji D, Chen C, Xie C. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation. BMC PLANT BIOLOGY 2019; 19:475. [PMID: 31694541 PMCID: PMC6836531 DOI: 10.1186/s12870-019-2076-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pyropia haitanensis, distributes in the intertidal zone, can tolerate water losses exceeding 90%. However, the mechanisms enabling P. haitanensis to survive harsh conditions remain uncharacterized. To elucidate the mechanism underlying P. haitanensis desiccation tolerance, we completed an integrated analysis of its transcriptome and proteome as well as transgenic Chlamydomonas reinhardtii carrying a P. haitanensis gene. RESULTS P. haitanensis rapidly adjusted its physiological activities to compensate for water losses up to 60%, after which, photosynthesis, antioxidant systems, chaperones, and cytoskeleton were activated to response to severe desiccation stress. The integrative analysis suggested that transketolase (TKL) was affected by all desiccation treatments. Transgenic C. reinhardtii cells overexpressed PhTKL grew better than the wild-type cells in response to osmotic stress. CONCLUSION P. haitanensis quickly establishes acclimatory homeostasis regarding its transcriptome and proteome to ensure its thalli can recover after being rehydrated. Additionally, PhTKL is vital for P. haitanensis desiccation tolerance. The present data may provide new insights for the breeding of algae and plants exhibiting enhanced desiccation tolerance.
Collapse
Affiliation(s)
- Jianzhi Shi
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Yinghui Lin
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| |
Collapse
|
21
|
Trumhová K, Holzinger A, Obwegeser S, Neuner G, Pichrtová M. The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes). PROTOPLASMA 2019; 256:1681-1694. [PMID: 31292718 PMCID: PMC6820810 DOI: 10.1007/s00709-019-01404-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/13/2019] [Indexed: 05/09/2023]
Abstract
Green algae of the genus Zygnema form extensive mats and produce large amounts of biomass in shallow freshwater habitats. Environmental stresses including freezing may perturb these mats, which usually have only annual character. To estimate the limits of survival at subzero temperatures, freezing resistance of young Zygnema sp. (strain MP2011Skan) cells and pre-akinetes was investigated. Young, 2-week-old cultures were exposed to temperatures of 0 to - 14 °C at 2-K steps, whereas 8-month-old cultures were frozen from - 10 to - 70 °C at 10-K intervals. Cell viability after freezing was determined by 0.1% auramine O vital fluorescence staining and measurements of the effective quantum yield of photosystem II (ФPSII). At - 8 °C, the young vegetative cells were unable to recover from severe frost damage. But temperatures even slightly below zero (- 2 °C) negatively affected the cells' physiology. Single pre-akinetes could survive even at - 70 °C, but their LT50 value was - 26.2 °C. Severe freezing cytorrhysis was observed via cryo-microscopy at - 10 °C, a temperature found to be lethal for young cells. The ultrastructure of young cells appeared unchanged at - 2 °C, but severe damage to biomembranes and formation of small foamy vacuoles was observed at - 10 °C. Pre-akinetes did not show ultrastructural changes at - 20 °C; however, vacuolization increased, and gas bubbles appeared at - 70 °C. Our results demonstrate that the formation of pre-akinetes increases freezing resistance. This adaptation is crucial for surviving the harsh temperature conditions prevailing in the High Arctic in winter and a key feature in seasonal dynamics of Zygnema sp.
Collapse
Affiliation(s)
- Kateřina Trumhová
- Faculty of Science, Department of Botany, Charles University, Benátská 2, 128 00, Prague, Czech Republic
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Sabrina Obwegeser
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Gilbert Neuner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Martina Pichrtová
- Faculty of Science, Department of Botany, Charles University, Benátská 2, 128 00, Prague, Czech Republic.
| |
Collapse
|
22
|
Stoyneva-Gärtner M, Uzunov B, Gärtner G, Radkova M, Atanassov I, Atanasova R, Borisova C, Draganova P, Stoykova P. Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1593887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Georg Gärtner
- Institut für Botanik, Fakultät für Biologie, Universität Innsbruck, Innsbruck, Austria
| | - Mariana Radkova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ivan Atanassov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ralitsa Atanasova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Cvetanka Borisova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Draganova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Stoykova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
23
|
Usual alga from unusual habitats: Biodiversity of Klebsormidium (Klebsormidiophyceae, Streptophyta) from the phylogenetic superclade G isolated from biological soil crusts. Mol Phylogenet Evol 2018; 133:236-255. [PMID: 30576758 DOI: 10.1016/j.ympev.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023]
Abstract
Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.
Collapse
|
24
|
Wieners PC, Mudimu O, Bilger W. Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. PLANTA 2018; 248:601-612. [PMID: 29846774 DOI: 10.1007/s00425-018-2925-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Desiccation-induced chlorophyll fluorescence quenching seems to be an indispensable part of desiccation resistance in the surveyed 28 green microalgal species. Lichens are desiccation tolerant meta-organisms. In the desiccated state photosynthesis is inhibited rendering the photobionts potentially sensitive to photoinhibition. As a photoprotective mechanism, strong non-radiative dissipation of absorbed light leading to quenching of chlorophyll fluorescence has been proposed. Desiccation-induced quenching affects not only variable fluorescence, but also the so-called basal fluorescence, F0. This phenomenon is well-known for intact lichens and some free living aero-terrestrial algae, but it was often absent in isolated lichen algae. Therefore, a thorough screening for the appearance of desiccation-induced quenching was undertaken with 13 different aero-terrestrial microalgal species and lichen photobionts. They were compared with 15 aquatic green microalgal species, among them also three marine species. We asked the following questions: Do isolated lichen algae show desiccation-induced quenching? Are aero-terrestrial algae different in this respect to aquatic algae and is the potential for desiccation-induced quenching coupled to desiccation tolerance? How variable is desiccation-induced quenching among species? Most of the aero-terrestrial algae, including all lichen photobionts, showed desiccation-induced quenching, although highly variable in extent, whereas most of the aquatic algae did not. All algae displaying quenching were also desiccation tolerant, whereas all algae unable to perform desiccation-induced quenching were desiccation intolerant. Desiccation-induced fluorescence quenching seems to be an indispensable part of desiccation resistance in the investigated species.
Collapse
Affiliation(s)
- Paul Christian Wieners
- Botanical Institute, Christian-Albrechts University of Kiel, Olshausenstraße 40, DE, 24098, Kiel, Germany.
| | - Opayi Mudimu
- Botanical Institute, Christian-Albrechts University of Kiel, Olshausenstraße 40, DE, 24098, Kiel, Germany
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts University of Kiel, Olshausenstraße 40, DE, 24098, Kiel, Germany
| |
Collapse
|
25
|
Banchi E, Candotto Carniel F, Montagner A, Petruzzellis F, Pichler G, Giarola V, Bartels D, Pallavicini A, Tretiach M. Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:189-197. [PMID: 29894859 DOI: 10.1016/j.plaphy.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The relation between water status and expression profiles of desiccation -related genes has been studied in the desiccation tolerant (DT) aeroterrestrial green microalga Trebouxia gelatinosa, a common lichen photobiont. Algal colonies were desiccated in controlled conditions and during desiccation water content (WC) and water potential (Ψ) were measured to find the turgor loss point (Ψtlp). Quantitative real-time PCR was performed to measure the expression of ten genes related to photosynthesis, antioxidant defense, expansins, heat shock proteins (HSPs), and desiccation related proteins in algal colonies collected during desiccation when still at full turgor (WC > 6 g H2O g-1 dry weight), immediately before and after Ψtlp (-4 MPa; WC ∼ 1 g H2O g-1 dry weight) and before and after complete desiccation (WC < 0.01 g H2O g-1 dry weight), quantifying the HSP70 protein levels by immunodetection. Our analysis showed that the expression of eight out of ten genes changed immediately before and after Ψtlp. Interestingly, the expression of five out of ten genes changed also before complete desiccation, i.e. between 0.2 and 0.01 g H2O g-1 dry weight. However, the HSP70 protein levels were not affected by changes in water status. The study provides new evidences of the link between the loss of turgor and the expression of genes related to the desiccation tolerance of T. gelatinosa, suggesting the former as a signal triggering inducible mechanisms.
Collapse
Affiliation(s)
- Elisa Banchi
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy.
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy.
| | - Alice Montagner
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy.
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy.
| | - Gregor Pichler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy.
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|
26
|
Pierangelini M, Ryšánek D, Lang I, Adlassnig W, Holzinger A. Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO 2 acquisition. PLANTA 2017; 246:971-986. [PMID: 28721563 PMCID: PMC5633629 DOI: 10.1007/s00425-017-2741-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/09/2017] [Indexed: 05/20/2023]
Abstract
The basal streptophyte Klebsormidium and the advanced Zygnema show adaptation to terrestrialization. Differences are found in photoprotection and resistance to short-term light changes, but not in CO 2 acquisition. Streptophyte green algae colonized land about 450-500 million years ago giving origin to terrestrial plants. We aim to understand how their physiological adaptations are linked to the ecological conditions (light, water and CO2) characterizing modern terrestrial habitats. A new Klebsormidium isolate from a strongly acidic environment of a former copper mine (Schwarzwand, Austria) is investigated, in comparison to Klebsormidium cf. flaccidum and Zygnema sp. We show that these genera possess different photosynthetic traits and water requirements. Particularly, the Klebsormidium species displayed a higher photoprotection capacity, concluded from non-photochemical quenching (NPQ) and higher tolerance to high light intensity than Zygnema. However, Klebsormidium suffered from photoinhibition when the light intensity in the environment increased rapidly, indicating that NPQ is involved in photoprotection against strong and stable irradiance. Klebsormidium was also highly resistant to cellular water loss (dehydration) under low light. On the other hand, exposure to relatively high light intensity during dehydration caused a harmful over-reduction of the electron transport chain, leading to PSII damages and impairing the ability to recover after rehydration. Thus, we suggest that dehydration is a selective force shaping the adaptation of this species towards low light. Contrary to the photosynthetic characteristics, the inorganic carbon (C i ) acquisition was equivalent between Klebsormidium and Zygnema. Despite their different habitats and restriction to hydro-terrestrial environment, the three organisms showed similar use of CO2 and HCO3- as source of Ci for photosynthesis, pointing out a similar adaptation of their CO2-concentrating mechanisms to terrestrial life.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria
| | - David Ryšánek
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 12801, Prague 2, Czech Republic
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, v. v. i., Průmyslová 595, 252 42, Vestec, Czech Republic
| | - Ingeborg Lang
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Wolfram Adlassnig
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
27
|
Holzinger A, Herburger K, Blaas K, Lewis LA, Karsten U. The terrestrial green macroalga Prasiola calophylla (Trebouxiophyceae, Chlorophyta): ecophysiological performance under water-limiting conditions. PROTOPLASMA 2017; 254:1755-1767. [PMID: 28066876 PMCID: PMC5474099 DOI: 10.1007/s00709-016-1068-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/21/2016] [Indexed: 05/22/2023]
Abstract
The phylogenetic placement of Prasiola calophylla, from an anthropogenic habitat previously shown to contain a novel UV sunscreen compound, was confirmed by analysis of its rbcL gene. This alga has the capacity to tolerate strong water-limiting conditions. The photosynthetic performance and ultrastructural changes under desiccation and osmotic stress were investigated. Freshly harvested thalli showed an effective quantum yield of PSII [Y(II)] of 0.52 ± 0.06 that decreased to ∼60% of the initial value at 3000 mM sorbitol, and 4000 mM sorbitol led to a complete loss of Y(II). The Y(II) of thalli exposed to controlled desiccating conditions at 60% relative humidity (RH) ceased within 240 min, whereas zero values were reached after 120 min at 20% RH. All investigated samples completely recovered Y(II) within ∼100 min after rehydration. Relative electron transport rates (rETR) were temperature dependent, increasing from 5, 10, to 25 °C but strongly declining at 45 °C. Transmission electron microscopy of samples desiccated for 2.5 h showed an electron dense appearance of the entire cytoplasm when compared to control samples. Thylakoid membranes were still visible in desiccated cells, corroborating the ability to recover. Control and desiccated cells contained numerous storage lipids and starch grains, providing reserves. Overall, P. calophylla showed a high capacity to cope with water-limiting conditions on a physiological and structural basis. A lipophilic outer layer of the cell walls might contribute to reduce water evaporation in this poikilohydric organism.
Collapse
Affiliation(s)
- Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
| | - Klaus Herburger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Kathrin Blaas
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| |
Collapse
|
28
|
Fierro C, López-Cristoffanini C, Meynard A, Lovazzano C, Castañeda F, Guajardo E, Contreras-Porcia L. Expression profile of desiccation tolerance factors in intertidal seaweed species during the tidal cycle. PLANTA 2017; 245:1149-1164. [PMID: 28289905 DOI: 10.1007/s00425-017-2673-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2017] [Indexed: 05/26/2023]
Abstract
The transcriptional modulation of desiccation tolerance factors in P. orbicularis explains its successful recuperation after water deficit. Differential responses to air exposure clarify seaweed distribution along intertidal rocky zones. Desiccation-tolerant seaweed species, such as Pyropia orbicularis, can tolerate near 96% water loss during air exposure. To understand the phenotypic plasticity of P. orbicularis to desiccation, several tolerance factors were assessed by RT-qPCR, Western-blot analysis, and enzymatic assays during the natural desiccation-rehydration cycle. Comparative enzymatic analyses were used to evidence differential responses between P. orbicularis and desiccation-sensitive species. The results showed that during desiccation, the relative mRNA levels of genes associated with basal metabolism [trehalose phosphate synthase (tps) and pyruvate dehydrogenase (pdh)] were overexpressed in P. orbicularis. Transcript levels related to antioxidant metabolism [peroxiredoxin (prx); thioredoxin (trx); catalase (cat); lipoxygenase (lox); ferredoxin (fnr); glutathione S-transferase (gst)], cellular detoxification [ABC transporter (abc) and ubiquitin (ubq)], and signal transduction [calmodulin (cam)] increased approximately 15- to 20-fold, with the majority returning to basal levels during the final hours of rehydration. In contrast, actin (act) and transcription factor 1 (tf1) transcripts were down-regulated. ABC transporter protein levels increased in P. orbicularis during desiccation, whereas PRX transcripts decreased. The antioxidant enzymes showed higher specific activity in P. orbicularis under desiccation, and sensitive species exhibited enzymatic inactivation and scarce ABC and PRX protein detection following prolonged desiccation. In conclusion, the reported findings contribute towards understanding the ecological distribution of intertidal seaweeds at the molecular and functional levels.
Collapse
Affiliation(s)
- Camila Fierro
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Camilo López-Cristoffanini
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Carlos Lovazzano
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Francisco Castañeda
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Eduardo Guajardo
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Avda. Bernardo O'Higgins 340, Santiago, Chile.
| |
Collapse
|
29
|
Fine-tuning transmission electron microscopy methods to evaluate the cellular architecture of Ulvacean seaweeds (Chlorophyta). Micron 2017; 96:48-56. [DOI: 10.1016/j.micron.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
|
30
|
Donner A, Glaser K, Borchhardt N, Karsten U. Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests. MICROBIAL ECOLOGY 2017; 73:850-864. [PMID: 28011994 DOI: 10.1007/s00248-016-0917-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/09/2016] [Indexed: 05/22/2023]
Abstract
The green algal genus Klebsormidium (Klebsormidiophyceae, Streptophyta) is a typical member of biological soil crusts (BSCs) worldwide. Ecophysiological studies focused so far on individual strains and thus gave only limited insight on the plasticity of this genus. In the present study, 21 Klebsormidium strains (K. dissectum, K. flaccidum, K. nitens, K. subtile) from temperate BSCs in Central European grassland and forest sites were investigated. Photosynthetic performance under desiccation and temperature stress was measured under identical controlled conditions. Photosynthesis decreased during desiccation within 335-505 min. After controlled rehydration, most isolates recovered, but with large variances between single strains and species. However, all K. dissectum strains had high recovery rates (>69%). All 21 Klebsormidium isolates exhibited the capability to grow under a wide temperature range. Except one strain, all others grew at 8.5 °C and four strains were even able to grow at 6.2 °C. Twenty out of 21 Klebsormidium isolates revealed an optimum growth temperature >17 °C, indicating psychrotrophic features. Growth rates at optimal temperatures varied between strains from 0.26 to 0.77 μ day-1. Integrating phylogeny and ecophysiological traits, we found no phylogenetic signal in the traits investigated. However, multivariate statistical analysis indicated an influence of the recovery rate and growth rate. The results demonstrate a high infraspecific and interspecific physiological plasticity, and thus wide ecophysiological ability to cope with strong environmental gradients. This might be the reason why members of the genus Klebsormidium successfully colonize terrestrial habitats worldwide.
Collapse
Affiliation(s)
- Antje Donner
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany.
| | - Karin Glaser
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Nadine Borchhardt
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
31
|
Blaas K, Holzinger A. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum. Micron 2017; 98:34-38. [PMID: 28363156 DOI: 10.1016/j.micron.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration.
Collapse
Affiliation(s)
- Kathrin Blaas
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| |
Collapse
|
32
|
Karsten U, Herburger K, Holzinger A. Photosynthetic plasticity in the green algal species Klebsormidium flaccidum (Streptophyta) from a terrestrial and a freshwater habitat. PHYCOLOGIA 2017; 56:213-220. [PMID: 28057961 PMCID: PMC5207328 DOI: 10.2216/16-85.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
The genus Klebsormidium (Klebsormidiales, Streptophyta) has a worldwide distribution in terrestrial habitats. In the present study, we focused on two strains of Klebsormidium flaccidum, the type species of the genus. The isolates used in this study were isolated from a soil and freshwater habitat. Photosynthetic activity was evaluated under different controlled gradients of light, temperature and desiccation. The data clearly indicate that both isolates of K. flaccidum exhibit conspicuously different photosynthetic response patterns to photon fluence rate, temperature and desiccation, and thus can be related to their different habitats. Although both strains represent the same species, their physiological response patterns to abiotic gradients, as well as their morphology differed to some extent, indicating high phenotypic plasticity of K. flaccidum, which was maintained even after long-term culture and thus can be explained by the formation of physiologically distinct ecotypes.
Collapse
Affiliation(s)
- Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
- Author for correspondence: Prof. Dr. Ulf Karsten, University of Rostock, Institute of Biological Sciences, Albert-Einstein-Strasse 3, D- 18059 Rostock, Germany,
| | - Klaus Herburger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
33
|
Aigner S, Holzinger A, Karsten U, Kranner I. The freshwater red alga Batrachospermum turfosum (Florideophyceae) can acclimate to a wide range of light and temperature conditions. PHYCOLOGIA 2017; 52:238-249. [PMID: 28413232 PMCID: PMC5390863 DOI: 10.1080/09670262.2016.1274430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/11/2016] [Accepted: 12/03/2016] [Indexed: 05/22/2023]
Abstract
Batrachospermum turfosum Bory is one of the generalists among the few red algae that have adapted to freshwater habitats, occurring in a variety of primarily shaded, nutrient-poor micro-habitats with lotic (running) or lentic (standing) waters. Seasonal variations in water level and canopy cover can expose this sessile alga to widely fluctuating temperatures, solar irradiation and nutrient availability. Here we report on the ecophysiology of B. turfosum collected from an ultra-oligotrophic bog pool in the Austrian Alps. Photosynthesis as a function of photon fluence density (PFD) and temperature was studied by measuring oxygen evolution in combination with chlorophyll fluorescence. In addition, the effects of ultraviolet radiation (UVR) on photosynthetic pigments were analysed using HPLC and spectrophotometric methods, and cellular ultrastructure was studied using transmission electron microscopy. We found that B. turfosum is adapted to low light, with a light compensation point (Ic) and a light saturation point (Ik) of 8.4 and 29.7 μmol photons m- 2 s-1, respectively, but also tolerates higher PFDs of ~1000 μmol photons m-2 s-1, and is capable of net photosynthesis at temperatures between 5°C and 35°C. Exposure to either UV-A or UV-AB for 102 h led to a strong transient drop in effective quantum yield (ΔF/FM'), followed by an acclimation to about 70% of initial ΔF/FM' values. Ultrastructural changes included the accumulation of plastoglobules and dilated membranes after UVR treatment. Although all photosynthetic pigments strongly decreased upon UVR exposure and no UV-photoprotectants (e.g. mycosporine-like amino acids) could be detected, the alga was capable of recovering ΔF/FM' and phycobiliproteins after UVR treatment. In summary, B. turfosum tolerates a wide range of irradiation and temperature regimes, and these traits may be the basis for its successful adaptation to challenging environments.
Collapse
Affiliation(s)
- Siegfried Aigner
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology, Albert-Einstein-Straße 3, D-18057 Rostock, Germany
| | - Ilse Kranner
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
- Corresponding author: Ilse Kranner, Fax: +43-0512-507-2715,
| |
Collapse
|
34
|
Hallmann C, Hoppert M, Mudimu O, Friedl T. Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: a case study using molecular approaches. JOURNAL OF PHYCOLOGY 2016; 52:732-744. [PMID: 27288109 DOI: 10.1111/jpy.12437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
In Middle European suburban environments green algae often cover open surfaces of artificial hard substrates. Microscopy reveals the Apatococcus/Desmococcus morphotype predominant over smaller coccoid forms. Adverse conditions such as limited water availability connected with high PAR and UV irradiance may narrow the algal diversity to a few specialists in these subaerial habitats. We used rRNA gene cloning/sequencing from both DNA extracts of the biofilms without culturing as well as cultures, for the unambiguous determination of the algal composition and to assess the algal diversity more comprehensively. The culture independent approach revealed mainly just two genera (Apatococcus, Trebouxia) for all study sites and five molecular operational taxonomic units (OTUs) for a particular study site, which based on microscopic observation was the one with the highest morphological diversity. The culture approach, however, revealed seven additional OTUs from five genera (Chloroidium, Coccomyxa, Coenochloris, Pabia, Klebsormidium) and an unidentified trebouxiophyte lineage for that same site; only two OTUs were shared by both approaches. Two OTUs or species were recovered for which references have been isolated only from Antarctica so far. However, the internal transcribed spacer (ITS) sequence differences among them supported they are representing distinct populations of the same species. Within Apatococcus five clearly distinct groups of ITS sequences, each putatively representing a distinct species, were recovered with three or four such ITS types co-occurring at the same study site. Except for the streptophyte Klebsormidium only members of Trebouxiophyceae were detected suggesting these algae may be particularly well-adapted to subaerial habitats.
Collapse
Affiliation(s)
- Christine Hallmann
- Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Opayi Mudimu
- Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Thomas Friedl
- Experimental Phycology and Culture Collection of Algae (SAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, Nikolausberger Weg 18, 37073, Göttingen, Germany
| |
Collapse
|
35
|
Herburger K, Karsten U, Holzinger A. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. PROTOPLASMA 2016; 253:1309-23. [PMID: 26439247 PMCID: PMC4710678 DOI: 10.1007/s00709-015-0889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 05/22/2023]
Abstract
The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.
Collapse
Affiliation(s)
- Klaus Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| |
Collapse
|
36
|
Holzinger A, Allen MC, Deheyn DD. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:412-420. [PMID: 27442511 DOI: 10.1016/j.jphotobiol.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.
Collapse
Affiliation(s)
- Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| | - Michael C Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0202, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0202, USA.
| |
Collapse
|
37
|
Karsten U, Herburger K, Holzinger A. Living in biological soil crust communities of African deserts-Physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. JOURNAL OF PLANT PHYSIOLOGY 2016; 194:2-12. [PMID: 26422081 PMCID: PMC4710676 DOI: 10.1016/j.jplph.2015.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 05/20/2023]
Abstract
Green algae of the genus Klebsormidium (Klebsormidiales, Streptophyta) are typical members of biological soil crusts (BSCs) worldwide. The phylogeny and ecophysiology of Klebsormidium has been intensively studied in recent years, and a new lineage called superclade G, which was isolated from BSCs in arid southern Africa and comprising undescribed species, was reported. Three different African strains, that have previously been isolated from hot-desert BSCs and molecular-taxonomically characterized, were comparatively investigated. In addition, Klebsormidium subtilissimum from a cold-desert habitat (Alaska, USA, superclade E) was included in the study as well. Photosynthetic performance was measured under different controlled abiotic conditions, including dehydration and rehydration, as well as under a light and temperature gradient. All Klebsormidium strains exhibited optimum photosynthetic oxygen production at low photon fluence rates, but with no indication of photoinhibition under high light conditions pointing to flexible acclimation mechanisms of the photosynthetic apparatus. Respiration under lower temperatures was generally much less effective than photosynthesis, while the opposite was true for higher temperatures. The Klebsormidium strains tested showed a decrease and inhibition of the effective quantum yield during desiccation, however with different kinetics. While the single celled and small filamentous strains exhibited relatively fast inhibition, the uniserate filament forming isolates desiccated slower. Except one, all other strains fully recovered effective quantum yield after rehydration. The presented data provide an explanation for the regular occurrence of Klebsormidium strains or species in hot and cold deserts, which are characterized by low water availability and other stressful conditions.
Collapse
Affiliation(s)
- Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology & Phycology, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany.
| | - Klaus Herburger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
38
|
Herburger K, Holzinger A. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance. PLANT & CELL PHYSIOLOGY 2015; 56:2259-70. [PMID: 26412780 PMCID: PMC4650865 DOI: 10.1093/pcp/pcv139] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/18/2015] [Indexed: 05/20/2023]
Abstract
Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema.
Collapse
Affiliation(s)
- Klaus Herburger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
39
|
Holzinger A, Becker B. Desiccation tolerance in the streptophyte green alga Klebsormidium: The role of phytohormones. Commun Integr Biol 2015; 8:e1059978. [PMID: 26479261 PMCID: PMC4594257 DOI: 10.1080/19420889.2015.1059978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 10/26/2022] Open
Affiliation(s)
- A Holzinger
- University of Innsbruck; Institute of Botany; Functional Plant Biology ; Innsbruck, Austria ; University of Cologne; Cologne, Biocenter; Botanical Institute ; Cologne, Germany
| | - B Becker
- University of Cologne; Cologne, Biocenter; Botanical Institute ; Cologne, Germany
| |
Collapse
|
40
|
López-Cristoffanini C, Zapata J, Gaillard F, Potin P, Correa JA, Contreras-Porcia L. Identification of proteins involved in desiccation tolerance in the red seaweed
Pyropia orbicularis
(
Rhodophyta, Bangiales). Proteomics 2015; 15:3954-68. [DOI: 10.1002/pmic.201400625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Camilo López-Cristoffanini
- Departamento de Ecología y Biodiversidad; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello; Santiago Chile
- Departament de Biologia Vegetal; Universitat de Barcelona; Barcelona España
| | - Javier Zapata
- Departamento de Ecología y Biodiversidad; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello; Santiago Chile
| | - Fanny Gaillard
- Centre de Ressources de Biologie Marine; MetaboMer Mass Spectrometry Core Facility; CNRS; Université Pierre et Marie Curie; Roscoff cedex France
| | - Philippe Potin
- Sorbonne Universités; CNRS; Université Pierre et Marie Curie UMR 8227; Station Biologique Roscoff France
| | - Juan A. Correa
- Departamento de Ecología, and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile, Santiago, Chile and UMI 3614, Evolutionary Biology and Ecology of Algae; Station Biologique de Roscoff France
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello; Santiago Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
41
|
Mikhailyuk T, Glaser K, Holzinger A, Karsten U. Biodiversity of Klebsormidium (streptophyta) from alpine biological soil crusts (alps, tyrol, Austria, and Italy). JOURNAL OF PHYCOLOGY 2015; 51:750-67. [PMID: 26504252 PMCID: PMC4618304 DOI: 10.1111/jpy.12316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/12/2015] [Indexed: 05/21/2023]
Abstract
Forty Klebsormidium strains isolated from soil crusts of mountain regions (Alps, 600–3,000 m elevation) were analyzed. The molecular phylogeny (internal transcribed spacer rDNA sequences) showed that these strains belong to clades B/C, D, E, and F. Seven main (K. flaccidum, K. elegans, K. crenulatum, K. dissectum, K. nitens, K. subtile, and K. fluitans) and four transitional morphotypes (K. cf. flaccidum, K. cf. nitens, K. cf. subtile, and K. cf. fluitans) were identified. Most strains belong to clade E, which includes isolates that prefer humid conditions. One representative of the xerophytic lineage (clade F) as well as few isolates characteristic of temperate conditions (clades B/C, D) were found. Most strains of clade E were isolated from low/middle elevations (<1,800 m above sea level; a.s.l.) in the pine-forest zone. Strains of clades B/C, D, and F occurred sporadically at higher elevations (1,548–2,843 m a.s.l.), mostly under xerophytic conditions of alpine meadows. Comparison of the alpine Klebsormidium assemblage with data from other biogeographic regions indicated similarity with soil crusts/biofilms from terrestrial habitats in mixed forest in Western Europe, North America, and Asia, as well as walls of buildings in Western European cities. The alpine assemblage differed substantially from crusts from granite outcrops and sand dunes in Eastern Europe (Ukraine), and fundamentally from soil crusts in South African drylands. Epitypification of the known species K. flaccidum, K. crenulatum, K. subtile, K. nitens, K. dissectum, K. fluitans, K. mucosum, and K. elegans is proposed to establish taxonomic names and type material as an aid for practical studies on these algae, as well as for unambiguous identification of alpine strains. New combination Klebsormidium subtile (Kützing) Mikhailyuk, Glaser, Holzinger et Karsten comb. nov. is made.
Collapse
|
42
|
Holzinger A, Herburger K, Kaplan F, Lewis LA. Desiccation tolerance in the chlorophyte green alga Ulva compressa: does cell wall architecture contribute to ecological success? PLANTA 2015; 242:477-92. [PMID: 25896374 PMCID: PMC4498240 DOI: 10.1007/s00425-015-2292-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/31/2015] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION Desiccation leads to structural changes of the inner pectic cell wall layers in Ulva compressa. This contributes to protection against mechanical damage due to desiccation-rehydration cycles. Ulva compressa, characterized by rbcL phylogeny, is a common species in the Mediterranean Sea. Ulva as an intertidal species tolerates repeated desiccation-rehydration cycles in nature; the physiological and structural basis were investigated under experimental conditions here. Desiccation to 73% relative water content (RWC) led to a significant decrease of the maximum quantum yield of photosystem II (F v/F m) to about half of the initial value. A reduction to 48 or 27% RWC caused a more drastic effect and thalli were only able to recover fully from desiccation to 73% RWC. Relative electron transport rates were stimulated at 73% RWC, but decreased significantly at 48 and 27% RWC, respectively. Imaging-PAM analysis demonstrated a homogenous desiccation process within individual thallus discs. The different cell wall layers of U. compressa were characterized by standard staining procedures, i.e. calcofluor white and aniline blue for structural components (cellulose, callose), ruthenium red for pectins and toluidine blue for acidic polysaccharides. Already a reduction to 73% RWC caused severe changes of the cell walls. The inner pectin-rich layers followed the shrinkage process of the cytoplasm, while the outer denser fibrillar layers maintained their shape. In this way, the thalli were not plasmolyzed during water loss, and upon recovery not negatively influenced by any mechanical damage. Transmission electron microscopy corroborated the arrangement of the different layers clearly distinguishable by their texture and electron density. We suggest the flexibility of the pectin-rich cell wall layers as a major contribution to desiccation tolerance in Ulva.
Collapse
Affiliation(s)
- Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria,
| | | | | | | |
Collapse
|
43
|
Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. PROTOPLASMA 2015; 252:571-89. [PMID: 25269628 PMCID: PMC4335129 DOI: 10.1007/s00709-014-0703-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/12/2014] [Indexed: 05/20/2023]
Abstract
Two newly isolated strains of green algae from alpine regions were compared physiologically at different culture ages (1, 6, 9 and 15 months). The strains of Zygnema sp. were from different altitudes ('Saalach' (S), 440 m above sea level (a.s.l.), SAG 2419 and 'Elmau-Alm' (E-A), 1,500 m a.s.l., SAG 2418). Phylogenetic analysis of rbcL sequences grouped the strains into different major subclades of the genus. The mean diameters of the cells were 23.2 μm (Zygnema S) and 18.7 μm (Zygnema E-A) but were reduced significantly with culture age. The photophysiological response between the strains differed significantly; Zygnema S had a maximal relative electron transport rate (rETR max) of 103.4 μmol electrons m(-2) s(-1), Zygnema E-A only 61.7 μmol electrons m(-2) s(-1), and decreased significantly with culture age. Both strains showed a low-light adaption and the absence of strong photoinhibition up to 2,000 μmol photons m(-2) s(-1). Photosynthetic oxygen production showed similar results (P max Zygnema S, 527.2 μmol O2 h(-1) mg(-1) chlorophyll (chl.) a, Zygnema E-A, 390.7 μmol O2 h(-1) mg(-1) chl. a); the temperature optimum was at 35 °C for Zygnema S and 30 °C for Zygnema E-A. Increasing culture age moreover leads to the formation of pre-akinetes, which accumulate storage products as revealed by light and transmission electron microscopy. Desiccation at 84 % relative air humidity (RH) lead to a reduction of the effective quantum yield of photosystem II (PSII) (ΔFv/Fm') to zero between 90 to 120 min (Zygnema S) and between 30 to 60 min (Zygnema E-A), depending on the culture age. A partial recovery of ΔFv/Fm' was only observed in older cultures. We conclude that pre-akinetes are crucial for the aeroterrestrial lifestyle of Zygnema.
Collapse
Affiliation(s)
- K. Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - L. A. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043 USA
| | - A. Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
44
|
Pichrtová M, Kulichová J, Holzinger A. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS One 2014; 9:e113137. [PMID: 25398135 PMCID: PMC4232603 DOI: 10.1371/journal.pone.0113137] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/21/2014] [Indexed: 01/14/2023] Open
Abstract
Background Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress. Key Findings Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified) consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow); viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation. Conclusions The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.
Collapse
Affiliation(s)
- Martina Pichrtová
- Charles University in Prague, Faculty of Science, Department of Botany, Prague, Czech Republic
- Academy of Sciences of the Czech Republic, Institute of Botany, Třeboň, Czech Republic
| | - Jana Kulichová
- Charles University in Prague, Faculty of Science, Department of Botany, Prague, Czech Republic
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
45
|
Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 2014; 9:e110630. [PMID: 25340847 PMCID: PMC4207709 DOI: 10.1371/journal.pone.0110630] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. PRINCIPAL FINDINGS For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. SIGNIFICANCE This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Franziska Kaplan
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Kathrin Blaas
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas, United States of America
| | | | - Burkhard Becker
- University of Cologne, Botanical Institute, Biocenter, Cologne, Germany
| |
Collapse
|
46
|
Mikhailyuk T, Holzinger A, Massalski A, Karsten U. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation. EUROPEAN JOURNAL OF PHYCOLOGY 2014; 49:395-412. [PMID: 26504365 PMCID: PMC4618308 DOI: 10.1080/09670262.2014.949308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 05/21/2023]
Abstract
Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions.
Collapse
Affiliation(s)
- Tatiana Mikhailyuk
- M.H. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska St. 2, KyivUA-01001, Ukraine
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059Rostock, Germany
- Correspondence to: Tatiana Mikhailyuk. E-mail:
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestrasse 15, A-6020Innsbruck, Austria
| | - Andrzej Massalski
- Jan Kochanowski University, Institute of Biology, Dept of Botany, Świetokrzyska St. 15, PL-25-406, Kielce, Poland
| | - Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology and Phycology, Albert-Einstein-Strasse 3, D-18059Rostock, Germany
| |
Collapse
|
47
|
Karsten U, Herburger K, Holzinger A. Dehydration, temperature, and light tolerance in members of the aeroterrestrial green algal genus interfilum (streptophyta) from biogeographically different temperate soils. JOURNAL OF PHYCOLOGY 2014; 50:804-16. [PMID: 25810561 PMCID: PMC4370238 DOI: 10.1111/jpy.12210] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/17/2014] [Indexed: 05/20/2023]
Abstract
Unicellular green algae of the genus Interfilum (Klebsormidiales, Streptophyta) are typical components of biological soil crusts. Four different aeroterrestrial Interfilum strains that have previously been molecular-taxonomically characterized and isolated from temperate soils in Belgium, Czech Republic, New Zealand, and Ukraine were investigated. Photosynthetic performance was evaluated under different controlled abiotic conditions, including dehydration, as well as under a light and temperature gradient. For standardized desiccation experiments, a new methodological approach with silica gel filled polystyrol boxes and effective quantum yield measurements from the outside were successfully applied. All Interfilum isolates showed a decrease and inhibition of the effective quantum yield under this treatment, however with different kinetics. While the single cell strains exhibited relatively fast inhibition, the cell packet forming isolates dried slower. Most strains fully recovered effective quantum yield after rehydration. All Interfilum isolates exhibited optimum photosynthesis at low photon fluence rates, but with no indication of photoinhibition under high light conditions suggesting flexible acclimation mechanisms of the photosynthetic machinery. Photosynthesis under lower temperatures was generally more active than respiration, while the opposite was true for higher temperatures. The presented data provide an explanation for the regular occurrence of Interfilum species in soil habitats where environmental factors can be particularly harsh.
Collapse
Affiliation(s)
- Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of RostockAlbert-Einstein-Strasse 3, Rostock, D-18059, Germany
- Author for correspondence: e-mail
| | - Klaus Herburger
- Institute of Botany, Functional Plant Biology, University of InnsbruckSternwartestrasse 15, Innsbruck, A-6020, Austria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of InnsbruckSternwartestrasse 15, Innsbruck, A-6020, Austria
| |
Collapse
|
48
|
Cruz DE Carvalho R, Bernardes DA Silva A, Soares R, Almeida AM, Coelho AV, Marques DA Silva J, Branquinho C. Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism. PLANT, CELL & ENVIRONMENT 2014; 37:1499-1515. [PMID: 24393025 DOI: 10.1111/pce.12266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 06/03/2023]
Abstract
All bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated. Results show that during fast dehydration, there is very little variation in protein profiles, and upon rehydration proteins are leaked. On the other hand, slow dehydration induces changes in both dehydration and rehydration protein profiles, being similar to the protein profiles displayed by the terrestrial bryophytes Physcomitrella patens (Hedw.) Bruch and Schimp. and, to what is comparable with Syntrichia ruralis (Hedw.) F. Weber and D. Mohr. During dehydration there was a reduction in proteins associated with photosynthesis and the cytoskeleton, and an associated accumulation of proteins involved in sugar metabolism and plant defence mechanisms. Upon rehydration, protein accumulation patterns return to control values for both photosynthesis and cytoskeleton whereas proteins associated with sugar metabolism and defence proteins remain high. The current results suggest that bryophytes from different ecological adaptations may share common DT mechanisms.
Collapse
Affiliation(s)
- Ricardo Cruz DE Carvalho
- Faculdade de Ciências, Centro de Biologia Ambiental (CBA); Faculdade de Ciências, Departamento de Biologia Vegetal and Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
49
|
Holzinger A, Dablander A, Gärtner G. Investigations of cell morphology and reproduction in Macrochloris radiosa Ettl & Gärtner (Stephano-sphaerinia, Chlorophyta) by light- and WUDQVPLVVLRQ electron microscopy. ACTA ACUST UNITED AC 2014; 144:95-104. [PMID: 25810792 DOI: 10.1127/1864-1318/2014/0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell division and reproduction of a cultivated strain of Macrochloris radiosa (Stephanosphaerinia clade) were studied by light- and transmission electron microscopy. Multinucleate cells were frequently observed allowing description of the cell structure and details of the reproduction process. Nuclear staining revealed the position of the multiple polymorphic nuclei between the chloroplast lobes. Ultrastructure of coenocytic cells showed no signs of cleavage of the protoplast in the cytoplasm, although basal bodies were already present within the multinucleate cells. In the further course of the reproduction, biflagellate zoospores were developed that retained their flagella during sporulation. Zoospores were subsequently released from the sporangia.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Andrea Dablander
- University of Innsbruck, Institute of Botany, Plant Evolution and Diversity, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Georg Gärtner
- University of Innsbruck, Institute of Botany, Plant Evolution and Diversity, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
50
|
Kitzing C, Pröschold T, Karsten U. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. MICROBIAL ECOLOGY 2014; 67:327-40. [PMID: 24233286 DOI: 10.1007/s00248-013-0317-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/16/2013] [Indexed: 05/22/2023]
Abstract
Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UVtolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; <9 W m(-2) UV-A, <0.5 W m(-2) UV-B) on growth, photosynthetic performance and the capability to synthesise mycosporine-like amino acids (MAAs) as potential sunscreen compounds were comparatively investigated to evaluate physiological plasticity and possible ecotypic differentiation within this Klebsormidium species. Already under control conditions, the isolates showed significantly different growth rates ranging from 0.42 to 0.74 μm day(-1). The UVR effects on growth were isolate specific, with only two strains affected by the UV treatments. Although all photosynthetic and respiratory data indicated strain-specific differences under control conditions, UV-A and UV-B treatment led only to rather minor effects. All physiological results clearly point to a high UV tolerance in the K. fluitans strains studied, which can be explained by their biochemical capability to synthesize and accumulate a putative MAA after exposure to UV-A and UV-B. Using HPLC, a UV-absorbing compound with an absorption maximum at 324 nm could be identified in all strains. The steady-state concentrations of this Klebsormidium MAA under control conditions ranged from 0.09 to 0.93 mg g(-1) dry weight (DW). While UV-A led to a slight stimulation of MAA accumulation, exposure to UV-B was accompanied by a strong but strain-specific increase of this compound (5.34-12.02 mg(-1) DW), thus supporting its function as UV sunscreen. Although ecotypic differences in the UVR response patterns of the five K. fluitans strains occurred, this did not correlate with the altitude of the respective sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.
Collapse
|