1
|
Yuan H, Zhang W, Li H, Chen C, Liu H, Li Z. Neuroprotective effects of resveratrol on embryonic dorsal root ganglion neurons with neurotoxicity induced by ethanol. Food Chem Toxicol 2013; 55:192-201. [DOI: 10.1016/j.fct.2012.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/06/2012] [Accepted: 12/31/2012] [Indexed: 11/16/2022]
|
2
|
McCarty MF. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med Hypotheses 2013; 80:456-62. [PMID: 23380360 DOI: 10.1016/j.mehy.2012.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
Rodent studies reveal that oxidative stress, much of it generated via induction/activation of NADPH oxidase, is a key mediator of a number of the pathogenic effects of chronic ethanol overconsumption. The highly reactive ethanol metabolite acetaldehyde is a key driver of this oxidative stress, and doubtless works in other ways to promote alcohol-induced pathology. Effective antioxidant measure may therefore be useful for mitigating the adverse health consequences of alcohol consumption; spirulina may have particular utility in this regard, as its chief phycochemical phycocyanobilin has recently been shown to function as an inhibitor of certain NADPH oxidase complexes, mimicking the physiological role of its chemical relatives biliverdin/bilirubin in this respect. Moreover, certain nutraceuticals, including taurine, pantethine, and lipoic acid, may have the potential to boost the activity of the mitochondrial isoform of aldehyde dehydrogenase, ALDH-2, accelerating conversion of acetaldehyde to acetate (which arguably has protective health effects). Little noticed clinical studies conducted nearly three decades ago reported that pre-ingestion of either taurine or pantethine could blunt the rise in blood acetaldehyde following ethanol consumption. Other evidence suggests that lipoic acid may function within mitochondria to maintain aldehyde dehydrogenase in a reduced active conformation; the impact of this agent on ethanol metabolism has however received little or no study. Studies evaluating the impact of nutracetical strategies on prevention of hangovers - which likely are mediated by acetaldehyde - may represent a quick, low-cost way to identify nutraceutical regimens that merit further attention for their potential impact on alcohol-induced pathology. Measures which boost or preserve ALDH-2 activity may also have important antioxidant potential, as this enzyme functions physiologically to protect cells from toxic aldehydes generated by oxidant stress.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
3
|
Possible role of pineal allopregnanolone in Purkinje cell survival. Proc Natl Acad Sci U S A 2012; 109:21110-5. [PMID: 23213208 DOI: 10.1073/pnas.1210804109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is believed that neurosteroids are produced in the brain and other nervous systems. Here, we show that allopregnanolone (ALLO), a neurosteroid, is exceedingly produced in the pineal gland compared with the brain and that pineal ALLO acts on the Purkinje cell, a principal cerebellar neuron, to prevent apoptosis in the juvenile quail. We first demonstrated that the pineal gland is a major organ of neurosteroidogenesis. A series of experiments using molecular and biochemical techniques has further demonstrated that the pineal gland produces a variety of neurosteroids de novo from cholesterol in the juvenile quail. Importantly, ALLO was far more actively produced in the pineal gland than in the brain. Pinealectomy (Px) decreased ALLO concentration in the cerebellum and induced apoptosis of Purkinje cells, whereas administration of ALLO to Px quail chicks prevented apoptosis of Purkinje cells. We further found that Px significantly increased the number of Purkinje cells that expressed active caspase-3, a key protease in apoptotic pathway, and daily injection of ALLO to Px quail chicks decreased the number of Purkinje cells expressing active caspase-3. These results indicate that the neuroprotective effect of pineal ALLO is associated with the decrease in caspase-3 activity during the early stage of neuronal development. We thus provide evidence that the pineal gland is an important neurosteroidogenic organ and that pineal ALLO may be involved in Purkinje cell survival during development. This is an important function of the pineal gland in the formation of neuronal circuits in the developing cerebellum.
Collapse
|
4
|
Sommavilla M, Sánchez-Villarejo MV, Almansa I, Sánchez-Vallejo V, Barcia JM, Romero FJ, Miranda M. The effects of acute ethanol exposure and ageing on rat brain glutathione metabolism. Free Radic Res 2012; 46:1076-81. [DOI: 10.3109/10715762.2012.688963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Feasibility of Medaka (Oryzias latipes) as an Animal Model to Study Fetal Alcohol Spectrum Disorder. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Brocardo PS, Gil-Mohapel J, Christie BR. The role of oxidative stress in fetal alcohol spectrum disorders. ACTA ACUST UNITED AC 2011; 67:209-25. [PMID: 21315761 DOI: 10.1016/j.brainresrev.2011.02.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
The ingestion of alcohol/ethanol during pregnancy can result in abnormal fetal development in both humans and a variety of experimental animal models. Depending on the pattern of consumption, the dose, and the period of exposure to ethanol, a myriad of structural and functional deficits can be observed. These teratogenic effects are thought to result from the ethanol-induced dysregulation of a variety of intracellular pathways ultimately culminating in toxicity and cell death. For instance, ethanol exposure can lead to the generation of reactive oxygen species (ROS) and produce an imbalance in the intracellular redox state, leading to an overall increase in oxidative stress. In the present review we will provide an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on the levels of oxidative stress in the central nervous system (CNS) of experimental models of fetal alcohol spectrum disorders (FASD). We will also review the evidence for the use of antioxidants as potential therapeutic strategies for the treatment of some of the neuropathological deficits characteristic of both rodent models of FASD and children afflicted with these disorders. We conclude that an imbalance in the intracellular redox state contributes to the deficits seen in FASD and suggest that antioxidants are potential candidates for the development of novel therapeutic strategies for the treatment of these developmental disorders.
Collapse
Affiliation(s)
- Patricia S Brocardo
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | | | | |
Collapse
|
7
|
Chen G, Luo J. Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox Res 2010; 17:91-101. [PMID: 19590929 PMCID: PMC4992359 DOI: 10.1007/s12640-009-9083-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/29/2022]
Abstract
Heavy alcohol exposure produces profound damage to the developing central nervous system (CNS) as well as the adult brain. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation. Excessive alcohol consumption is associated with Wernicke-Korsakoff syndrome (WKS) and neurodegeneration in the adult brain. Although the cellular/molecular mechanism underlying ethanol's neurotoxicity has not been fully understood, it is generally believed that oxidative stress plays an important role. Identification of neuroprotective agents that can ameliorate ethanol neurotoxicity is an important step for developing preventive/therapeutic strategies. Targeting ethanol-induced oxidative stress using natural antioxidants is an attractive approach. Anthocyanins, a large subgroup of flavonoids present in many vegetables and fruits, are safe and potent antioxidants. They exhibit diverse potential health benefits including cardioprotection, anti-atherosclerotic activity, anti-cancer, anti-diabetic, and anti-inflammation properties. Anthocyanins can cross the blood-brain barrier and distribute in the CNS. Recent studies indicate that anthocyanins represent novel neuroprotective agents and may be beneficial in ameliorating ethanol neurotoxicity. In this review, we discuss the evidence and potential of anthocyanins in alleviating ethanol-induced damage to the CNS. Furthermore, we discuss possible underlying mechanisms as well as future research approaches necessary to establish the therapeutic role of anthocyanins.
Collapse
Affiliation(s)
- Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, 124C Combs Research Building, 800 Rose Street, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, 124C Combs Research Building, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Farnell YZ, Allen GC, Neuendorff N, West JR, Wei-Jung AC, Earnest DJ. Effects of neonatal alcohol exposure on vasoactive intestinal polypeptide neurons in the rat suprachiasmatic nucleus. Alcohol 2009; 43:387-96. [PMID: 19671465 DOI: 10.1016/j.alcohol.2009.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/27/2009] [Accepted: 06/20/2009] [Indexed: 11/18/2022]
Abstract
Neonatal alcohol exposure produces long-term changes in the suprachiasmatic nucleus (SCN) that are presumably responsible for disturbances in the light-dark regulation of circadian behavior in adult rats, including the pattern of photoentrainment, rate of re-entrainment to shifted light-dark cycles, and phase-shifting responses to light. Because SCN neurons containing vasoactive intestinal polypeptide (VIP) receive direct photic input via the retinohypothalamic tract and thus play an important role in the circadian regulation of the SCN clock mechanism by light, the present study examined the long-term effects of neonatal alcohol exposure on VIP neuronal populations within the SCN of adult rats. Male Sprague-Dawley rat pups were exposed to alcohol (EtOH; 3.0, 4.5, or 6.0 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4-9 using artificial-rearing methods. At 2-3 months of age, animals from the suckle control (SC), GC, and EtOH groups were exposed to constant darkness (DD) and SCN tissue was harvested for subsequent analysis of either VIP mRNA expression by quantitative polymerase chain reaction (PCR) and in situ hybridization or of VIP-immunoreactive (ir) neurons using stereological methods. Neonatal alcohol exposure had no impact on VIP mRNA expression but dramatically altered immunostaining of neurons containing this peptide within the SCN of adult rats. The relative abundance of VIP mRNA and anatomical distribution of neurons expressing this transcript were similar among all control- and EtOH-treated groups. However, the total number and density of VIP-ir neurons within the SCN were significantly decreased by about 35% in rats exposed to alcohol at a dose of 6.0 g/kg/day relative to that observed in both control groups. These results demonstrate that VIP neuronal populations in the SCN are vulnerable to EtOH-induced insult during brain development. The observed alterations in SCN neurons containing VIP may have an impact upon clock responses to light input and thus contribute to the long-term effects of neonatal alcohol exposure on the photic regulation of circadian behavior.
Collapse
Affiliation(s)
- Yuhua Z Farnell
- Department of Neuroscience and Experimental Therapeutics, The Texas A&M University System Health Science Center, College of Medicine, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
9
|
Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain. Neurotoxicol Teratol 2008; 30:228-36. [DOI: 10.1016/j.ntt.2008.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 11/22/2022]
|
10
|
Jaatinen P, Rintala J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. THE CEREBELLUM 2008; 7:332-47. [DOI: 10.1007/s12311-008-0034-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/30/2022]
|
11
|
Kane CJM, Chang JY, Roberson PK, Garg TK, Han L. Ethanol exposure of neonatal rats does not increase biomarkers of oxidative stress in isolated cerebellar granule neurons. Alcohol 2008; 42:29-36. [PMID: 18249267 DOI: 10.1016/j.alcohol.2007.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 03/20/2007] [Accepted: 10/09/2007] [Indexed: 11/29/2022]
Abstract
Oxidative stress is a candidate mechanism for ethanol neuropathology in fetal alcohol spectrum disorders. Oxidative stress often involves production of reactive oxygen species (ROS), deterioration of the mitochondrial membrane potential (MMP), and cell death. Previous studies have produced conflicting results regarding the role of oxidative stress and the benefit of antioxidants in ethanol neuropathology in the developing brain. This study investigated the hypothesis that ethanol neurotoxicity involves production of ROS with negative downstream consequences for MMP and neuron survival. This was modeled in neonatal rats at postnatal day 4 (P4) and P14. It is well established that granule neurons in the rat cerebellar cortex are more vulnerable to ethanol neurotoxicity on P4 than at later ages. Thus, it was hypothesized that ethanol produces more oxidative stress and its negative consequences on P4 than on P14. A novel experimental approach was used in which ethanol was administered to animals in vivo (gavage 6g/kg), granule neurons were isolated 2-24h post-treatment, and ROS production and relative MMP were immediately assessed in the viable cells. Cells were also placed in culture and survival was measured 24h later. The results revealed that ethanol did not induce granule cells to produce ROS, cause deterioration of neuronal MMP, or cause neuron death when compared to vehicle controls. Further, granule neurons from neither P4 nor P14 animals mounted an oxidative response to ethanol. These findings do not support the hypothesis that oxidative stress is obligate to granule neuron death after ethanol exposure in the neonatal rat brain. Other investigators have reached a similar conclusion using either brain homogenates or cell cultures. In this context, it is likely that oxidative stress is not the sole and perhaps not the principal mechanism of ethanol neurotoxicity for cerebellar granule neurons during this stage of brain development.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
12
|
Servais L, Hourez R, Bearzatto B, Gall D, Schiffmann SN, Cheron G. Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. Proc Natl Acad Sci U S A 2007; 104:9858-63. [PMID: 17535929 PMCID: PMC1887541 DOI: 10.1073/pnas.0607037104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cerebellum and other brain regions, neuronal cell death because of ethanol consumption by the mother is thought to be the leading cause of neurological deficits in the offspring. However, little is known about how surviving cells function. We studied cerebellar Purkinje cells in vivo and in vitro to determine whether function of these cells was altered after prenatal ethanol exposure. We observed that Purkinje cells that were prenatally exposed to ethanol presented decreased voltage-gated calcium currents because of a decreased expression of the gamma-isoform of protein kinase C. Long-term depression at the parallel fiber-Purkinje cell synapse in the cerebellum was converted into long-term potentiation. This likely explains the dramatic increase in Purkinje cell firing and the rapid oscillations of local field potential observed in alert fetal alcohol syndrome mice. Our data strongly suggest that reversal of long-term synaptic plasticity and increased firing rates of Purkinje cells in vivo are major contributors to the ataxia and motor learning deficits observed in fetal alcohol syndrome. Our results show that calcium-related neuronal dysfunction is central to the pathogenesis of the neurological manifestations of fetal alcohol syndrome and suggest new methods for treatment of this disorder.
Collapse
Affiliation(s)
- Laurent Servais
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), B-1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Grisel JJ, Chen WJA. Antioxidant Pretreatment Does Not Ameliorate Alcohol-Induced Purkinje Cell Loss in the Developing Rat Cerebellum. Alcohol Clin Exp Res 2006; 29:1223-9. [PMID: 16046878 DOI: 10.1097/01.alc.0000171932.13148.cf] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recent research has suggested that oxidative stress is a potential mechanism for alcohol-induced injury and that supplementation with antioxidants can ameliorate alcohol-induced damage. In this study, two known antioxidants, melatonin and U83836E, were assessed for their effectiveness in blocking the expected alcohol-induced cerebellar Purkinje cell loss in neonatal rat pups. METHODS Sprague-Dawley rat pups were artificially reared from postnatal days (PDs) 4-9 and were exposed to either alcohol or antioxidants (melatonin or U83836E) individually or in combination. A normal control group (raised by rat dams) was included in this study. On PD 9, the brain from each pup was removed and weighed, and the cerebellar vermis was processed for stereological cell counting. RESULTS Alcohol exposure during the brain growth spurt produced microencephaly, in addition to significant decreases in the number and density of Purkinje cells in lobule I and the volume of lobule I. The antioxidants did not reduce any of the adverse effects observed from alcohol exposure, and they did not decrease the Purkinje cell number when administered alone. Furthermore, antioxidants did not change the only blood alcohol concentration measured on PD 6. CONCLUSIONS The results confirmed alcohol-induced microencephaly and cerebellar Purkinje cell loss from neonatal alcohol exposure, and they showed that neither antioxidant could attenuate these adverse effects on the developing brain. The inability of antioxidants to reduce Purkinje cell loss from neonatal alcohol exposure suggests the existence of alternative mechanisms for developmental alcohol-induced Purkinje cell loss.
Collapse
Affiliation(s)
- Jedidiah J Grisel
- Department of Human Anatomy and Medical Neurobiology, College of Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
14
|
Pierce DR, Cook CC, Hinson JA, Light KE. Are oxidative mechanisms primary in ethanol induced Purkinje neuron death of the neonatal rat? Neurosci Lett 2006; 400:130-4. [PMID: 16516384 DOI: 10.1016/j.neulet.2006.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 11/28/2022]
Abstract
Rat cerebellar Purkinje neurons are vulnerable to ethanol exposure during the brain growth spurt, especially during early postnatal exposure. A prominent hypothesis is that ethanol induces oxidative types of alterations that result in the neurodegeneration. The purpose of this study was to test this hypothesis in two ways. One was to determine if the reactive oxidative species, nitrotyrosine (NT), was produced in the cerebellum following ethanol exposure. Second, was to determine if co-administration of the clinically useful antioxidant N-acetylcysteine (NAC) afforded any protection from Purkinje neuron loss. Rat pups were treated on postnatal day 4 with a single ethanol (6.0 g/kg) or isocaloric intragastric intubation. The cerebelli were analyzed for NT with ELISA assays at 2, 4, 6, or 8 h following the single exposure. No evidence of NT was found at any of these time points. Another group of animals received ethanol exposure on PN4, or ethanol exposure plus NAC. Control groups included isocaloric intubated controls (IC), IC plus NAC, and mother reared controls. Twenty-four hours following the exposures, the pups were perfused and the cerebellum processed for cell counting. Ethanol exposure reduced the number of Purkinje neurons in the cerebellum. Concurrent treatment with antioxidant did not protect the Purkinje neurons from ethanol-related cell loss. These in vivo analyses do not support a robust oxidative mechanism involving the production of reactive nitrogen species as a significant means of Purkinje cell neurodegeneration.
Collapse
Affiliation(s)
- Dwight R Pierce
- Department of Health Sciences, University of Central Arkansas, Conway, AR 72035, USA.
| | | | | | | |
Collapse
|
15
|
Smith AM, Zeve DR, Grisel JJ, Chen WJA. Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:231-8. [PMID: 16256207 DOI: 10.1016/j.devbrainres.2005.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 09/05/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022]
Abstract
It has been suggested that developmental alcohol-induced brain damage is mediated through increases in oxidative stress. In this study, the concentrations of malondialdehyde (MDA) and reduced glutathione (GSH) were measured to indicate alcohol-mediated oxidative stress. In addition, the ability of two known antioxidants, melatonin (MEL) and lazaroid U-83836E (U), to attenuate alcohol-induced oxidative stress was investigated. Sprague-Dawley rat pups were randomly assigned to six artificially-reared groups, ALC (alcohol), MEL, MEL/ALC, U, U/ALC, and GC (gastrostomy control), and one normal suckle control (to control for artificial-rearing effects on the dependent variables). The daily dosages for ALC, MEL, and U were 6 g/kg, 20 mg/kg, and 20 mg/kg, respectively. Alcohol was administered in 2 consecutive feedings, and antioxidant (MEL or U) was administered for a total of 4 consecutive feedings (2 feedings prior to and 2 feedings concurrently with alcohol). The animals received treatment from postnatal days (PD) 4 through 9. Cerebellar, hippocampal, and cortical samples were collected on PD 9 and analyzed for MDA and GSH content. The results indicated that MDA concentrations in the cerebellum were significantly elevated in animals receiving alcohol; however, MDA levels in the hippocampus and cortex were not affected by alcohol treatment. Additionally, GSH levels in the cerebellum were significantly elevated in groups receiving alcohol, regardless of antioxidant treatment. Neither antioxidant was able to protect against alcohol-induced alterations of MDA or GSH. These findings suggest that alcohol might increase GSH levels indirectly as a compensatory mechanism designed to protect the brain from oxidative-stress-mediated insult.
Collapse
Affiliation(s)
- Andrew M Smith
- 142E Reynolds Medical Building, Department of Human Anatomy and Medical Neurobiology, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
16
|
Tran TD, Jackson HD, Horn KH, Goodlett CR. Vitamin E does not protect against neonatal ethanol-induced cerebellar damage or deficits in eyeblink classical conditioning in rats. Alcohol Clin Exp Res 2005; 29:117-29. [PMID: 15654300 DOI: 10.1097/01.alc.0000150004.53870.e1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rodent studies have shown that heavy binge-like ethanol (EtOH) exposure during the brain growth spurt [postnatal days (PD) 4-9] causes cerebellar neuronal loss and deficits in cerebellar-mediated eyeblink classical conditioning (ECC). Oxidative stress has been implicated in EtOH-mediated brain damage, and studies using vitamin E have reported amelioration of EtOH-induced tissue damage, including protection in rats against EtOH-induced cerebellar Purkinje cell (PC) loss on PD 4 to 5. The purpose of this study was to determine whether dietary supplementation with vitamin E concurrent with binge EtOH exposure on PD 4 to 9 in rats would attenuate the cerebellar cell death and ECC deficits. METHODS Rat pups were given one of five different neonatal treatments: (1) intubation with EtOH in milk formula (twice daily, total dose 5.25 g/kg/day), (2) intubation with EtOH in milk formula supplemented with vitamin E (12.26 mg/kg/feeding), (3) intubation with milk formula that contained vitamin E only, (4) sham intubations, or (5) normally reared unintubated controls. Between PD 26 and 33, subjects received short-delay ECC for 3 consecutive days. Unbiased stereological cell counts were performed on cerebellar PCs of left cerebellar lobules I to VI and neurons of the interpositus nucleus. In a separate study with PD 4 pups, the effects of vitamin E on EtOH-induced expression of caspase-3 active subunits were assessed using Western blot analysis. RESULTS EtOH-treated groups showed significant deficits in acquisition of conditioned eyeblink responses and reductions in cerebellar PCs and interpositus nucleus neurons compared with controls. Vitamin E supplementation failed to protect against these deficits. Vitamin E also failed to protect against increases in caspase-3 active subunit expression induced by acute binge EtOH exposure on PD 4. CONCLUSIONS In contrast to the previously reported neuroprotective potential of antioxidants on EtOH-mediated cerebellar damage, vitamin E supplementation did not diminish EtOH-induced structural and functional damage to the cerebellum in this model of binge EtOH exposure during the brain growth spurt in rats.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Psychology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
17
|
Chen WJA, Harle LK. Interactive Effect of Alcohol and Nicotine on Developing Cerebellum: An Investigation of the Temporal Pattern of Alcohol and Nicotine Administration. Alcohol Clin Exp Res 2005; 29:437-42. [PMID: 15770120 DOI: 10.1097/01.alc.0000156130.36836.1a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Among individuals who use alcohol and tobacco products, pregnant women represent a unique subpopulation that generates a greater concern because of the toxic effects of alcohol and nicotine (from cigarettes and tobacco products) on the health of both the pregnant woman and her fetus. Therefore, it is imperative to understand the interactive effects of these two substances on the fetus. Previously, we found that concurrent exposure to alcohol and nicotine did not result in the loss of greater numbers of Purkinje cells compared with each drug treatment alone, possibly as a result of a nicotine-mediated decline in peak blood alcohol concentration (BAC). The present study tested the validity of this hypothesis. METHODS On postnatal day (PD) 4, Sprague-Dawley rat pups were assigned to five groups, GC (no alcohol [ALC], no nicotine [NIC]), ALC (4 g/kg/day), NIC (6 mg/kg/day), ALC/NIC (ALC and NIC given concurrently), or ALC-NIC (NIC administered 6 hr after ALC exposure). These rat pups were reared in an artificial-rearing apparatus from PDs 4 to 9, and the cerebellar tissues were obtained on PD 10. The total number of cerebellar Purkinje cells in the vermis was estimated using stereological methods. RESULTS The results showed that alcohol significantly reduced Purkinje cell numbers. The coexposure of alcohol and nicotine did not lead to further reduction in Purkinje cell number regardless of administration method, concurrent or sequential. However, alcohol and nicotine administered concurrently but not sequentially significantly lowered the BAC. CONCLUSION These findings suggest that the lack of increased Purkinje cell loss after the coexposure of alcohol and nicotine is independent of nicotine's ability to lower the BAC. An alternative hypothesis might be that alcohol and nicotine target the same subpopulation of Purkinje cells; therefore, no additional Purkinje cells were lost from the coexposure of these two drugs.
Collapse
Affiliation(s)
- Wei-Jung A Chen
- Department of Human Anatomy & Medical Neurobiology, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 77843, USA.
| | | |
Collapse
|
18
|
Green JT. The effects of ethanol on the developing cerebellum and eyeblink classical conditioning. THE CEREBELLUM 2005; 3:178-87. [PMID: 15543808 DOI: 10.1080/14734220410017338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In rats, developmental ethanol exposure has been used to model the central nervous system deficits associated with human fetal alcohol syndrome. Binge-like ethanol exposure of neonatal rats depletes cells in the cerebellum, including Purkinje cells, granule cells, and deep nuclear cells, and produces deficits in simple tests of motor coordination. However, the extent to which anatomical damage is related to behavioral deficits has been difficult to estimate. Eyeblink classical conditioning is known to engage a discrete brain stem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental ethanol exposure. Eyeblink conditioning is a simple form of motor learning in which a neutral stimulus (such as a tone) comes to elicit an eyeblink when repeatedly paired with a stimulus that evokes an eyeblink prior to training (such as mild periorbital stimulation). In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for tone conditioned stimulus and somatosensory unconditioned stimulus information, and, together with brain stem nuclei, provide the necessary and sufficient substrate for the learned response. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to ethanol as neonates. In addition, interpositus nucleus neurons from ethanol-exposed rats showed impaired activation during eyeblink conditioning. These deficits are accompanied by a permanent reduction In the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding the underlying neural substrates of behavioral change after developmental ethanol exposure are greatly strengthened.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington 05405-0134, USA.
| |
Collapse
|
19
|
Marino MD, Aksenov MY, Kelly SJ. Vitamin E protects against alcohol‐induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 2004; 22:363-77. [PMID: 15380836 DOI: 10.1016/j.ijdevneu.2004.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/15/2004] [Accepted: 04/15/2004] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress has been proposed as a possible mechanism underlying nervous system deficits associated with Fetal Alcohol Syndrome (FAS). Current research suggests that antioxidant therapy may afford some level of protection against the teratogenic effects of alcohol. This study examined the effectiveness of antioxidant treatment in alleviating biochemical, neuroanatomical, and behavioral effects of neonatal alcohol exposure. Neonatal rats were administered alcohol (5.25 g/kg) by intragastric intubation on postnatal days 7, 8, and 9. A subset of alcohol-exposed pups were co-administered a high dose of Vitamin E (2 g/kg, or 71.9 IU/g). Controls consisted of a non-treated group, a group given the administration procedure only, and a group given the administration procedure plus the Vitamin E dose. Ethanol-exposed animals showed impaired spatial navigation in the Morris water maze, a decreased number of hippocampal CA1 pyramidal cells, and higher protein carbonyl formation in the hippocampus than controls. Vitamin E treatment alleviated the increase in protein carbonyls and the reduction in CA1 pyramidal cells seen in the ethanol-exposed group. However, the treatment did not improve spatial learning in the ethanol-exposed animals. These results suggest that while oxidative stress-related neurodegeneration may be a contributing factor in FAS, the antioxidant protection against alcohol-induced oxidative stress and neuronal cell loss in the rat hippocampus does not appear to be sufficient to prevent the behavioral impairments associated with FAS. Our findings underscore the complexity of the pathogenesis of behavioral deficits in FAS and suggest that additional mechanisms beyond oxidative damage of hippocampal neurons also contribute to the disorder.
Collapse
Affiliation(s)
- Melissa D Marino
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
20
|
Green JT. Using eyeblink classical conditioning as a test of the functional consequences of exposure of the developing cerebellum to alcohol. Integr Psychol Behav Sci 2003; 38:45-64. [PMID: 12814196 DOI: 10.1007/bf02734260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Exposure of the developing brain to alcohol produces profound Purkinje cell loss in the cerebellum, and deficits in tests of motor coordination. However, the precise relationship between these two sets of findings has been difficult to determine. Eyeblink classical conditioning is known to engage a discrete brainstem-cerebellar circuit, making it an ideal test of cerebellar functional integrity after developmental alcohol exposure. In eyeblink conditioning, one of the deep cerebellar nuclei, the interpositus nucleus, as well as specific Purkinje cell populations, are sites of convergence for CS and US information. A series of studies have shown that eyeblink conditioning is impaired in both weanling and adult rats given binge-like exposure to alcohol as neonates, and that these deficits can be traced, at least in part, to impaired activation of cerebellar interpositus nucleus neurons and to an overall reduction in the deep cerebellar nuclear cell population. Because particular cerebellar cell populations are utilized in well-defined ways during eyeblink conditioning, conclusions regarding specific changes in the mediation of behavior by these cell populations are greatly strengthened. Further studies will be directed towards the impact of early exposure to alcohol on the functionality of specific Purkinje cell populations, as well as towards brainstem areas that process the tone CS and the somatosensory US.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, Indiana University, Bloomington 47405-7007, USA.
| |
Collapse
|