1
|
Shaykin JD, Olyha LN, Van Doorn CE, Hales JD, Chandler CM, Hopkins DM, Nixon K, Beckmann JS, Pauly JR, Bardo MT. Effects of isolation stress and voluntary ethanol exposure during adolescence on ethanol and nicotine co-use in adulthood using male rats. DRUG AND ALCOHOL DEPENDENCE REPORTS 2024; 12:100277. [PMID: 39262667 PMCID: PMC11387808 DOI: 10.1016/j.dadr.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Background Alcohol use in adolescence may increase susceptibility to substance use disorders (SUDs) in adulthood. This study determined if voluntary ethanol (EtOH) consumption during adolescence, combined with social isolation, alters the trajectory of EtOH and nicotine intake during adulthood, as well as activating brain neuroinflammation. Methods Adolescent male isolate- and group-housed rats were given 0.2 % saccharin/20 % EtOH (Sacc/EtOH) or water using intermittent 2-bottle choice; controls were given water in both bottles (n=17-20 per group). Some rats from each group (n=5-6) were euthanized one week later to measure autoradiographic [3H]PK-11195 binding, an indicator of microglial reactivity, and the remainder (n=11-14 per group) were tested in adulthood in 2-bottle choice, followed by nicotine self-administration using an incremental fixed ratio (FR) schedule with Sacc/EtOH and water concurrently available. Results Isolation housing increased adolescent intake of Sacc/EtOH, but the increase did not produce an observable neuroimmunological response in brain. Adolescent EtOH exposure decreased adult intake of both Sacc/EtOH and unsweetened EtOH, with isolate-housed rats showing a greater effect than group-housed rats. In the co-use model, a cross-price economic demand analysis revealed a substitutional relationship between Sacc/EtOH and nicotine, but no effect of adolescent Sacc/EtOH exposure. Compared to group-housed rats, isolate-housed rats were more sensitive to the changing price of nicotine and showed greater substitutability of Sacc/EtOH for nicotine. Conclusion The current results suggest that adolescent EtOH exposure per se, with or without isolation stress, does not likely explain the enhanced risk for either alcohol or nicotine use later in life.
Collapse
Affiliation(s)
- Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Lydia N Olyha
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Catherine E Van Doorn
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Joshua D Hales
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - Deann M Hopkins
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, TX 78712, USA
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Costa PA, Everett NA, Turner AJ, Umpierrez LS, Baracz SJ, Cornish JL. Adolescent alcohol binge drinking and withdrawal: behavioural, brain GFAP-positive astrocytes and acute methamphetamine effects in adult female rats. Psychopharmacology (Berl) 2024; 241:1539-1554. [PMID: 38705893 PMCID: PMC11269403 DOI: 10.1007/s00213-024-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
RATIONALE Alcopop beverages are generally the first alcoholic beverage that young females drink which contain high levels of sugar and alcohol. The over-consumption of these drinks may encourage alcohol co-administration with methamphetamine (METH) impacting on drinking behaviour and glial function. AIMS The aims of this study were to evaluate the effect of adolescent binge alcohol exposure on consumption level, anxiety-like behaviour, cross-sensitization with METH and on astrocyte expression in reward related brain regions. METHODS Adolescent female Sprague-Dawley rats had daily 1-hour oral alcohol consumption of alcopop (ALCP; with sucrose) or ethanol-only (ETOH; without sucrose), transitioned from 5 to 15% (v/v) ethanol content for 34 days. Water and sucrose groups act as controls. During alcohol withdrawal, rats were tested for anxiety on the elevated plus maze (EPM) and locomotor activity following saline or METH (1 mg/kg i.p) treatment. Brains were then collected to assess astrocyte immunofluorescence for glial fibrillary acidic protein (GFAP) in reward-related brain regions. RESULTS Rats pretreated with 5% ALCP consumed significantly more volume and ethanol intake when compared to 5% EtOH rats. Both ALCP and EtOH groups had a higher preference ratio for 5% than 15% alcohol solutions and ALCP rats had greater ethanol intake at 15% than EtOH rats. Alcohol withdrawal showed no significant differences between groups on anxiety, METH cross-sensitization effects or GFAP intensity in the regions studied. CONCLUSIONS Overall, the addition of sucrose to alcoholic solutions encouraged female rats to consume larger volumes and greater ethanol intake compared to ethanol-only solutions, yet did not have long lasting effects on behaviour and astrocytes.
Collapse
Affiliation(s)
- Priscila A Costa
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Nicholas A Everett
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Anita J Turner
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Laísa S Umpierrez
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Sarah J Baracz
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Jennifer L Cornish
- Behavioural Neuropharmacology Laboratory, School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| |
Collapse
|
3
|
Sicher AR, Liss A, Vozella V, Marsland P, Seemiller LR, Springer M, Starnes WD, Griffith KR, Smith GC, Astefanous A, Deak T, Roberto M, Varodayan FP, Crowley NA. Voluntary adolescent alcohol exposure does not robustly increase adulthood consumption of alcohol in multiple mouse and rat models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591674. [PMID: 38746266 PMCID: PMC11092607 DOI: 10.1101/2024.04.30.591674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adolescence is a period of increased risk taking, including increased alcohol and drug use. Multiple clinical studies report a positive relationship between adolescent alcohol consumption and risk of developing an alcohol use disorder (AUD) in adulthood. However, few preclinical studies have attempted to tease apart the biological contributions of adolescent alcohol exposure, independent of other social, environmental, and stress factors, and studies that have been conducted show mixed results. Here we use several adolescent voluntary consumption of alcohol models, conducted across four labs in three institutes and with two rodent species, to investigate the ramifications of adolescent alcohol consumption on adulthood alcohol consumption in controlled, pre-clinical environments. We consistently demonstrate a lack of robust increases in adulthood alcohol consumption. This work highlights that risks seen in both human datasets and other murine drinking models may be due to unique social and environmental factors - some of which may be unique to humans.
Collapse
Affiliation(s)
- Avery R. Sicher
- Neuroscience Graduate Program, The Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Laurel R. Seemiller
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Springer
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Keith R. Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Grace C. Smith
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amy Astefanous
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Florence P. Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY, 13902, USA
| | - Nicole A. Crowley
- Neuroscience Graduate Program, The Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Reséndiz-Flores M, Miranda MI. Sugar consumption induces the consummatory suppression of sugary ethanol: Differential effects of sugar restriction according to sex and age. Drug Alcohol Depend 2024; 260:111322. [PMID: 38728924 DOI: 10.1016/j.drugalcdep.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Sweet foods activate the reward system that is essential in processing natural reinforcers. Maturation changes in this system during adolescence are linked to heightened impulsivity and risk-seeking behavior, including the use of drugs like ethanol. This usually starts with the consumption of sugary mixtures. However, the influence of sugar exposure on ethanol consumption remains inconclusive. The present research examines the effect of long-term sugar exposure on sugary ethanol (S-EtOH) preference and net intake, exploring the implications of sex, age, accessor restriction of sugar, and its effect during the transition into adulthood. Wistar rats of both sexes were given 24-hour access to a sugar solution for 21 days during adolescence or adulthood. Subsequently, four preference tests of S-EtOH vs. water were carried out every other day, with or without sugar access between each preference test. Our results demonstrate that continuous acute and long-term sugar access induces a consummatory suppression effect on S-EtOH intake, particularly in adult rats, irrespective of sex. This effect becomes more pronounced with more extended periods of exposure to sugar, leading to a higher prevalence of low consumers. Notably, when sugar access was restricted after high familiarization, the suppression effect in adolescent male rats was reduced. Under these conditions, the rats appeared to be more susceptible to developing a preference for S-EtOH consumption. Furthermore, our longitudinal observations reveal that sugar access or restriction conditions during the transition from adolescence to adulthood play a crucial role in shaping S-EtOH consumption patterns in adulthood.
Collapse
Affiliation(s)
- Maricruz Reséndiz-Flores
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, No. 3001, Querétaro, Querétaro 76230, Mexico
| | - María-Isabel Miranda
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla, No. 3001, Querétaro, Querétaro 76230, Mexico.
| |
Collapse
|
5
|
Parks BJ, Salazar P, Morrison L, McGraw MK, Gunnell M, Tobacyk J, Brents LK, Berquist MD. Limited bedding and nesting increases ethanol drinking in female rats. Pharmacol Biochem Behav 2024; 239:173756. [PMID: 38555037 PMCID: PMC11088506 DOI: 10.1016/j.pbb.2024.173756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Prenatal opioid exposure (POE) and postnatal adverse experiences are early life adversities (ELA) that often co-occur and increase problematic alcohol (EtOH) drinking during adolescence. We investigated the relationship between POE, postnatal adversity, and adolescent EtOH drinking in rats. We also sought to determine whether ELAs affect alpha-adrenoceptor density in the brain because the noradrenergic system is involved in problematic alcohol drinking and its treatment. We hypothesized that the combination of POE and postnatal adversity will increase alcohol drinking in rats compared to rats with exposure to either adversity alone or to control. We also predicted that POE and postnatal adversity would increase α1-adrenoceptor density and decrease α2-adrenoceptor density in brain to confer a stress-responsive phenotype. Pregnant rats received morphine (15 mg/kg/day) or saline via subcutaneous minipumps from gestational day 9 until birth. Limited bedding and nesting (LBN) procedures were introduced from postnatal day (PD) 3-11 to mimic early life adversity-scarcity. Offspring rats (PD 31-33) were given opportunities to drink EtOH (20 %, v/v) using intermittent-access, two-bottle choice (with water) procedures. Rats given access to EtOH were assigned into sub-groups that were injected with either yohimbine (1 mg/kg, ip) or vehicle (2 % DMSO, ip) 30 min prior to each EtOH access session to determine the effects of α2-adrenoceptor inhibition on alcohol drinking. We harvested cortices, brainstems, and hypothalami from EtOH-naïve littermates on either PD 30 or PD 70 and conducted radioligand receptor binding assays to quantify α1- and α2-adrenoceptor densities. Contrary to our hypothesis, only LBN alone increased EtOH intake in female adolescent rats compared to female rats with POE. Neither POE nor LBN affected α1- or α2-adrenoceptor densities in the cortex, brainstem, or hypothalamus of early- or late-aged adolescent rats. These results suggest a complex interaction between ELA type and sex on alcohol drinking.
Collapse
Affiliation(s)
- B J Parks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - P Salazar
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - L Morrison
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - M K McGraw
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - M Gunnell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - J Tobacyk
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - L K Brents
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America
| | - M D Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot 611, Little Rock, AR 72205, United States of America.
| |
Collapse
|
6
|
Hauser SR, Waeiss RA, Deehan GA, Engleman EA, Bell RL, Rodd ZA. Adolescent alcohol and nicotine exposure alters the adult response to alcohol use. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11880. [PMID: 38389816 PMCID: PMC10880795 DOI: 10.3389/adar.2023.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 02/24/2024]
Abstract
Adolescence through young adulthood is a unique period of neuronal development and maturation. Numerous agents can alter this process, resulting in long-term neurological and biological consequences. In the clinical literature, it is frequently reported that adolescent alcohol consumption increases the propensity to develop addictions, including alcohol use disorder (AUD), during adulthood. A general limitation of both clinical and human pre-clinical adolescent alcohol research is the high rate of co-using/abusing more than one drug during adolescence, such as co-using/abusing alcohol with nicotine. A primary goal of basic research is elucidating neuroadaptations produced by adolescent alcohol exposure/consumption that promote alcohol and other drug self-administration in adulthood. The long-term goal is to develop pharmacotherapeutics for the prevention or amelioration of these neuroadaptations. This review will focus on studies that have examined the effects of adolescent alcohol and nicotine exposure on adult alcohol consumption, the hypersensitivity of the mesolimbic dopaminergic system, and enhanced responses not only to alcohol but also to nicotine during adulthood. Again, the long-term goal is to identify potential cholinergic agents to prevent or ameliorate the consequences of, peri-adolescent alcohol abuse.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
7
|
Sanz-Martos AB, Fuentes-Verdugo E, Merino B, Morales L, Pérez V, Capellán R, Pellón R, Miguéns M, Del Olmo N. Schedule-induced alcohol intake during adolescence sex dependently impairs hippocampal synaptic plasticity and spatial memory. Behav Brain Res 2023; 452:114576. [PMID: 37423317 DOI: 10.1016/j.bbr.2023.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
In a previous study, we demonstrated that intermittent ethanol administration in male adolescent animals impaired hippocampus-dependent spatial memory, particularly under conditions of excessive ethanol administration. In this current study, we subjected adolescent male and female Wistar rats an alcohol schedule-induced drinking (SID) procedure to obtain an elevated rate of alcohol self-administration and assessed their hippocampus-dependent spatial memory. We also studied hippocampal synaptic transmission and plasticity, as well as the expression levels of several genes involved in these mechanisms. Both male and female rats exhibited similar drinking patterns throughout the sessions of the SID protocol reaching similar blood alcohol levels in all the groups. However, only male rats that consumed alcohol showed spatial memory deficits which correlated with inhibition of hippocampal synaptic plasticity as long-term potentiation. In contrast, alcohol did not modify hippocampal gene expression of AMPA and NMDA glutamate receptor subunits, although there are differences in the expression levels of several genes relevant to synaptic plasticity mechanisms underlying learning and memory processes, related to alcohol consumption as Ephb2, sex differences as Pi3k or the interaction of both factors such as Pten. In conclusion, elevated alcohol intake during adolescence seems to have a negative impact on spatial memory and hippocampal synaptic plasticity in a sex dependent manner, even both sexes exhibit similar blood alcohol concentrations and drinking patterns.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Esmeralda Fuentes-Verdugo
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Beatriz Merino
- Department of Pharmaceutical and Nutritional Sciences, School of Pharmacy, San Pablo-CEU University, Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Lidia Morales
- Department of Pharmaceutical and Nutritional Sciences, School of Pharmacy, San Pablo-CEU University, Urb. Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Vicente Pérez
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Ricardo Pellón
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Miguel Miguéns
- Department of Basic Psychology I, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/Juan del Rosal 10, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Chandler CM, Shaykin JD, Peng H, Pauly JR, Nixon K, Bardo MT. Effects of voluntary adolescent intermittent alcohol exposure and social isolation on adult alcohol intake in male rats. Alcohol 2022; 104:13-21. [PMID: 35981637 PMCID: PMC10806401 DOI: 10.1016/j.alcohol.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 01/26/2023]
Abstract
Initiating alcohol use in adolescence significantly increases the likelihood of developing adult alcohol use disorder (AUD). However, it has been difficult to replicate adolescent alcohol exposure leading to increased adult alcohol intake across differing preclinical models. In the present study, differentially housed male rats (group vs. single cages) were used to determine the effects of voluntary intermittent exposure of saccharin-sweetened ethanol during adolescence on adult intake of unsweetened 20% ethanol. Adolescent male rats were assigned to group- or isolated-housing conditions and underwent an intermittent 2-bottle choice in adolescence (water only or water vs. 0.2% saccharin/20% ethanol), and again in adulthood (water vs. 20% ethanol). Intermittent 2-bottle choice sessions lasted for 24 h, and occurred three days per week, for five weeks. Rats were moved from group or isolated housing to single-housing cages for 2-bottle choice tests and returned to their original housing condition on off days. During adolescence, rats raised in isolated-housing conditions consumed significantly more sweetened ethanol than rats raised in group-housing conditions, an effect that was enhanced across repeated exposures. In adulthood, rats raised in isolated-housing conditions and exposed to sweetened ethanol during adolescence also consumed significantly higher levels of unsweetened 20% ethanol compared to group-housed rats. The effect was most pronounced over the first five re-exposure sessions. Housing conditions alone had little effect on adult ethanol intake. These preclinical results suggest that social isolation stress, combined with adolescent ethanol exposure, may play a key role in adult AUD risk.
Collapse
Affiliation(s)
- Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
9
|
Maternal immune activation and adolescent alcohol exposure increase alcohol drinking and disrupt cortical-striatal-hippocampal oscillations in adult offspring. Transl Psychiatry 2022; 12:288. [PMID: 35859084 PMCID: PMC9300672 DOI: 10.1038/s41398-022-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual (MIA + AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from MIA rats in females. These data suggest that Dual "hits" (MIA + AE) increases substance use behavior and disrupts activity in reward-related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior.
Collapse
|
10
|
Lawson K, Scarlata MJ, Cho WC, Mangan C, Petersen D, Thompson HM, Ehnstrom S, Mousley AL, Bezek JL, Bergstrom HC. Adolescence alcohol exposure impairs fear extinction and alters medial prefrontal cortex plasticity. Neuropharmacology 2022; 211:109048. [PMID: 35364101 PMCID: PMC9067297 DOI: 10.1016/j.neuropharm.2022.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
After experiencing a traumatic event people often turn to alcohol to cope with symptoms. In those with post-traumatic stress disorder (PTSD) and a co-occurring alcohol use disorder (AUD), PTSD symptoms can worsen, suggesting that alcohol changes how traumatic memory is expressed. The objective of this series of experiments is to identify how alcohol drinking (EtOH), following cued fear conditioning and extinction, impacts fear expression in mice. Molecular (activity-regulated cytoskeleton-associated protein, Arc/arg3.1) and structural (dendrite and spine morphometry) markers of neuronal plasticity were measured following remote extinction retrieval. Mouse age (adolescent and adult) and sex were included as interacting variables in a full factorial design. Females drank more EtOH than males and adolescents drank more EtOH than adults. Adolescent females escalated EtOH intake across drinking days. Adolescent drinkers exhibited more conditioned freezing during extinction retrieval, an effect that persisted for at least 20 days. Heightened cued freezing in the adolescent group was associated with greater Arc/arg3.1 expression in layer (L) 2/3 prelimbic (PL) cortex, greater spine density, and reduced basal dendrite complexity. In adults, drinking was associated with reduced L2/3 infralimbic (IL) Arc expression but no behavioral differences. Few sex interactions were uncovered throughout. Overall, these data identify prolonged age-related differences in alcohol-induced fear extinction impairment and medial prefrontal cortex neuroadaptations.
Collapse
Affiliation(s)
- K Lawson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - M J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - W C Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - C Mangan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - D Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H M Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - S Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - A L Mousley
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - J L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA
| | - H C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, USA.
| |
Collapse
|
11
|
Sicher AR, Duerr A, Starnes WD, Crowley NA. Adolescent Alcohol and Stress Exposure Rewires Key Cortical Neurocircuitry. Front Neurosci 2022; 16:896880. [PMID: 35655755 PMCID: PMC9152326 DOI: 10.3389/fnins.2022.896880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human adolescence is a period of development characterized by wide ranging emotions and behavioral risk taking, including binge drinking (Konrad et al., 2013). These behavioral manifestations of adolescence are complemented by growth in the neuroarchitecture of the brain, including synaptic pruning (Spear, 2013) and increases in overall white matter volume (Perrin et al., 2008). During this period of profound physiological maturation, the adolescent brain has a unique vulnerability to negative perturbations. Alcohol consumption and stress exposure, both of which are heightened during adolescence, can individually and synergistically alter these neurodevelopmental trajectories in positive and negative ways (conferring both resiliency and susceptibility) and influence already changing neurotransmitter systems and circuits. Importantly, the literature is rapidly changing and evolving in our understanding of basal sex differences in the brain, as well as the interaction between biological sex and life experiences. The animal literature provides the distinctive opportunity to explore sex-specific stress- and alcohol- induced changes in neurocircuits on a relatively rapid time scale. In addition, animal models allow for the investigation of individual neurons and signaling molecules otherwise inaccessible in the human brain. Here, we review the human and rodent literature with a focus on cortical development, neurotransmitters, peptides, and steroids, to characterize the field's current understanding of the interaction between adolescence, biological sex, and exposure to stress and alcohol.
Collapse
Affiliation(s)
- Avery R. Sicher
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Arielle Duerr
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole A. Crowley
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
12
|
Effects of adolescent alcohol exposure via oral gavage on adult alcohol drinking and co-use of alcohol and nicotine in Sprague Dawley rats. Drug Alcohol Depend 2022; 232:109298. [PMID: 35038606 PMCID: PMC8885928 DOI: 10.1016/j.drugalcdep.2022.109298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Preclinical models simulating adolescent substance use leading to increased vulnerability for substance use disorders in adulthood are needed. Here, we utilized a model of alcohol and nicotine co-use to assess adult addiction vulnerability following adolescent alcohol exposure. METHODS In Experiment 1, adolescent (PND30) male and female Sprague-Dawley rats received 25% ethanol (EtOH) or a control solution via oral gavage every 8 h, for 2 days. In young adulthood, animals were tested with a 2-bottle choice between H20% and 15% EtOH or 0.2% saccharin/15% EtOH, followed by co-use of oral Sacc/EtOH and operant-based i.v. nicotine (0.03 mg/kg/infusion) self-administration. In Experiment 2, adolescents received control gavage, EtOH gavage, or no-gavage, and were tested in young adulthood in a 2-bottle choice between H20% and 15% EtOH, Sacc/EtOH, or 0.2% saccharin. RESULTS In Experiment 1, the adolescent EtOH gavage reduced adult EtOH consumption in the 2-bottle choice, but not during the co-use phase. During co-use, Sacc/EtOH served as an economic substitute for nicotine. In Experiment 2, the control gavage increased adult EtOH drinking relative to the no-gavage control group, an effect that was mitigated in the EtOH gavage group. In both experiments, treatment group differences in EtOH consumption were largely driven by males. CONCLUSIONS EtOH administration via oral gavage in adolescence decreased EtOH consumption in adulthood without affecting EtOH and nicotine co-use. Inclusion of a no-gavage control in Experiment 2 revealed that the gavage procedure increased adult EtOH intake and that including EtOH in the gavage buffered against the effect.
Collapse
|
13
|
Siska F, Amchova P, Kuruczova D, Tizabi Y, Ruda-Kucerova J. Effects of low-dose alcohol exposure in adolescence on subsequent alcohol drinking in adulthood in a rat model of depression. World J Biol Psychiatry 2021; 22:757-769. [PMID: 33821763 DOI: 10.1080/15622975.2021.1907717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Adolescence drinking and subsequent development of alcohol use disorder (AUD) is a worldwide health concern. In particular, mood dysregulation or early alcohol exposure can be the cause of heavy drinking in some individuals or a consequence of heavy drinking in others. METHODS This study investigated the effects of voluntary alcohol intake during adolescence, i.e. continuous 10% alcohol access between postnatal days (PND) 29 to 43 and olfactory bulbectomy (OBX) model of depression (performed on PND 59) on alcohol drinking in Wistar rats during adulthood (PND 80-120, intermittent 20% alcohol access). In addition, the effect of NBQX, an AMPA/kainate receptor antagonist (5 mg/kg, IP) on spontaneous alcohol consumption was examined. RESULTS Rats exposed to 10% alcohol during adolescence exhibited a lower 20% alcohol intake in the intermittent paradigm during adulthood, while the OBX-induced phenotype did not exert a significant effect on the drinking behaviour. NBQX exerted a transient reduction on alcohol intake in the OBX rats. CONCLUSIONS Our results indicate that exposure to alcohol during adolescence can affect alcohol drinking in adulthood and that further exploration of AMPA and/or kainate receptor antagonists in co-morbid alcoholism-depression is warranted.
Collapse
Affiliation(s)
- Filip Siska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Kuruczova
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Abburi C, McDaid J. Ethanol interaction with α3β4 nicotinic acetylcholine receptors in neurons of the laterodorsal tegmentum. Alcohol Clin Exp Res 2021; 45:2495-2505. [PMID: 34625982 DOI: 10.1111/acer.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) play a key role in the rewarding effects of ethanol (EtOH), and while several nAChR subtypes have been implicated, attention has recently shifted to a role for the α3β4 nAChR. The laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic nucleus that sends excitatory projections to the ventral tegmental area, is an Integral part of the brain reward pathway. Here we investigate a potential role for LDTg α3β4 nAChRs in EtOH self-administration and reward. METHODS Sprague-Dawley rats were given ad libitum access to a 20% EtOH solution, as part of a two-bottle choice paradigm. Approximately 1 week after removal of EtOH access, we measured LDTg α3β4 nAChR current responses to focal application of acetylcholine (ACh), using whole-cell patch clamp electrophysiology recordings in acute brain slices. In addition, we used whole-cell electrophysiology to assess the acute effects of EtOH on the sensitivity of LDTg α3β4 nAChRs. RESULTS Focal application of ACh onto LDTg neurons resulted in large α3β4 nAChR-mediated inward currents, the magnitude of which showed a positive correlation with levels of EtOH self-administration. In addition, using brain slices taken from EtOH-naïve rats, bath application of EtOH resulted in a moderate potentiation of LDTg α3β4 nAChR sensitivity. CONCLUSIONS Using a rat model, increased α3β4 nAChR function was associated with greater EtOH self-administration, with α3β4 nAChR function also acutely potentiated by EtOH. Assuming that similar findings apply to humans, the α3β4 nAChR could be a therapeutic target in the treatment of EtOH use disorder.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| |
Collapse
|
15
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
16
|
Low-Molecular-Weight Mimetic of BDNF Loop 2 Reduces Ethanol Consumption in Female Rats. Bull Exp Biol Med 2021; 171:441-444. [PMID: 34542746 DOI: 10.1007/s10517-021-05245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 10/20/2022]
Abstract
The study examined the effect of GTS-201, a low-molecular weight mimetic of brain-derived neurotrophic factor (BDNF) loop 2, on persistent alcohol craving in outbred male and female albino rats with ethanol preference score ~50% developed in the free choice paradigm between 10% ethanol and water over 24 weeks. Both single and subchronic (5 days) injections of GTS-201 in a daily dose of 5 μg/kg reduced alcohol deprivation effect in female, but not in male rats. The possibility of in vivo sex-dependent regulation of modeled alcohol craving with a low-molecular-weight dipeptide mimetic of BDNF loop 2 was demonstrated and sex-related differences in this effect were revealed.
Collapse
|
17
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
18
|
Dannenhoffer CA, Robertson MM, Macht VA, Mooney SM, Boettiger CA, Robinson DL. Chronic alcohol exposure during critical developmental periods differentially impacts persistence of deficits in cognitive flexibility and related circuitry. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:117-173. [PMID: 34696872 DOI: 10.1016/bs.irn.2021.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cognitive flexibility in decision making depends on prefrontal cortical function and is used by individuals to adapt to environmental changes in circumstances. Cognitive flexibility can be measured in the laboratory using a variety of discrete, translational tasks, including those that involve reversal learning and/or set-shifting ability. Distinct components of flexible behavior rely upon overlapping brain circuits, including different prefrontal substructures that have separable impacts on decision making. Cognitive flexibility is impaired after chronic alcohol exposure, particularly during development when the brain undergoes rapid maturation. This review examines how cognitive flexibility, as indexed by reversal and set-shifting tasks, is impacted by chronic alcohol exposure in adulthood, adolescent, and prenatal periods in humans and animal models. We also discuss areas for future study, including mechanisms that may contribute to the persistence of cognitive deficits after developmental alcohol exposure and the compacting consequences from exposure across multiple critical periods.
Collapse
Affiliation(s)
- C A Dannenhoffer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - M M Robertson
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Victoria A Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S M Mooney
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - C A Boettiger
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
19
|
Towner TT, Spear LP. Rats exposed to intermittent ethanol during late adolescence exhibit enhanced habitual behavior following reward devaluation. Alcohol 2021; 91:11-20. [PMID: 33031883 DOI: 10.1016/j.alcohol.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
The brain undergoes substantial maturation during adolescence, and repeated exposure to ethanol at this time has been shown to result in long-lasting behavioral and neural consequences. During the broad period of adolescence, different neuronal populations and circuits are refined between early and late adolescence, suggesting the possibility that ethanol exposure at these differing times may lead to differential outcomes. The goal of the current study was to evaluate the impact of adolescent intermittent ethanol (AIE) during early and late adolescence on the formation of goal-directed and habitual behavior in adulthood. Male and female Sprague-Dawley rats were exposed to ethanol via intragastric gavage (4.0 g/kg, 25% v/v) every other day from postnatal day (P) 25-45 or P45-65, considered early and late adolescence, respectively. In adulthood (~P70 early or ~ P90 late), rats were gradually food-restricted and began operant training on a fixed ratio 1 schedule. Rats were then transitioned onto random interval schedules and eventually underwent a sensory-specific satiation procedure as a model of reward devaluation. Few differences as a result of adolescent ethanol exposure were found during instrumental training. Following reward devaluation, rats exposed to water and ethanol during early adolescence exhibited reductions in lever pressing, suggestive of a goal-directed response pattern. In contrast, late AIE males and females demonstrated persistent responding following both devalued and non-devalued trials, findings representative of a habitual behavior pattern. The shifts from goal-directed to habitual behavior noted only following late AIE contribute to the growing literature identifying specific behavioral consequences as a result of ethanol exposure during distinct developmental periods within adolescence. More work is needed to determine whether the greater habit formation following late AIE is also associated with elevated habitual ethanol consumption.
Collapse
Affiliation(s)
- Trevor Theodore Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, United States.
| | - Linda Patia Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, United States
| |
Collapse
|
20
|
Dannenhoffer CA, Werner DF, Varlinskaya EI, Spear LP. Adolescent intermittent ethanol exposure does not alter responsiveness to ifenprodil or expression of vesicular GABA and glutamate transporters. Dev Psychobiol 2021; 63:903-914. [PMID: 33511630 DOI: 10.1002/dev.22099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022]
Abstract
Adolescent intermittent ethanol (AIE) exposure in the rat results in a retention of adolescent-like responsiveness to ethanol into adulthood characterized by enhanced sensitivity to socially facilitating and decreased sensitivity to socially suppressing and aversive effects. Similar pattern of responsiveness to social and aversive effects of the selective glutamate NMDA NR2B receptor antagonist ifenprodil is evident in adolescent rats, suggesting that AIE would also retain this pattern of ifenprodil sensitivity into adulthood. Social (Experiment 1) and aversive (measured via conditioned taste aversion; Experiment 2) effects of ifenprodil were assessed in adult male and female rats following AIE exposure. Sensitivity to the social and aversive effects of ifenprodil was not affected by AIE exposure. Experiment 3 assessed protein expression of vesicular transporters of GABA (vGAT) and glutamate (vGlut2) within the prelimbic cortex and nucleus accumbens in adolescents versus adults and in AIE adults versus controls. vGlut2 expression was higher in adolescents relative to adults within the PrL, but lower in the NAc. AIE adults did not retain these adolescent-typical ratios. These findings suggest that AIE is not associated with the retention of adolescent-typical sensitivity to NR2B receptor antagonism, along with no AIE-induced shift in vGlut2 to vGAT ratios.
Collapse
Affiliation(s)
- Carol A Dannenhoffer
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Linda P Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
21
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Chronic Ethanol Exposure during Adolescence Increases Voluntary Ethanol Consumption in Adulthood in Female Sprague Dawley Rats. Brain Sci 2020; 10:brainsci10120900. [PMID: 33255234 PMCID: PMC7761054 DOI: 10.3390/brainsci10120900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
Early alcohol use is a major concern due to the dramatic rise in alcohol use during adolescence. In humans, adolescent males and females consume alcohol at equivalent rates; however, in adulthood males are more likely to consume harmful levels of alcohol. In animal models, the long-term dose-dependent and sex-dependent effects of alcohol exposure during adolescence have not been readily assessed relative to exposure that is initiated in adulthood. The purpose of the present set of experiments was to determine if adolescent exposure to chronic ethanol would predispose male and female rats to greater ethanol intake in adulthood when compared to animals that were not exposed to chronic ethanol exposure until early adulthood. Male and female rats were chronically administered 0.75 g/kg or 1.5 g/kg ethanol or saline for 21 days during adolescence (postnatal day (PND) 30–50) or adulthood (PND 60–80). All rats subsequently underwent 14-days of abstinence (PND 51–64 or PND 81–94, respectively). Finally, all rats were given 30-min daily access to saccharin-sweetened ethanol or saccharin alone from PND 65–80 for adolescent-exposed rats and PND 95–110 for adult-exposed rats. Exposure to 0.75 g/kg ethanol did not alter ethanol or saccharin intake in adolescent-exposed or adult-exposed rats, regardless of sex. In contrast, chronic exposure to the higher 1.5 g/kg dose during adolescence increased ethanol intake in adulthood in female rats. However, there was no change in saccharin intake in animals exposed to 1.5 g/kg ethanol during adolescence or adulthood, regardless of sex. Additionally, there were no clear age- and ethanol-dependent changes in duration of loss of righting reflex and blood ethanol concentrations to a challenge administration of a higher dose of ethanol. The results of the present set of experiments indicate chronic exposure to a high dose of ethanol during adolescence in female rats did indeed predispose rats to consume more ethanol in adulthood. Given that these effects were only observed in adolescent-exposed female rats, these results support a unique vulnerability to the long-term consequences of adolescent ethanol exposure in female rats, an effect that is not merely mediated by the sweetener used in the ethanol solution.
Collapse
|
23
|
Sardarian A, Liu S, Youngentob SL, Glendinning JI. Mixtures of Sweeteners and Maltodextrin Enhance Flavor and Intake of Alcohol in Adolescent Rats. Chem Senses 2020; 45:675-685. [PMID: 32832977 DOI: 10.1093/chemse/bjaa056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sweet flavorants enhance palatability and intake of alcohol in adolescent humans. We asked whether sweet flavorants have similar effects in adolescent rats. The inherent flavor of ethanol in adolescent rats is thought to consist of an aversive odor, bitter/sweet taste, and burning sensation. In Experiment 1, we compared ingestive responses of adolescent rats to 10% ethanol solutions with or without added flavorants using brief-access lick tests. We used 4 flavorants, which contained mixtures of saccharin and sucrose or saccharin, sucrose, and maltodextrin. The rats approached (and initiated licking from) the flavored ethanol solutions more quickly than they did unflavored ethanol, indicating that the flavorants attenuated the aversive odor of ethanol. The rats also licked at higher rates for the flavored than unflavored ethanol solutions, indicating that the flavorants increased the naso-oral acceptability of ethanol. In Experiment 2, we offered rats chow, water, and a flavored or unflavored ethanol solution every other day for 8 days. The rats consistently consumed substantially more of the flavored ethanol solutions than unflavored ethanol across the 8 days. When we switched the rats from the flavored to unflavored ethanol for 3 days, daily intake of ethanol plummeted. We conclude that sweet and sweet/maltodextrin flavorants promote high daily intake of ethanol in adolescent rats (i.e., 6-10 g/kg) and that they do so in large part by improving the naso-oral sensory attributes of ethanol.
Collapse
Affiliation(s)
- Alice Sardarian
- Department of Biology, Barnard College, Columbia University, New York, NY, USA
| | - Sophia Liu
- Department of Biology, Barnard College, Columbia University, New York, NY, USA
| | - Steven L Youngentob
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.,Developmental Exposure Ethanol Research Center, Binghamton University, State University of New York, Binghamton, NY, USA
| | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY, USA.,Developmental Exposure Ethanol Research Center, Binghamton University, State University of New York, Binghamton, NY, USA
| |
Collapse
|
24
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
25
|
Preclinical methodological approaches investigating of the effects of alcohol on perinatal and adolescent neurodevelopment. Neurosci Biobehav Rev 2020; 116:436-451. [PMID: 32681938 DOI: 10.1016/j.neubiorev.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Despite much evidence of its economic and social costs, alcohol use continues to increase. Much remains to be known as to the effects of alcohol on neurodevelopment across the lifespan and in both sexes. We provide a comprehensive overview of the methodological approaches to ethanol administration when using animal models (primarily rodent models) and their translational relevance, as well as some of the advantages and disadvantages of each approach. Special consideration is given to early developmental periods (prenatal through adolescence), as well as to the types of research questions that are best addressed by specific methodologies. The zebrafish is used increasingly in alcohol research, and how to use this model effectively as a preclinical model is reviewed as well.
Collapse
|
26
|
Doremus-Fitzwater TL, Youngentob SL, Youngentob L, Gano A, Vore AS, Deak T. Lingering Effects of Prenatal Alcohol Exposure on Basal and Ethanol-Evoked Expression of Inflammatory-Related Genes in the CNS of Adolescent and Adult Rats. Front Behav Neurosci 2020; 14:82. [PMID: 32714160 PMCID: PMC7344178 DOI: 10.3389/fnbeh.2020.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging data suggest that alcohol's effects on central inflammatory factors are not uniform across the lifespan. In particular, prenatal alcohol exposure (PAE) significantly alters steady-state levels of neuroimmune factors, as well as subsequent reactivity to later immune challenge. Thus, the current experiment investigated developmental sensitivities to, and long-lasting consequences of, PAE on ethanol-evoked cytokine expression in male and female adolescent and adult rats. Pregnant dams received either an ad libitum ethanol liquid diet (2.2% GD 6-8; 4.5% GD 9-10; 6.7% GD11-20; 35% daily calories from ethanol) or free-choice access to a control liquid diet and water. At birth, offspring were fostered to dams given free-choice access to the control liquid diet. Pups then matured until mid-adolescence [postnatal day (PD) 35] or adulthood (PD90), at which time they were challenged with either a binge-like dose of ethanol (4 g/kg; intragastrically) or tap water. During intoxication (3 h post-ethanol challenge), brains and blood were collected for assessment of neuroimmune gene expression (reverse transcription-polymerase chain reaction; RT-PCR) in the hippocampus, amygdala, and PVN, as well as for blood ethanol concentrations (BEC) and plasma corticosterone levels. Results revealed that rats challenged with ethanol at either PD35 or PD90 generally exhibited a characteristic cytokine signature of acute intoxication that we have previously reported: increased Il-6 and IkBα expression, with decreased Il-1β and Tnfα gene expression. With a few exceptions, this pattern of gene changes was observed in all three structures examined, at both ages of postnatal ethanol challenge, and in both sexes. While few significant effects of PAE were observed for ethanol-induced alterations in cytokine expression, there was a consistent (but nonsignificant) trend for PAE to potentiate the expression of Il-6 and IkBα in all groups except adult females. Although these data suggest that later-life ethanol challenge was a far greater driver of inflammatory signaling than PAE, the current results demonstrate PAE resulted in subtle long-term alterations in the expression of many key neuroinflammatory factors associated with NF-κB signaling. Such long-lasting impacts of PAE that may engender vulnerability to later environmental events triggering neuroinflammatory processes, such as chronic ethanol exposure or stress, could contribute to heightened vulnerability for PAE-related alterations and deficits.
Collapse
Affiliation(s)
- Tamara L. Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
| | - Steven L. Youngentob
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Lisa Youngentob
- University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
27
|
Galaj E, Barrera E, Morris D, Ma YY, Ranaldi R. Aberrations in Incentive Learning and Responding to Heroin in Male Rats After Adolescent or Adult Chronic Binge-Like Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1214-1223. [PMID: 32311102 PMCID: PMC7313436 DOI: 10.1111/acer.14341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Binge drinking is a serious problem among adolescents and young adults despite its adverse consequences on the brain and behavior. One area that remains poorly understood concerns the impact of chronic intermittent ethanol (CIE) exposure on incentive learning. METHODS Here, we examined the effects of CIE exposure during different developmental stages on conditioned approach and conditioned reward learning in rats experiencing acute or protracted withdrawal from alcohol. Two or 21 days after adolescent or adult CIE exposure, male rats were exposed to pairings of a light stimulus (CS) and food pellets for 3 consecutive daily sessions (30 CS-food pellet pairings per session). This was followed by conditioned approach testing measuring responses (food trough head entries) to the CS-only presentations and by conditioned reward testing measuring responses on a lever producing the CS and on another producing a tone. We then measured behavioral sensitization to repeated injections of heroin (2 mg/kg/d for 9 days). RESULTS Adolescent and adult alcohol-treated rats showed significantly impaired conditioned reward learning regardless of withdrawal period (acute or prolonged). We found no evidence of changes to conditioned approach learning after adolescent or adult exposure to CIE. Finally, in addition to producing long-term impairments in incentive learning, CIE exposure enhanced locomotor activity in response to heroin and had no effect on behavioral sensitization to heroin regardless of age and withdrawal period. CONCLUSIONS Our work sets a framework for identifying CIE-induced alterations in incentive learning and inducing susceptibility to subsequent opioid effects.
Collapse
Affiliation(s)
- Ewa Galaj
- National Institute on Drug Abuse Intramural Research Program, Molecular Targets and Medication Discovery Branch, 251 Bayview Blvd, Baltimore, MD, 21224, US
| | - Eddy Barrera
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| | - Debra Morris
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| | - Yao-Ying Ma
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, 635 Barnhill Drive, Indianapolis, IN, 46202, US
| | - Robert Ranaldi
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| |
Collapse
|
28
|
Towner TT, Varlinskaya EI. Adolescent Ethanol Exposure: Anxiety-Like Behavioral Alterations, Ethanol Intake, and Sensitivity. Front Behav Neurosci 2020; 14:45. [PMID: 32296315 PMCID: PMC7136472 DOI: 10.3389/fnbeh.2020.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 01/29/2023] Open
Abstract
Adolescence is a developmental period associated with rapid age-specific physiological, neural, and hormonal changes. Behaviorally, human adolescents are characterized by age-typical increases in novelty-seeking and risk-taking, including the frequent initiation of alcohol and drug use. Alcohol use typically begins during early adolescence, and older adolescents often report high levels of alcohol consumption, commonly referred to as high-intensity drinking. Early-onset and heavy drinking during adolescence are associated with an increased risk of developing alcohol use disorders later in life. Yet, long-term behavioral consequences of adolescent alcohol use that might contribute to excessive drinking in adulthood are still not well understood. Recent animal research, however, using different exposure regimens and routes of ethanol administration, has made substantial progress in identifying the consequences of adolescent ethanol exposure that last into adulthood. Alterations associated with adolescent ethanol exposure include increases in anxiety-like behavior, impulsivity, risk-taking, and ethanol intake, although the observed alterations differ as a function of exposure regimens and routes of ethanol administration. Rodent studies have also shown that adolescent ethanol exposure produces alterations in sensitivity to ethanol, with these alterations reminiscent of adolescent-typical ethanol responsiveness. The goal of this mini-review article is to summarize the current state of animal research, focusing on the long-term consequences related to adolescent ethanol exposure, with a special emphasis on the behavioral alterations and changes to ethanol sensitivity that can foster high levels of drinking in adulthood.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
29
|
Marcolin ML, Baumbach JL, Hodges TE, McCormick CM. The effects of social instability stress and subsequent ethanol consumption in adolescence on brain and behavioral development in male rats. Alcohol 2020; 82:29-45. [PMID: 31465790 DOI: 10.1016/j.alcohol.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
Excessive drinking in adolescence continues to be a problem, and almost a quarter of young Canadians have reported consuming five or more alcoholic drinks in one occasion in recent surveys. The consequences of such drinking may be more pronounced when commenced in adolescence, given the ongoing brain development during this period of life. Here, we investigated the consequences of 3 weeks' intermittent access to ethanol in mid-adolescence to early adulthood in rats, and the extent to which a stress history moderated the negative consequences of ethanol access. In experiment 1, male rats that underwent adolescent social instability stress (SS; daily 1 h isolation + return to unfamiliar cage partner every day from postnatal day [PND] 30-45) did not differ from control (CTL) rats in intake of 10% ethanol sweetened with 0.1% saccharin (access period; PND 47-66). Ethanol drinking reduced proteins relevant for synaptic plasticity (αCaMKII, βCaMKII, and PSD-95) in the dorsal hippocampus, and in CTL rats only in the prefrontal cortex (αCaMKII and PSD 95), attenuating the difference between CTL and SS rats in the water-drinking group. In experiment 2, ethanol also attenuated the difference between SS and CTL rats in a social interaction test by reducing social interaction in SS rats; CTL rats, however, had a higher intake of ethanol than did SS rats during the access period. Ethanol drinking reduced baseline and fear recall recovery concentrations of corticosterone relative to those exposed only to water, although there was no effect of either ethanol or stress history on fear conditioning. Ethanol drinking did not influence intake after 9 days of withdrawal; however, ethanol-naïve SS rats drank more than did CTL rats when given a 24-h access in adulthood. These results reveal a complex relationship between stress history and ethanol intake in adolescence on outcomes in adulthood.
Collapse
Affiliation(s)
- Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
30
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
31
|
McCool BA, McGinnis MM. Adolescent Vulnerability to Alcohol Use Disorder: Neurophysiological Mechanisms from Preclinical Studies. Handb Exp Pharmacol 2020; 258:421-442. [PMID: 31595414 DOI: 10.1007/164_2019_296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent alcohol use in human populations dramatically increases the likelihood of adult alcohol use disorder. This adolescent vulnerability is recapitulated in preclinical models which provide important opportunities to understand basic neurobiological mechanisms. We provide here an overview of GABAergic and glutamatergic neurotransmission and our current understanding of the sensitivity of these systems to adolescent ethanol exposure. As a whole, the preclinical literature suggests that adolescent vulnerability may be directly related to region-specific neurobiological processes that continue to develop during adolescence. These processes include the activity of intrinsic circuits within diverse brain regions (primarily represented by GABAergic neurotransmission) and activity-dependent regulation of synaptic strength at glutamatergic synapses. Furthermore, GABAergic and glutamatergic neurotransmission within regions/circuits that regulate cognitive function, emotion, and their integration appears to be the most vulnerable to adolescent ethanol exposure. Finally, using documented behavioral differences between adolescents and adults with respect to acute ethanol, we highlight additional circuits and regions for future study.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Dannenhoffer CA, Spear LP. Excitatory/inhibitory balance across ontogeny contributes to age-specific behavioral outcomes of ethanol-like challenge in conditioned taste aversion. Dev Psychobiol 2019; 61:1157-1167. [PMID: 31087376 PMCID: PMC7685222 DOI: 10.1002/dev.21864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Adolescent-typical sensitivities to ethanol (EtOH) are characterized in part by reduced sensitivity to EtOH's aversive effects. Rodent studies have shown that adolescents are less sensitive than adults to aversive properties of EtOH in a conditioned taste aversion (CTA) paradigm. To the extent that EtOH exerts antagonist-like actions upon glutamate receptors and/or agonist-like actions upon γ-aminobutyric acid (GABA) receptors, age differences in excitatory/inhibitory balance may regulate age-specific EtOH sensitivities, such as attenuated sensitivity of adolescents to EtOH aversion. In our experiments, adolescent and adult Sprague-Dawley rats were tested for CTA following challenge with one of the following pharmacological agents: glutamatergic AMPA1 receptor antagonist NBQX, glutamatergic N-methyl-d-aspartate NR2B receptor antagonist ifenprodil, and extrasynaptic GABAA receptor agonist THIP to determine whether these induced age-specific aversive sensitivities like those seen with EtOH. NBQX administration did not induce CTA. The highest dose of extrasynaptic GABAA agonist THIP induced CTA in adolescents but not adults, an opposite ontogenetic profile as seen following EtOH. Ifenprodil exerted an age-specific pattern of CTA similar to that seen with EtOH in males, with adolescents being insensitive to ifenprodil's aversive effects relative to adults. Thus, only antagonism of NR2B receptors in male rats mimicked age-specific sensitivities to the aversive effects of EtOH.
Collapse
Affiliation(s)
- Carol A Dannenhoffer
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York
| | - Linda P Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York
| |
Collapse
|
33
|
Towner TT, Fager M, Spear LP. Adolescent but not adult Sprague-Dawley rats display goal-directed responding after reward devaluation. Dev Psychobiol 2019; 62:368-379. [PMID: 31493315 DOI: 10.1002/dev.21912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 11/07/2022]
Abstract
Alcohol drinking is typically initiated in adolescence, with use sometimes escalating to problematic levels. Escalation of drinking is often associated with a shift in drinking motives, with goal-directed initial use later transitioning to more habitual behavior. This study assessed whether adolescents are more sensitive than adults to habit formation when indexed via insensitivity to reward devaluation in an operant task for food reward. Adolescent and adult Sprague-Dawley rats were trained on either a random ratio (RR) or random interval (RI) schedule before undergoing devaluation. Adolescent animals on both schedules increased the number of lever presses across all training days. In contrast, adults in the RR group increased the number of lever presses across days whereas RI adults remained relatively stable. In response to pellet devaluation, only adolescents exhibited reduced responding, suggestive of goal-directed behavior, whereas no age differences were evident following control (home cage chow) devaluation. Contrary to our hypothesis, adolescents (but not adults) displayed goal-directed responding indexed via sensitivity to reward devaluation. These findings suggest that adolescents are not necessarily more likely to develop habits than adults, and hence other factors may contribute to the greater propensity of adolescents to engage in and escalate alcohol use.
Collapse
|
34
|
Prenatal ethanol exposure attenuates sensitivity to the aversive effects of ethanol in adolescence and increases adult preference for a 5% ethanol solution in males, but not females. Alcohol 2019; 79:59-69. [PMID: 30597200 DOI: 10.1016/j.alcohol.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The present set of experiments investigated the effects of a moderate dose of ethanol (2 g/kg; 20% v/v intragastrically) during late gestation (G17-20 [gestational day]) on ethanol-induced conditioned taste aversion (CTA) in adolescence, and on ethanol consumption during adolescence and early adulthood. In experiment 1, male and female Sprague-Dawley rats were given 30-min access to a sweetened "supersaccharin" (SS) solution or sodium chloride (NaCl), followed by an intraperitoneal injection of 20% ethanol (0, 1, 1.25, or 1.5 g/kg) for three conditioning/test sessions. Among animals conditioned with SS, prenatally ethanol-exposed males exhibited attenuated ethanol-induced CTA relative to males prenatally gavaged with water or non-manipulated, whereas prenatal treatment had no effect on CTA in females. Among animals conditioned with NaCl, there were no exposure group differences in males, with modest evidence for attenuated CTA in prenatally ethanol-exposed females. In experiment 2, the effects of prenatal ethanol exposure on ethanol consumption in adolescents (P35 ± 1 day [postnatal day]) and adults (P56-60) were explored. At the beginning of the dark cycle, pair-housed rats were given three bottles containing 0, 5, and 10% ethanol for 18 h every other day (i.e., Monday, Wednesday, Friday) for 3 weeks. Relative to water controls, adult males prenatally exposed to ethanol showed greater preference and more intake (g/kg) of 5% ethanol, while showing lower intake of 10% ethanol. These intake and preference differences were not evident in adolescent males. Among females at both ages, ethanol-exposed animals showed lower preference and intake (g/kg) of 5% ethanol than their water-exposed controls. Thus, moderate ethanol exposure during late gestation produced a largely male-specific attenuation in the aversive effects of ethanol during adolescence that could contribute to later increases in preference and intake of a 5% ethanol solution, although this emergent effect was not evident in adolescence (or in females), but only manifested in adulthood.
Collapse
|
35
|
Beer consumption negatively regulates hormonal reproductive status and reduces apoptosis in Leydig cells in peripubertal rats. Alcohol 2019; 78:21-31. [PMID: 30690073 DOI: 10.1016/j.alcohol.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 12/02/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Beer is one of the most popular alcoholic beverages consumed by young people. Ethanol intake is associated with harmful effects to the reproductive system. Bioactive compounds present in beer may diminish the toxics effect of ethanol. However, there is still little knowledge about the effect of beer consumption on hormonal regulation of male reproduction in organisms exposed to alcohol after the peripubertal age. Therefore, the aim of this study was to determine the influence of beer intake on plasma reproductive hormones, immunolocalization of cleaved caspase-3 (casp-3), and the level of the neuronal isoform of nitric oxide synthase (nNOS) in Leydig cells (LCs) in adolescent male Wistar rats. The animals, beginning at the age of 30 days, drank beer (10% ethanol; B2 group [2 weeks' exposure] and B4 group [4 weeks' exposure]), 10% ethanol solution (CE2 group [2 weeks' exposure] and CE4 group [4 weeks' exposure]), or water (C2 group [2 weeks' exposure] and C4 group [4 weeks' exposure]). Rats drinking beer for 4 weeks showed higher phenolic acid intake compared to rats drinking beer for 2 weeks. Rats exposed to beer for 4 weeks showed decreased plasma levels of follicle-stimulating hormone (FSH) and 17β-estradiol (E2) (3.173 ng/mL and 11.49 pg/mL, respectively), compared to the CE4 (5.293 ng/mL and 43.912 pg/mL, respectively) and the C4 groups (5.002 ng/mL and 41.121 pg mL, respectively). Expression of cleaved caspase-3 in LCs was lower in the B4 group rats, compared to the CE4 group rats (ID score: 1.676 vs. 2.190). No changes in nNOS expression were observed. Beer consumption revealed a similar negative effect on hormonal regulation of male reproductive function, but lower apoptosis in LCs may be beneficial for steroidogenic activity.
Collapse
|
36
|
Hosová D, Spear LP. Voluntary elevated ethanol consumption in adolescent Sprague-Dawley rats: Procedural contributors and age-specificity. Alcohol 2019; 78:1-12. [PMID: 30797832 DOI: 10.1016/j.alcohol.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Alcohol consumption is typically initiated during adolescence, with the incidence of binge drinking (production of blood ethanol concentrations [BECs] > 80 mg/dL) peaking during this stage of development. Studies in outbred rats investigating the consequences of adolescent ethanol exposure have typically employed intragastric, vapor, or intraperitoneal administration to attain BECs in this range. While these procedures have yielded valuable data regarding the consequences of adolescent exposure, they are varyingly stressful, administer the full dose at once, and/or bypass digestion. Consequently, we have worked to develop a model of voluntary elevated ethanol consumption in outbred adolescent Sprague-Dawley males and females, building on our previous work (see Hosová & Spear, 2017). This model utilizes daily 30-min access to 10% ethanol (v/v) in chocolate Boost® from postnatal day (P)28-41. Experiment 1 compared intake levels between (1a) animals given either ball-bearing or open-ended sipper tube tips for solution access, (1b) animals separated from their cage mate by wire mesh or isolated to a separate cage during solution access, (1c) animals given solution access with or without simultaneous access to banana-flavored sugar pellets, and (1d) animals that were either moderately food-restricted or fed ad libitum. Experiment 2 compared intake levels between animals given daily solution access and animals given access only on a "Monday-Wednesday-Friday" intermittent schedule. Experiment 3 compared adolescent and adult (P70-83) consumption using the finalized procedure as based on the results of Experiments 1 and 2. As in our previous work, consumptions well within the binge range were produced on some days, with high-consumption days typically followed by several days of lower consumption before increasing again. Sipper tube type (1a) and simultaneous pellet access (1c) did not affect consumption, while intake was significantly higher in non-isolated (1b), food-restricted (1d), daily-access (2), and adolescent (3) animals. However, although ethanol intake was higher in food-restricted animals, the resulting BECs were equivalent or higher in non-restricted animals, likely due to a hepatoprotective effect of moderate food restriction. Post-consumption intoxication ratings correlated with BECs and were notably higher in adults than adolescents, despite the lower voluntary consumption levels of adults, confirming prior reports of the attenuated sensitivity of adolescents to ethanol intoxication relative to adults. The final model utilized ball-bearing sipper tube tips to provide daily access to 10% ethanol in chocolate Boost® to free-feeding adolescent animals separated from their cage mate by wire mesh, with no food provided during solution access. This easy-to-implement model is effective in producing elevated voluntary ethanol consumption in adolescent, but not adult, Sprague-Dawley rats.
Collapse
Affiliation(s)
- Dominika Hosová
- Binghamton University, Binghamton, NY, 13902, United States.
| | | |
Collapse
|
37
|
Saalfield J, Spear L. Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats. Alcohol 2019; 78:57-68. [PMID: 30797833 DOI: 10.1016/j.alcohol.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Studies in rats have revealed marked age differences in sensitivity to the aversive properties of ethanol, with a developmental insensitivity to ethanol aversion that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion; however, it is unknown how ontogenetic changes within this reward/aversion circuitry contribute to developmental differences in aversive sensitivity. The current study examined early adolescent (postnatal day [P]28-30) and adult (P72-74) Sprague-Dawley male rats for conditioned taste aversion (CTA) after doses of 0, 1.0, or 2.5 g/kg ethanol, and patterns of neuronal activation in response to ethanol using Fos-like immunohistochemistry (Fos+) to uncover regions where age differences in activation are associated with ethanol aversion. An adolescent-specific ethanol-induced increase in Fos+ staining was seen within the nucleus accumbens shell and core. An age difference was also noted within the Edinger-Westphal nucleus (EW) following administration of the lower dose of ethanol, with 1 g/kg ethanol producing CTA in adults but not in adolescents and inducing a greater EW Fos response in adults than adolescents. Regression analysis revealed that greater numbers of Fos+ neurons within the EW and insula (Ins) were related to lower consumption of the conditioned stimulus (CS) on test day (reflecting greater CTA). Some regionally specific age differences in Fos+ were noted under baseline conditions, with adolescents displaying fewer Fos+ neurons than adults within the prelimbic (PrL) cortex, but more than adults in the bed nucleus of the stria terminalis (BNST). In the BNST (but not PrL), ethanol-induced increases in Fos-immunoreactivity (IR) were evident at both ages. Increased ethanol-induced activity within critical appetitive brain regions (NAc core and shell) supports a role for greater reward-related activation during adolescence, possibly along with attenuated responsiveness to ethanol in EW and Ins in the age-typical resistance of adolescents to the aversive properties of ethanol.
Collapse
|
38
|
Fleming W, Jones Q, Chandra U, Saini A, Walker D, Francis R, Ocampo G, Kuhn C. Withdrawal from Brief Repeated Alcohol Treatment in Adolescent and Adult Male and Female Rats. Alcohol Clin Exp Res 2018; 43:204-211. [PMID: 30566247 DOI: 10.1111/acer.13936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Early initiation of alcohol drinking has been associated with increased risk of alcohol dependence in adulthood. Although negative affect mediated in part by corticotropin-releasing factor (CRF) is a strong motivator for alcohol consumption in adults, comparisons of alcohol withdrawal in adolescents and adults generally have not included CRF-related measures such as anxiety. The purpose of the present study was to compare withdrawal signs including anxiety-like behavior after a brief multiday alcohol treatment in adolescent and adult male and female rats. METHODS Animals were treated with a 5-day regimen of alcohol injections (3 daily intraperitoneal injections of 1.5 g/kg at 3-hour intervals, total of 15) starting on postnatal day (PN) 28 or PN 70. Spontaneous withdrawal signs and anxiety-like behavior (light/dark box) were assessed 18 hours after the last injection as described. One cohort of rats was treated with alcohol, killed 18 hours after the last injection, and blood was collected to assess corticosterone. Another cohort of rats was treated with alcohol or vehicle, given 1, 2, or 3 alcohol injections (1.5 g/kg), and killed 1 hour after final injection to determine blood alcohol concentration (BAC). Finally, adult and adolescent males and females received 5 days of alcohol or vehicle treatment followed by a final challenge with alcohol (3 g/kg), and blood was collected for corticosterone. RESULTS BAC was comparable in adolescents and adults. Spontaneous withdrawal signs were comparable in adolescents and adults, and no sex differences were observed. Anxiety-like behaviors (time and distance in light, latency to emerge, and light entries) differed in alcohol- and vehicle-treated adults but not adolescents. Corticosterone was not elevated at withdrawal. Alcohol increased corticosterone significantly in vehicle-treated animals, but both adolescents and adults were tolerant to alcohol-induced elevation of corticosterone after 5 days of alcohol treatment. CONCLUSIONS These findings suggest that adolescents experience milder negative affect during withdrawal from brief alcohol exposures relative to adults but comparable suppression of hypothalamic-pituitary-adrenal axis function.
Collapse
Affiliation(s)
- Weston Fleming
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Quincy Jones
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Upasana Chandra
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Aashna Saini
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Gabriela Ocampo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
39
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
40
|
Williams KL, Nickel MM, Bielak JT. Oral Binge-Like Ethanol Pre-Exposure During Juvenile/Adolescent Period Attenuates Ethanol-Induced Conditioned Place Aversion in Rats. Alcohol Alcohol 2018; 53:518-525. [PMID: 29889219 DOI: 10.1093/alcalc/agy040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/12/2018] [Indexed: 11/15/2022] Open
Abstract
Aims To determine if oral ethanol self-administration produces a conditioned place preference (CPP) and to determine if ethanol pre-exposure conditions during the juvenile/adolescent period alter the conditioned effects of ethanol and subsequent ethanol self-administration. Short summary Modified conditioned place preference paradigm allowed rats to orally self-administer ethanol followed by short duration exposure to conditioning chambers. Ethanol produced a conditioned place aversion even though rats self-administered ethanol following the final conditioning test. Juvenile/adolescent pre-exposure to ethanol decreased the place aversion but did not produce place preference. Methods Juvenile/adolescent rats consumed sweetened 5% ethanol in the home-cage either during continuous access or intermittent access with water restriction that promoted binge-like consumption. A control group had water access during the 4-week period. Adult rats were conditioned using a modified CPP paradigm wherein rats were water-restricted overnight before being placed in operant chambers to respond for 5% ethanol for 7 min. Following the operant session, rats were placed in the conditioning chamber for 8 min. After the conditioning post-test, rats self-administered ethanol during daily operant sessions. Results Ethanol produced a conditioned place aversion in water access rats and the continuous access rats. Binge-like ethanol consumption induced by intermittent access with water restriction abolished the place aversion, but did not allow place preference to develop. After conditioning, continuous access rats self-administered ethanol above ~0.6 g/kg which was similar to rats with binge-like experience via intermittent access. Conclusions Results suggest that oral ethanol self-administration elicits aversive properties in this model even though ethanol continues to maintain self-administration. Pre-exposure to ethanol during the juvenile/adolescent period may produce tolerance to ethanol's aversive properties only when consumed in a binge-like manner with water restriction. More exploration is needed to understand how behavioral history can influence sensitivity to ethanol's rewarding and aversive properties and subsequent ethanol consumption or self-administration.
Collapse
Affiliation(s)
- Keith L Williams
- Department of Psychology, Oakland University, 224 Pryale Hall, Rochester, MI, USA
| | - Melissa M Nickel
- Department of Psychology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, USA
| | - Justin T Bielak
- Department of Psychology, Wayne State University, 42 W Warren Ave, Detroit, MI, USA
| |
Collapse
|
41
|
Intermittent voluntary ethanol consumption combined with ethanol vapor exposure during adolescence increases drinking and alters other behaviors in adulthood in female and male rats. Alcohol 2018; 73:57-66. [PMID: 30293056 DOI: 10.1016/j.alcohol.2018.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
Epidemiological studies suggest that binge drinking is prevalent among adolescents, and may result in neurobehavioral consequences. Animal models provide the experimental control to investigate the consequences of "binge" alcohol exposure during this neurodevelopmental epoch. The current study used an animal model that combined an intermittent pattern of alcohol vapor exposure with voluntary drinking of 20% unsweetened alcohol in adolescent male and female Wistar rats (postnatal day [PD] 22-62), in order to test for potential differences in behavioral changes, ethanol drinking, and hypocretin/orexin (Hcrt/OX) signaling associated with exposure status. Two weeks after discontinuation of the alcohol vapor exposure and drinking during adolescence, rats were tested in adulthood for anxiety-like behaviors using a modified open-field conflict task, pre-pulse facilitation of startle response, light/dark box, and marble burying test. Adolescent alcohol exposure led to overall decreased startle response and increased behavioral arousal in the light/dark chamber during adulthood. Additionally, male rats demonstrated more disinhibited behavior during the conflict task compared to females, and female rats exhibited more rearing behavior during the light/dark test. Rats were also given a 2-bottle choice test that resulted in adolescent alcohol-exposed rats drinking significantly more alcohol in adulthood. Further, female rats also consumed more alcohol in adulthood compared to males. Estrous cycle phase did not account for any of the sex differences observed in the behavioral measures. Histological results indicated that adolescent alcohol did not alter Hcrt/OX-1 or Hcrt/OX-2 receptor mRNA expression levels in adult rats compared to control adults. However, female rats expressed a higher level of Hcrt/OX-1 and Hcrt/OX-2 receptor mRNA in the frontal cortex compared to males. These data suggest that our current model of intermittent ethanol exposure in adolescence can modestly affect both behavior and future consumption of alcohol and that Hcrt/OX receptor signaling differs between males and females.
Collapse
|
42
|
Fernández MS, Ferreyra A, de Olmos S, Pautassi RM. The offspring of rats selected for high or low ethanol intake at adolescence exhibit differential ethanol-induced Fos immunoreactivity in the central amygdala and in nucleus accumbens core. Pharmacol Biochem Behav 2018; 176:6-15. [PMID: 30419270 DOI: 10.1016/j.pbb.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
Adolescents exhibit, when compared to adults, altered responsivity to the unconditional effects of ethanol. It is unclear if this has a role in the excessive ethanol intake of adolescents. Wistar rats from the third filial generation (F3) of a short-term breeding program which were selected for high (STDRHI) vs. low (STDRLO) ethanol intake during adolescence, were assessed for ethanol-induced (0.0, 1.25 or 2.5 g/kg) Fos immunoreactivity (Fos-ir) in the central (Ce), basolateral (BLA) and medial (Me) amygdaloid nuclei; nucleus accumbens core and shell (AcbC, AcbSh), ventral tegmental area (VTA), as well as prelimbic and infralimbic (PrL, IL) prefrontal cortices. Following i.p. administration of saline, and across the structures measured, Fos-ir was significantly greater in STDRHI than in STDRLO rats. Across both lines, baseline Fos-ir was significantly lower in BLA than in any other structure, whereas PrL, IL and Shell did not differ between each other and exhibited significantly greater level of baseline neural activation than Ce, Me, AcbC and VTA. STDRLO, but not STDRHI, rats exhibited ethanol-induced Fos-ir in Ce. STRDHI, but not STDRLO, rats exhibited an ethanol-induced Fos-ir depression in AcbC. Key maternal care behaviors (i.e., grooming of the pups, latency to retrieve the pups, time spent in the nest and time adopting a kiphotic posture) were fairly similar across lines. There were significant intergenerational variations in the amount self-licking behaviors in STDRHI dams as well as an increased amount of exploration of the cage in these animals, when compared to STDRLO counterparts. These results indicate that short term selection for differential alcohol intake during adolescence yields heightened neural activity at baseline (i.e., after vehicle) in STRDHI vs. STDRLO adolescent rats, and differential sensitivity to ethanol-induced Fos immunoreactivity in Ce and in AcbC. It is unlikely that rearing patterns explained the neural differences reported, between STDRHI and STDRLO rats.
Collapse
Affiliation(s)
- Macarena Soledad Fernández
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| | - Ana Ferreyra
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Soledad de Olmos
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| |
Collapse
|
43
|
Marcolin ML, Hodges TE, Baumbach JL, McCormick CM. Adolescent social stress and social context influence the intake of ethanol and sucrose in male rats soon and long after the stress exposures. Dev Psychobiol 2018; 61:81-95. [PMID: 30402884 DOI: 10.1002/dev.21800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Social instability stress in adolescent rats (SS; postnatal day 30-45, daily 1 hr isolation +new cage partner) alters behavioural responses to psychostimulants, but differences in voluntary consumption of natural and drug rewards are unknown. SS also is associated with an atypical behavioural repertoire, for example reduced social interactions. Here, we investigated whether SS rats differ from control (CTL) rats in ethanol (EtOH) or sucrose intake in experiments involving different social contexts: alone, in the presence of an unfamiliar peer, in the presence of its cage partner, or in competition against its cage partner. SS rats drank more EtOH than CTL rats irrespective of social context, although the effects were driven primarily by those tested soon after the test procedure rather than weeks later in adulthood. SS and CTL rats did not differ in sucrose intake, except in adulthood under conditions of competition for limited access (SS>CTL). Adolescent rats drank more sucrose than adults, in keeping with evidence that adolescents are more sensitive to natural rewards than adult animals. Overall, adolescent SS modified the reward value of EtOH and sucrose, perhaps through stress/glucocorticoids modifying the development of the mesocorticolimbic system.
Collapse
Affiliation(s)
- Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, Ontario
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, Ontario
| | | | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, Ontario.,Centre for Neuroscience, Brock University, St. Catharines, Ontario
| |
Collapse
|
44
|
Dorofeikova MV, Filatova EV, Orlov AA, Egorov AY. Effect of Early Sucrose Diet on Ethanol Preference and Behavior in Male and Female Wistar Rats. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Lee KM, Coelho MA, Class MA, Szumlinski KK. mGlu5-dependent modulation of anxiety during early withdrawal from binge-drinking in adult and adolescent male mice. Drug Alcohol Depend 2018; 184:1-11. [PMID: 29324247 PMCID: PMC6371787 DOI: 10.1016/j.drugalcdep.2017.10.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Binge alcohol-drinking elicits symptoms of negative affect such as anxiety upon cessation, which is a source of negative reinforcement for perpetuating this pattern of alcohol abuse. Binge-induced anxiety during early (24 h) withdrawal is associated with increased expression of metabotropic glutamate receptor 5 (mGlu5) within the nucleus accumbens shell (AcbSh) of adult male mice, but was unchanged in anxiety-resilient adolescents. Herein, we determined the role of mGlu5 signaling in withdrawal-induced anxiety via pharmacological manipulation using the mGlu5 negative allosteric modulator MTEP and the positive allosteric modulator CDPPB. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice binge-drank for 14 days under 3-bottle-choice procedures for 2 h/day; control animals drank water only. Approximately 24 h following the final alcohol presentation, animals were treated with 30 mg/kg IP MTEP, CDPPB, or vehicle and then tested, thirty minutes later, for behavioral signs of anxiety. Vehicle-treated binge-drinking adults exhibited hyperanxiety in all paradigms, while vehicle-treated binge-drinking adolescents did not exhibit withdrawal-induced anxiety. In adults, 30 mg/kg MTEP decreased alcohol-induced anxiety across paradigms, while 3 mg/kg MTEP was anxiolytic in adult water controls. CDPPB was modestly anxiogenic in both alcohol- and water-drinking mice. Adolescent animals showed minimal response to either CDPPB or MTEP, suggesting that anxiety in adolescence may be mGlu5-independent. These results demonstrate a causal role for mGlu5 in withdrawal-induced anxiety in adults and suggest age-related differences in the behavioral pharmacology of the negative reinforcing properties of alcohol.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - MacKayla A. Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA,Corresponding author at: University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA. (K.K. Szumlinski)
| |
Collapse
|
46
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
47
|
Hiller-Sturmhöfel S, Spear LP. Binge Drinking's Effects on the Developing Brain-Animal Models. Alcohol Res 2018; 39:77-86. [PMID: 30557150 PMCID: PMC6104958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Adolescence typically is a time of experimentation, including alcohol use and, particularly, binge drinking. Because the brain is still developing during adolescence, such exposure could have long-lasting effects. Animal models and adolescent intermittent ethanol exposure (AIE) paradigms have been used to help elucidate the consequences of adolescent binge drinking. These studies have identified cognitive deficits, particularly in challenging cognitive tasks, and behavioral alterations such as greater risk preferences, impulsivity, and disinhibition. AIE also is associated with changes in affect when the animals reach adulthood, including increased social anxiety and, sometimes, general anxiety. Animal models have demonstrated that AIE can result in retention of certain alcohol-related adolescent phenotypes (i.e., reduced sensitivity to alcohol's aversive effects and increased sensitivity to alcohol's rewarding effects) into adulthood, which may motivate continued elevated alcohol use. The detrimental effects of adolescent alcohol exposure extend to a diversity of lasting alterations in the brain, including reduced neurogenesis, increased proinflammatory responses, changes in gene expression through epigenetic mechanisms, and alterations in the activities of various neurotransmitter systems. Further exploration of these mechanisms in animal models and humans may lead to improved prevention and intervention efforts.
Collapse
Affiliation(s)
- Susanne Hiller-Sturmhöfel
- Susanne Hiller-Sturmhöfel, Ph.D., is a science writer and editor affiliated with CSR Inc., Arlington, Virginia. Linda Patia Spear, Ph.D., is a distinguished professor, Department of Psychology, State University of New York, and the director of the Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York
| | - Linda Patia Spear
- Susanne Hiller-Sturmhöfel, Ph.D., is a science writer and editor affiliated with CSR Inc., Arlington, Virginia. Linda Patia Spear, Ph.D., is a distinguished professor, Department of Psychology, State University of New York, and the director of the Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York
| |
Collapse
|
48
|
Labots M, Cousijn J, Jolink LA, Kenemans JL, Vanderschuren LJMJ, Lesscher HMB. Age-Related Differences in Alcohol Intake and Control Over Alcohol Seeking in Rats. Front Psychiatry 2018; 9:419. [PMID: 30233434 PMCID: PMC6129585 DOI: 10.3389/fpsyt.2018.00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022] Open
Abstract
Alcohol use disorder (AUD) is characterized by excessive and persistent alcohol use, despite adverse consequences. AUD often originates during adolescence, as do other substance use disorders. However, despite periods of excessive alcohol intake, many adolescents reduce their alcohol use by early adulthood. Brain development, social context, personality traits, and genetic makeup are thought to play an important role in these age-dependent fluctuations in alcohol use. However, studies that directly investigate age-related differences in the effects of alcohol exposure on brain and behavior are sparse. Therefore, to better understand the relationship between adolescent alcohol consumption and AUD-like behavior, this study compared the degree of control over alcohol seeking in rats that differed in terms of age of onset of alcohol drinking and in their level of alcohol consumption. We hypothesized that control over alcohol seeking is more prominent in adolescent-onset rats than in adult-onset rats, and that control over alcohol seeking is related to the consumed amount of alcohol. To test this hypothesis, alcohol seeking in the presence of a conditioned aversive stimulus was assessed after 2 months of intermittent alcohol access (IAA) in rats that consumed alcohol from postnatal day 42 (adolescence) or day 77 (adulthood). The rats were subdivided into low (LD), medium (MD), or high (HD) alcohol drinking rats, in order to assess the impact of the extent of alcohol intake on control over alcohol seeking. The adolescent-onset animals consumed slightly, but significantly less alcohol compared to the adult-onset rats. In adult-onset rats, we found that conditioned suppression of alcohol seeking, i.e., reduction of alcohol seeking by presentation of a conditioned aversive stimulus, was most pronounced in LD. By contrast, in the adolescent-onset rats, MD and HD showed increased alcohol seeking compared to LD, which was suppressed by conditioned aversive stimuli. Taken together, these findings reveal a complex relationship between the age of onset and level of alcohol intake with control over alcohol seeking, whereby adolescent rats consume less alcohol than adults. In adult rats, control over alcohol seeking is negatively related to preceding levels of alcohol intake. By contrast, adolescent rats appear to retain control over alcohol seeking, even after a history of high levels of alcohol intake.
Collapse
Affiliation(s)
- Maaike Labots
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Janna Cousijn
- ADAPT-Lab, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Linda A Jolink
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J Leon Kenemans
- Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, Utrecht, Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
49
|
Morales M, McGinnis MM, Robinson SL, Chappell AM, McCool BA. Chronic Intermittent Ethanol Exposure Modulation of Glutamatergic Neurotransmission in Rat Lateral/Basolateral Amygdala is Duration-, Input-, and Sex-Dependent. Neuroscience 2017; 371:277-287. [PMID: 29237566 DOI: 10.1016/j.neuroscience.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023]
Abstract
The basolateral amygdala (BLA) controls numerous behaviors, like anxiety and reward seeking, via the activity of glutamatergic principal neurons. These BLA neurons receive excitatory inputs primarily via two major anatomical pathways - the external capsule (EC), which contains afferents from lateral cortical structures, and the stria terminalis (ST), containing synapses from more midline brain structures. Chronic intermittent ethanol (CIE) exposure/withdrawal produces distinct alterations in these pathways. Specifically, 10 days of CIE (via vapor inhalation) increases presynaptic function at ST synapses and postsynaptic function at EC synapses. Given that 10-day CIE/withdrawal also increases anxiety-like behavior, we sought to examine the development of these alterations at these inputs using an exposure time-course in both male and female rats. Specifically, using 3, 7, and 10 days CIE exposure, we found that all three durations increase anxiety-like behavior in the elevated plus maze. At BLA synapses, increased presynaptic function at ST inputs required shorter exposure durations relative to post-synaptic alterations at EC inputs in both sexes. But, synaptic alterations in females required longer ethanol exposures compared to males. These data suggest that presynaptic alteration at ST-BLA afferents is an early neuroadaptation during repeated ethanol exposures. And, the similar patterns of presynaptic-then-postsynaptic facilitation across the sexes suggest the former may be required for the latter. These cooperative interactions may contribute to the increased anxiety-like behavior that is observed following CIE-induced withdrawal and may provide novel therapeutic targets to reverse withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Melissa Morales
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA.
| | - Molly M McGinnis
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Stacey L Robinson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Ann M Chappell
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| |
Collapse
|
50
|
Lee KM, Coelho MA, Sern KR, Szumlinski KK. Homer2 within the central nucleus of the amygdala modulates withdrawal-induced anxiety in a mouse model of binge-drinking. Neuropharmacology 2017; 128:448-459. [PMID: 29109058 DOI: 10.1016/j.neuropharm.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
A history of binge-drinking decreases protein expression of the glutamate-related scaffolding protein Homer2 within the central nucleus of the amygdala (CEA), coinciding with behavioral signs of negative affect. To assess the functional relevance of this protein change for withdrawal-induced hyper-anxiety, adult (PND 56) and adolescent (PND 28) male C57BL/6J mice were administered an intra-CEA infusion of an adeno-associated viral vector (AAV) carrying either cDNA to express Homer2 (H2-cDNA) or GFP as control. Mice underwent 14 days of binge-drinking under multi-bottle, limited-access conditions and were assayed for behavioral signs of negative affect during withdrawal using the light-dark box, marble burying, and forced swim tests (FST). Following behavioral testing, all animals experienced 5 days of drinking to evaluate the effects of prior alcohol experience and Homer2 manipulation on subsequent alcohol consumption. During protracted (4 weeks) withdrawal, adolescent alcohol-experienced GFP controls showed increased signs of negative affect across all 3 assays, compared to water-drinking GFP animals, and also showed elevated alcohol consumption during the subsequent drinking period. Homer2-cDNA infusion in adolescent-onset alcohol-drinking animals was anxiolytic and reduced subsequent alcohol consumption. Conversely, Homer2-cDNA was anxiogenic and increased drinking in water-drinking adolescents. Unfortunately, the data from adult-onset alcohol-drinking animals were confounded by low alcohol consumption and negligible behavioral signs of anxiety. Nevertheless, the present results provide novel cause-effect evidence supporting a role for CEA Homer2 in the regulation of both basal anxiety and the time-dependent intensification of negative affective states in individuals with a history of binge-drinking during adolescence.
Collapse
Affiliation(s)
- K M Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA
| | - M A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA
| | - K R Sern
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA
| | - K K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA; Department of Molecular, Cellular and Developmental Biology, The Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, 93106-9625 CA, USA.
| |
Collapse
|