1
|
Edri T, Cohen D, Shabtai Y, Fainsod A. Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion. Front Cell Dev Biol 2023; 11:1282273. [PMID: 38116205 PMCID: PMC10728305 DOI: 10.3389/fcell.2023.1282273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.
Collapse
Affiliation(s)
| | | | | | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Catron MA, Howe RK, Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Macdonald RL, Zhou C. Sleep slow-wave oscillations trigger seizures in a genetic epilepsy model of Dravet syndrome. Brain Commun 2022; 5:fcac332. [PMID: 36632186 PMCID: PMC9830548 DOI: 10.1093/braincomms/fcac332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sleep is the preferential period when epileptic spike-wave discharges appear in human epileptic patients, including genetic epileptic seizures such as Dravet syndrome with multiple mutations including SCN1A mutation and GABAA receptor γ2 subunit Gabrg2Q390X mutation in patients, which presents more severe epileptic symptoms in female patients than male patients. However, the seizure onset mechanism during sleep still remains unknown. Our previous work has shown that the sleep-like state-dependent homeostatic synaptic potentiation can trigger epileptic spike-wave discharges in one transgenic heterozygous Gabrg2+/Q390X knock-in mouse model.1 Here, using this heterozygous knock-in mouse model, we hypothesized that slow-wave oscillations themselves in vivo could trigger epileptic seizures. We found that epileptic spike-wave discharges in heterozygous Gabrg2+/Q390X knock-in mice exhibited preferential incidence during non-rapid eye movement sleep period, accompanied by motor immobility/facial myoclonus/vibrissal twitching and more frequent spike-wave discharge incidence appeared in female heterozygous knock-in mice than male heterozygous knock-in mice. Optogenetically induced slow-wave oscillations in vivo significantly increased epileptic spike-wave discharge incidence in heterozygous Gabrg2+/Q390X knock-in mice with longer duration of non-rapid eye movement sleep or quiet-wakeful states. Furthermore, suppression of slow-wave oscillation-related homeostatic synaptic potentiation by 4-(diethylamino)-benzaldehyde injection (i.p.) greatly attenuated spike-wave discharge incidence in heterozygous knock-in mice, suggesting that slow-wave oscillations in vivo did trigger seizure activity in heterozygous knock-in mice. Meanwhile, sleep spindle generation in wild-type littermates and heterozygous Gabrg2+/Q390X knock-in mice involved the slow-wave oscillation-related homeostatic synaptic potentiation that also contributed to epileptic spike-wave discharge generation in heterozygous Gabrg2+/Q390X knock-in mice. In addition, EEG spectral power of delta frequency (0.1-4 Hz) during non-rapid eye movement sleep was significantly larger in female heterozygous Gabrg2+/Q390X knock-in mice than that in male heterozygous Gabrg2+/Q390X knock-in mice, which likely contributes to the gender difference in seizure incidence during non-rapid eye movement sleep/quiet-wake states of human patients. Overall, all these results indicate that slow-wave oscillations in vivo trigger the seizure onset in heterozygous Gabrg2+/Q390X knock-in mice, preferentially during non-rapid eye movement sleep period and likely generate the sex difference in seizure incidence between male and female heterozygous Gabrg2+/Q390X knock-in mice.
Collapse
Affiliation(s)
- Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel K Howe
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gai-Linn K Besing
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily K St. John
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Pan Y, Zuo H, Wen F, Huang F, Zhu Y, Cao L, Sha QQ, Li Y, Zhang H, Shi M, Liang C, Huang J, Zou L, Fan HY, Ju Z, Wang H, Shen L. HMCES safeguards genome integrity and long-term self-renewal of hematopoietic stem cells during stress responses. Leukemia 2022; 36:1123-1131. [PMID: 35039639 DOI: 10.1038/s41375-021-01499-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022]
Abstract
Hematopoietic stress drives quiescent hematopoietic stem cells (HSCs) to proliferate, generating reactive oxygen species (ROS) and oxidative DNA damage including abasic sites. Such a coupling between rapid DNA replication and a burst of abasic site formation during HSC stress responses, however, presents a challenge to accurately repair abasic sites located in replication-associated single-stranded DNA. Here we show that HMCES, a novel shield of abasic sites, plays pivotal roles in overcoming this challenge upon HSC activation. While HMCES was dispensable for steady-state hematopoiesis, Hmces-deficient HSCs exhibited compromised long-term self-renewal capacity in response to hematopoietic stress such as myeloablation and transplantation. Loss of HMCES resulted in accumulation of DNA lesions due to impaired resolution of abasic sites generated by activation-induced ROS in activated HSCs and broad downregulation of DNA damage response and repair pathways. Moreover, Hmces-deficient mice died from bone marrow failure after exposure to sublethal irradiation, which also produces ROS. Notably, dysregulation of HMCES occurs frequently in acute lymphocytic leukemia (ALL) and is associated with poor clinical outcomes. Together, our findings not only highlighted HMCES as a novel genome protector in activated HSCs, but also position it as a potential selective target against ALL while sparing normal hematopoiesis.
Collapse
Affiliation(s)
- Yinghao Pan
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hongna Zuo
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Fei Wen
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Fei Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yezhang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lanrui Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian-Qian Sha
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yang Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Huiying Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Miao Shi
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lin Zou
- Clinical Research Unit, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Heng-Yu Fan
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhenyu Ju
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China.
| | - Hu Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China. .,Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Hangzhou Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Won M, Kim JH, Ji MS, Kim JS. ROS activated prodrug for ALDH overexpressed cancer stem cells. Chem Commun (Camb) 2021; 58:72-75. [PMID: 34874378 DOI: 10.1039/d1cc05573a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehyde dehydrogenase (ALDH), a cancer stem cell biomarker, is related to drug resistance. Co-treatment of anti-cancer drug (CPT) and ALDH inhibitor (DEAB) can overcome the drug resistance of cancer stem cells (CSCs) and finally cure cancers without relapse. We herein introduce a prodrug (DE-CPT) - consisting of 1,3-oxathiolane as an ROS responsive scaffold, and an aldehyde protecting group of DEAB - to deliver the CPT and DEAB upon reaction with ROS. From tests of the sphere-forming ability and CSC marker subpopulation, we found that DE-CPT efficiently decreases the CSCs population and kills the cancer cells.
Collapse
Affiliation(s)
- Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
5
|
Zhu GJ, Gong S, Ma DB, Tao T, He WQ, Zhang L, Wang F, Qian XY, Zhou H, Fan C, Wang P, Chen X, Zhao W, Sun J, Chen H, Wang Y, Gao X, Zuo J, Zhu MS, Gao X, Wan G. Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genet 2020; 16:e1009040. [PMID: 32970669 PMCID: PMC7553308 DOI: 10.1371/journal.pgen.1009040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss. More than 50% of deafness cases are due to genetic defects with no treatment available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common types of autosomal dominant non-syndromic deafness. Here, we established a novel mouse model with the exact Pou4f3 mutation identified in human patients. The mutant mouse display similar auditory pathophysiology as human patients and exhibit multiple hair cell abnormalities. The onset and severity of hearing loss in the mouse model is highly modifiable to environmental factors, such as aging, noise exposure or genetic backgrounds. Using a new knockout mouse model, we found Pou4f3 haploinsufficiency as the underlying mechanism of human DFNA15. Importantly, we identified Aldh inhibitor as a potent small molecule for upregulation of Pou4f3 and treatment of hearing loss in the mutant mouse. The identification of Aldh inhibitor for treatment of DFNA15 deafness represents a major advance in the unmet medical need for this common form of progressive hearing loss.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Sihao Gong
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Deng-Bin Ma
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Tao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei-Qi He
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Linqing Zhang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Qian
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Han Zhou
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Chi Fan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Pei Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Huaqun Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ye Wang
- Nanjing MuCyte Biotechnology Co., Ltd., Nanjing, China
| | - Xiang Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, United States of America
| | - Min-Sheng Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Xia Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Guoqiang Wan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| |
Collapse
|
6
|
Bogen A, Buske C, Hiddemann W, Bohlander SK, Christ O. Variable aldehyde dehydrogenase activity and effects on chemosensitivity of primitive human leukemic cells. Exp Hematol 2016; 47:54-63. [PMID: 27826122 DOI: 10.1016/j.exphem.2016.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
Abstract
Aldehyde dehydrogenase (ALDH) activity is an established feature of primitive normal human hematopoietic cells, in which it has been associated with a high expression of the 1A1 isoform of ALDH. High ALDH 1A1 activity has been reported to also characterize cells that propagate malignant populations arising in other tissues, but the regulation and basis of ALDH activity in primary human leukemic cells has not been well studied. We obtained samples from patients with newly diagnosed acute myeloid leukemia (AML; n = 21) and chronic myeloid leukemia (CML; n = 8) and analyzed different phenotypically and functionally defined subsets for their ALDH activity using the ALDEFLUOR® kit and expression of the ALDH1A1 gene. We detected cells with high ALDH activity (ALDHpos) in all samples from AML and CML patients. These were consistently enriched in the CD34+ population of these samples, but typically not in the CD34+CD38- subset. Leukemic cells with direct clonogenic activity in vitro or those able to repopulate the bone marrow of sublethally irradiated non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice were both ALDHpos and ALDHneg. Interestingly, ALDH1A1 transcripts were highest in the ALDHneg leukemic cells and, in studies with leukemic cell lines, exposure to an inhibitor of ALDH activity variably affected sensitivity to daunorubicin. Cells with high ALDH activity are commonly found within the CD34+ population of primary human leukemic cells but, unlike in normal hematopoietic tissues, do not selectively or consistently comprise those with proliferative potential or other distinct functional properties.
Collapse
Affiliation(s)
- Anja Bogen
- Department of Medicine III, University of Munich, Munich, Germany
| | - Christian Buske
- CCC Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | | | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Oliver Christ
- Department of Medicine III, University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Thomas ML, de Antueno R, Coyle KM, Sultan M, Cruickshank BM, Giacomantonio MA, Giacomantonio CA, Duncan R, Marcato P. Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3. Mol Oncol 2016; 10:1485-1496. [PMID: 27592281 DOI: 10.1016/j.molonc.2016.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 12/28/2022] Open
Abstract
Breast cancer stem cells (CSCs) can be identified by increased Aldefluor fluorescence caused by increased expression of aldehyde dehydrogenase 1A3 (ALDH1A3), as well as ALDH1A1 and ALDH2. In addition to being a CSC marker, ALDH1A3 regulates gene expression via retinoic acid (RA) signaling and plays a key role in the progression and chemotherapy resistance of cancer. Therefore, ALDH1A3 represents a druggable anti-cancer target of interest. Since to date, there are no characterized ALDH1A3 isoform inhibitors, drugs that were previously described as inhibiting the activity of other ALDH isoforms were tested for anti-ALDH1A3 activity. Twelve drugs (3-hydroxy-dl-kynurenine, benomyl, citral, chloral hydrate, cyanamide, daidzin, DEAB, disulfiram, gossypol, kynurenic acid, molinate, and pargyline) were compared for their efficacy in inducing apoptosis and reducing ALDH1A3, ALDH1A1 and ALDH2-associated Aldefluor fluorescence in breast cancer cells. Citral was identified as the best inhibitor of ALDH1A3, reducing the Aldefluor fluorescence in breast cancer cell lines and in a patient-derived tumor xenograft. Nanoparticle encapsulated citral specifically reduced the enhanced tumor growth of MDA-MB-231 cells overexpressing ALDH1A3. To determine the potential mechanisms of citral-mediated tumor growth inhibition, we performed cell proliferation, clonogenic, and gene expression assays. Citral reduced ALDH1A3-mediated colony formation and expression of ALDH1A3-inducible genes. In conclusion, citral is an effective ALDH1A3 inhibitor and is able to block ALDH1A3-mediated breast tumor growth, potentially via blocking its colony forming and gene expression regulation activity. The promise of ALDH1A3 inhibitors as adjuvant therapies for patients with tumors that have a large population of high-ALDH1A3 CSCs is discussed.
Collapse
Affiliation(s)
| | - Roberto de Antueno
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | | | - Mohammad Sultan
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Carman Anthony Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Roy Duncan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochem J 2016; 473:1423-31. [PMID: 27001866 DOI: 10.1042/bcj20160101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
Retinoic acid (RA) is an important regulator of embryogenesis and tissue homoeostasis. Perturbation of RA signalling causes developmental disorders, osteoarthritis, schizophrenia and several types of tumours. RA is produced by oxidation of retinaldehyde from vitamin A. The main enzyme producing RA in the early embryo is retinaldehyde dehydrogenase 2 (RALDH2, ALDH1A2). In the present study we describe in depth the kinetic properties and regulation of the human RALDH2 (hRALDH2) enzyme. We show that this enzyme produces RA using in vivo and in vitro assays. We studied the naturally occurring all-trans-, 9-cis- and 13-cis-retinaldehyde isomers as substrates of hRALDH2. Based on the values measured for the Michaelis-Menten constant Km and the maximal rate Vmax, in vitro hRALDH2 displays the same catalytic efficiency for their oxidation. We characterized two known inhibitors of the vertebrate RALDH2 and determined their kinetic parameters on hRALDH2. In addition, RA was studied as a possible inhibitor of hRALDH2 and a regulator of its activity. We show that hRALDH2 is not inhibited by its oxidation product, all-trans-RA, suggesting the absence of a negative feedback regulatory loop. Expression of the Raldh2 gene is known to be regulated by RA itself, suggesting that the main regulation of the hRALDH2 activity level is transcriptional.
Collapse
|
9
|
Abstract
Cells with aldehyde dehydrogenase activity (ALDH+) are the most tumorigenic cells in many cancers, including melanoma, making ALDH a candidate therapeutic target. We examined the effects of chemical inhibition of ALDH1 on the response of human melanoma xenografts to chemotherapy and the effects of ALDH1A1 RNA silencing on melanoma growth and metastasis. Addition of ALDH1 inhibitors (e.g. diethylaminobenzaldehyde) to dacarbazine chemotherapy, not only reduced tumor growth in vivo, but also resulted in a significant decrease in the number of residual cells capable of tumorigenesis. shRNA depletion of ALDH1A1 in melanoma cells resulted not only in a significant delay in appearance of xenograft melanomas and reduction in growth, but also significantly decreased the number of metastases and metastatic burden after lateral tail vein injections in mice. In summary, ALDH1 inhibition in combinatorial therapy with dacarbazine reduced the number of residual tumorigenic cells post-therapy and ALDH1A1 depletion had marked inhibitory effects on both melanoma growth and metastasis. These findings suggest that ALDH1 inhibition may not only be able to provide a therapeutic advantage in melanoma treatment, but may also prevent rapid relapse after therapy, as residual tumorigenic cells are fewer and metastatic ability is diminished.
Collapse
|
10
|
Farkas AM, Finn OJ. Novel mechanisms underlying the immediate and transient global tolerization of splenic dendritic cells after vaccination with a self-antigen. THE JOURNAL OF IMMUNOLOGY 2013; 192:658-65. [PMID: 24337381 DOI: 10.4049/jimmunol.1301904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are important orchestrators of the immune response, ensuring that immunity against pathogens is generated, whereas immunity against healthy tissues is prevented. Using the tumor Ag MUC1, we previously showed that i.v. immunization of MUC1 transgenic mice, but not wild-type, with a MUC1 peptide resulted in transient tolerization of all splenic DCs. These DCs did not upregulate costimulatory molecules and induced regulatory T cells rather than effector T cells. They were characterized by suppressed expression of a cohort of pancreatic enzymes not previously reported in DCs, which were upregulated in DCs presenting the same MUC1 peptide as a foreign Ag. In this article, we examined the self-antigen-tolerized DC phenotype, function, and mechanisms responsible for inducing or maintaining their tolerized state. Tolerized DCs share some characteristics with immature DCs, such as a less inflammatory cytokine/chemokine profile, deficient activation of NF-κB, and sustained expression of zDC and CCR2. However, tolerized DCs demonstrated a novel inducible expression of aldehyde dehydrogenase 1/2 and phospho-STAT3. Suppressed expression of one of the pancreatic enzymes, trypsin, in these DC impeded their ability to degrade extracellular matrix, thus affecting their motility. Suppressed metallopeptidases, reflected in low expression of carboxypeptidase B1, prevented optimal Ag-specific CD4(+) T cell proliferation suggesting their role in Ag processing. Tolerized DCs were not refractory to maturation after stimulation with a TLR3 agonist, demonstrating that this tolerized state is not terminally differentiated and that tolerized DCs can recover their ability to induce immunity to foreign Ags.
Collapse
Affiliation(s)
- Adam M Farkas
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | |
Collapse
|
11
|
Abstract
Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA. Zebrafish embryos were treated for 2 h beginning at 9 h postfertilization. Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9 h) resulted in reduced eye size, and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days postfertilization. However, the fish showed neither an OKR nor a VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome.
Collapse
|
12
|
Schäfer A, Teufel J, Ringel F, Bettstetter M, Hoepner I, Rasper M, Gempt J, Koeritzer J, Schmidt-Graf F, Meyer B, Beier CP, Schlegel J. Aldehyde dehydrogenase 1A1--a new mediator of resistance to temozolomide in glioblastoma. Neuro Oncol 2012; 14:1452-64. [PMID: 23132408 DOI: 10.1093/neuonc/nos270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Implementation of chemotherapy with the drug temozolomide increased the overall survival of patients with glioblastoma multiforme (GBM; WHO grade IV), in particular when the O(6)-methylguanine DNA methyltransferase (MGMT) promoter is epigenetically silenced. Nevertheless, the prognosis remains poor, and relapse in GBM occurs regularly. This clinical behavior seems to be due to the existence of a therapy-resistant subpopulation of cells that induce tumor regrowth. The objective of this work was to analyze the role of aldehyde dehydrogenase (ALDH) 1A1 in mediating temozolomide resistance and its value as a predictor of clinical outcome in GBM patients. Nine GBM cell lines were treated with temozolomide alone or in combination with 4-diethylaminobenzaldehyde (DEAB), an inhibitor of ALDH1A1, or with ALDH1A1 short hairpin (sh)RNA. ALDH1A1 expression and MGMT status of 70 primary GBM patients were correlated with median survival. ALDH1A1 overexpression predicted temozolomide resistance in vitro. Sensitivity of ALDH1A1 positive/MGMT-positive cells to temozolomide could be restored by inhibition of ALDH1A1 by DEAB or by knockdown with shRNA, as indicated by increased cytotoxicity, reduced clonogenicity, and accumulation in the G2/M cell-cycle phase. The prognosis of patients with a high level of ALDH1A1 expression was poor compared with that of patients with low levels (P < .0001). ALDH1A1 is a new mediator for resistance of GBM to temozolomide and a reliable predictor of clinical outcome and may serve as a potential target to improve treatment of human GBM.
Collapse
Affiliation(s)
- Andrea Schäfer
- Division of Neuropathology, Institute of Pathology, Technische Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 2012; 64:520-39. [PMID: 22544865 PMCID: PMC3400832 DOI: 10.1124/pr.111.005538] [Citation(s) in RCA: 403] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of enzymes that play a key role in the metabolism of aldehydes of both endogenous and exogenous derivation. The human ALDH superfamily comprises 19 isozymes that possess important physiological and toxicological functions. The ALDH1A subfamily plays a pivotal role in embryogenesis and development by mediating retinoic acid signaling. ALDH2, as a key enzyme that oxidizes acetaldehyde, is crucial for alcohol metabolism. ALDH1A1 and ALDH3A1 are lens and corneal crystallins, which are essential elements of the cellular defense mechanism against ultraviolet radiation-induced damage in ocular tissues. Many ALDH isozymes are important in oxidizing reactive aldehydes derived from lipid peroxidation and thereby help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes have been reported in various human cancers and are associated with cancer relapse. As a direct consequence of their significant physiological and toxicological roles, inhibitors of the ALDH enzymes have been developed to treat human diseases. This review summarizes known ALDH inhibitors, their mechanisms of action, isozyme selectivity, potency, and clinical uses. The purpose of this review is to 1) establish the current status of pharmacological inhibition of the ALDHs, 2) provide a rationale for the continued development of ALDH isozyme-selective inhibitors, and 3) identify the challenges and potential therapeutic rewards associated with the creation of such agents.
Collapse
Affiliation(s)
- Vindhya Koppaka
- Department of Pharmaceutical Sciences, University of Colorado Denver, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3:e2428. [PMID: 18560594 PMCID: PMC2413402 DOI: 10.1371/journal.pone.0002428] [Citation(s) in RCA: 432] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/08/2008] [Indexed: 12/11/2022] Open
Abstract
Background Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA+CD44+ phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC. Methods and Findings Xenogeneic tumors initiated with CoCSC were allowed to reach ∼400 mm3, at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent. Conclusions CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy.
Collapse
Affiliation(s)
- Scott J Dylla
- OncoMed Pharmaceuticals Inc., Redwood City, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gentry T, Foster S, Winstead L, Deibert E, Fiordalisi M, Balber A. Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 2007; 9:259-74. [PMID: 17464758 DOI: 10.1080/14653240701218516] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND ALDH(br) cells express high aldehyde dehydrogenase (ALDH) activity and have progenitor cell activity in several contexts. We characterized human BM ALDH(br) cells to determine whether cell sorting based on ALDH activity isolates potentially useful populations for cell therapy. METHOD We measured the expression of ALDH and cell-surface Ag by flow cytometry and compared the ability of sorted ALDH(br), and BM populations remaining after ALDH(br) cells were removed (ALDH(dim) populations), to develop into several cell lineages in culture. RESULTS The ALDH(br) population comprised 1.2+/-0.8% (mean+/-SD, n=30) nucleated cells and was enriched in cells expressing CD34, CD117, CD105, CD127, CD133 and CD166, and in primitive CD34(+) CD38(-) and CD34(+) CD133(+) progenitors. Most of the CD34(+) and CD133(+) cells were ALDH(dim). ALDH(br) populations had 144-fold more hematopoietic colony-forming activity than ALDH(dim) cells and included all megakaryocyte progenitors. ALDH(br) populations readily established endothelial cell monolayers in cultures. Cells generating endothelial colonies in 7 days were 435-fold more frequent in ALDH(br) than ALDH(dim) populations. CFU-F were 9.5-fold more frequent in ALDH(br) than ALDH(dim) cells, and ALDH(br) cells gave rise to multipotential mesenchymal cell cultures that could be driven to develop into adipocytes, osteoblasts and chondrocytes. DISCUSSION Hematopoietic, endothelial and mesenchymal progenitor cells can be isolated simultaneously from human BM by cell sorting based on ALDH activity. BM ALDH(br) populations may be useful in several cell therapy applications.
Collapse
Affiliation(s)
- T Gentry
- Aldagen Inc., Durham, North Carolina 27713, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kido R, Sato I, Tsuda S. Detection of in vivo DNA damage induced by ethanol in multiple organs of pregnant mice using the alkaline single cell gel electrophoresis (Comet) assay. J Vet Med Sci 2006; 68:41-7. [PMID: 16462115 DOI: 10.1292/jvms.68.41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.
Collapse
Affiliation(s)
- Ryoko Kido
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1112, Japan
| | | | | |
Collapse
|
17
|
Mercader N, Fischer S, Neumann CJ. Prdm1 acts downstream of a sequential RA, Wnt and Fgf signaling cascade during zebrafish forelimb induction. Development 2006; 133:2805-15. [PMID: 16790478 DOI: 10.1242/dev.02455] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vertebrate limb induction is triggered in the lateral plate mesoderm (LPM)by a cascade of signaling events originating in the axial mesoderm. While it is known that Fgf, Wnt and retinoic acid (RA) signals are involved in this cascade, their precise regulatory hierarchy has not been determined in any species. tbx5 is the earliest gene expressed in the limb bud mesenchyme. Recently, another transcription factor, Prdm1, has been shown to be crucial for zebrafish forelimb development. Here, we show that Prdm1 is downstream of RA, Wnt2b and Tbx5 activity. We find that RA activity, but not Fgf signaling, is necessary for wnt2b expression. Fgf signaling is required for prdm1 expression in the fin bud, but is not necessary for the initiation of tbx5 expression. We propose a model in which RA signaling from the somitic mesoderm leads to activation of wnt2bexpression in the intermediate mesoderm, which then signals to the LPM to trigger tbx5 expression. tbx5 is required for Fgf signaling in the limb bud leading to activation of prdm1 expression, which in turn is required for downstream activation of fgf10 expression.
Collapse
Affiliation(s)
- Nadia Mercader
- European Molecular Biology Laboratory (EMBL Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW, Smith C. Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 2003; 122:99-108. [PMID: 12823351 DOI: 10.1046/j.1365-2141.2003.04357.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed an approach for identifying primitive mobilized peripheral blood cells (PBSC) that express high levels of aldehyde dehydrogenase (ALDH). PBSC were stained with a fluorescent ALDH substrate, termed BODIPY trade mark -aminoacetaldehyde (BAAA), and then analysed using flow cytometry. A population of cells with a low side scatter (SSC) and a high level of BAAA staining, termed the SSCloALDHbr population, was readily discriminated and comprised a mean of 3 +/- 5% of leukapheresis samples. A mean of 73 +/- 11% of the SSCloALDHbr population expressed CD34 and 56 +/- 25% of all the mobilized CD34+ cells resided within the SSCloALDHbr population. The SSCloALDHbr population was largely depleted of cells with mature phenotypes and enriched for cells with immature phenotypes. Sorted SSCloALDHbr and SSCloALDHbr CD34+ PBSC were enriched for progenitors with the ability to (1) generate colony-forming units (CFU) and long-term culture (LTC)-derived CFU, (2) expand in primary and secondary LTC, and (3) generate multiple cell lineages. In 21 cancer patients who had undergone autologous PBSC transplantation, the number of infused SSCloALDHbr cells/kg highly correlated with the time to neutrophil and platelet engraftment (P < 0.015 and P < 0.003 respectively). In summary, peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation.
Collapse
Affiliation(s)
- Paul Fallon
- Stem Cell Transplant Program, Moffitt Cancer Center, Tampa, FL, StemCo Biomedical, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Madrigal-Bujaidar E, Velazquez-Guadarrama N, Morales-Ramirez P, Mendiola MT. Effect of disulfiram on the genotoxic potential of acetaldehyde in mouse spermatogonial cells. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 2002; 22:83-91. [PMID: 11835286 DOI: 10.1002/tcm.10003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The initial purpose of the study was to determine the potential of acetaldehyde (Ace) to increase the rate of sister-chromatid exchanges (SCEs) in mouse spermatogonia. We tested four doses of Ace (from 0.4 to 400.0 mg/kg), including a negative and a positive control group (distilled water and cyclophosphamide, respectively). The results showed that all tested doses were SCE inducers. The highest tested dose increased the control level more than three times. Also, the cumulative frequencies of SCEs per cell were higher in the Ace-treated animals than in the control cells. Ace is transformed into acetate through the enzyme aldehyde dehydrogenase, a process that may be blocked by disulfiram (Dis) generating the accumulation of Ace. The second purpose of the study was to determine if the administration of Dis (150 mg/kg) could increase the SCE rate produced by non-genotoxic doses of Ace. (0.004 and 0.04 mg/kg). The animals treated with the two doses of Ace alone showed no increase in the frequency of SCEs; also, Dis by itself was not an SCE inducer. However, the groups of animals previously treated with Dis showed an increase of 31 and 60% with respect to the values obtained with the two doses of Ace alone. Furthermore, the cumulative frequencies of SCEs per cell were higher in the animals administered with both compounds together than in those treated with them separately. These results suggest the need to extend this type of study to other models.
Collapse
Affiliation(s)
- E Madrigal-Bujaidar
- Laboratorio de Genética. Escuela Nacional de Ciencias Biológicas, I.P.N., Carpio y Plan de Ayala, México.
| | | | | | | |
Collapse
|
20
|
Abstract
This paper reviews current concepts on tools for studying the pharmacokinetics of alcohol. It has been known that ethanol metabolism occurs mainly in the liver via alcohol dehydrogenase and an accessory microsomal pathway. The contribution of each pathway has been examined by administration of metabolic inhibitors. The role of gastric alcohol dehydrogenase in the first-pass effects of ethanol has been speculative and may be relatively low. Some pharmacokinetic approaches with mathematical models have elucidated the role of gastric alcohol dehydorgenase, hepatic alcohol dehydrogenase and cytochrome P450 2E1 in ethanol elimination. The scale-up of ethanol elimination kinetics has enabled extrapolation from animal models to human kinetics. The clarification of the pharmacokinetics of ethanol is very important for estimating the effects of ethanol on biological events.
Collapse
Affiliation(s)
- Hiroshi Matsumoto
- Department of Legal Medicine, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.
| | | |
Collapse
|
21
|
Perz-Edwards A, Hardison NL, Linney E. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 2001; 229:89-101. [PMID: 11133156 DOI: 10.1006/dbio.2000.9979] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.
Collapse
Affiliation(s)
- A Perz-Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
22
|
Zhuk OV, Zinkovsky VG, Golovenko NY. The pharmacodynamics of anticonvulsant and subconvulsant effects of ethanol in CBA and C57BL/6 mice. Alcohol 2001; 23:23-8. [PMID: 11282448 DOI: 10.1016/s0741-8329(00)00136-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A method of determination of minimal effective doses (MEDs) of bicuculline causing clonic-tonic convulsions (CTC) and tonic extension (TE) was used to investigate ethanol pharmacodynamics in C57BL/6 and CBA mice, differing in levels of alcohol predisposition. It is observed that ethanol produces a powerful anticonvulsant action antagonizing convulsant effects of bicuculline. On a long-term scale, the pharmacological action of alcohol had two phases in both strains of mice: anticonvulsant (in the interval 5 min to 4 h after ethanol administration) and subconvulsant (4-24 h after ethanol administration). C57BL/6 mice were characterized by a more rapid development of the anticonvulsant effect and its faster decay in comparison to CBA strain. A possibility of correct quantitative evaluation of data allows using the method of MED determination as an express model of an acute alcohol abstinence syndrome, as well as for screening of new antialcohol drugs.
Collapse
Affiliation(s)
- O V Zhuk
- Centre of Drug Pharmacokinetics of the Pharmacological Committee of Ukraine, Lustdorfska doroga 86, 65080, Odessa, Ukraine.
| | | | | |
Collapse
|
23
|
Russo JE. Inhibition of mouse and human class 1 aldehyde dehydrogenase by 4-(N,N-dialkylamino)benzaldehyde compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 414:217-24. [PMID: 9059624 DOI: 10.1007/978-1-4615-5871-2_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J E Russo
- Department of Chemistry, Whitman College, Walla Walla, Washington 99362, USA
| |
Collapse
|
24
|
Matsumoto H, Matsubayashi K, Fukui Y. Mitochondrial ALDH Polymorphism Affects Ethanol-Derived Acetate Disposition in Wistar Rats. Alcohol Clin Exp Res 1996. [DOI: 10.1111/j.1530-0277.1996.tb01793.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Russo J, Chung S, Contreras K, Lian B, Lorenz J, Stevens D, Trousdell W. Identification of 4-(N,N-dipropylamino)benzaldehyde as a potent, reversible inhibitor of mouse and human class I aldehyde dehydrogenase. Biochem Pharmacol 1995; 50:399-406. [PMID: 7646541 DOI: 10.1016/0006-2952(95)00138-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As the physiologic roles for the different classes of aldehyde dehydrogenase (ALDH) enzymes are elucidated, the identification of specific, reversible inhibitors becomes of great pharmacologic interest. Previous structure-function studies identified dialkylamino substituted benzaldehyde compounds as a novel class of reversible inhibitors of class I ALDH. To examine further structural requirements for inhibition, we tested a series of 4-(N,N-dialkylamino)benzaldehyde analogs as inhibitors of propanal oxidation by mouse liver and human erythrocyte class I ALDH. 4-(N,N-dipropylamino)benzaldehyde (DPAB) was identified as the most potent, reversible inhibitor of propanal oxidation by class I ALDH in spectrophotometric enzyme assays. In kinetic studies, DPAB showed mixed-type inhibition with respect to the aldehyde substrates propanal, phenylacetaldehyde, benzaldehyde, and aldophosphamide. DPAB exhibited uncompetitive inhibition with respect to the cofactor NAD. Inhibition constants (Ki) for DPAB, estimated from Dixon plots, were 10 nM (propanal) and 77 nM (phenylacetaldehyde) for mouse ALDH and 3 nM (propanal) and 70 nM (phenylacetaldehyde) for human ALDH. These Ki values are 100-fold lower than those reported for class I specific inhibitors. At low (< 1 microM) DPAB concentrations, inhibition of propanal and aldophosphamide oxidation was > 75%, whereas inhibition of benzaldehyde (32%) and phenylacetaldehyde (19%) oxidation was reduced markedly. These results indicate that DPAB exhibits potent, reversible inhibition of mouse and human class I ALDH. The degree of inhibition was highly dependent on the structure of the aldehyde substrate.
Collapse
Affiliation(s)
- J Russo
- Department of Chemistry, Whitman College, Walla Walla, WA 99362, USA
| | | | | | | | | | | | | |
Collapse
|