1
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Ren Z, Yan J, Whelan R, Liao X, Bütz DE, Arendt MK, Cook ME, Yang X, Crenshaw TD. Dietary supplementation of sulfur amino acids improves intestinal immunity to Eimeria in broilers treated with anti-interleukin-10 antibody. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:382-389. [PMID: 35949200 PMCID: PMC9356037 DOI: 10.1016/j.aninu.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Oral antibody to interleukin-10 (anti-IL-10) enhances the intestinal immune defense against Eimeria. The sulfur amino acids methionine and cysteine (M+C) play essential roles in inducing and maintaining protective immune responses during intestinal infections. Hence, increased dietary M+C may support the anti-IL-10-induced intestinal immunity to Eimeria. Broilers (n = 640) were arranged in a 2 × 2 × 2 factorial design with 2 levels of each of the 3 main factors: dietary standardized ileal digestible (SID) M+C levels (0.6% or 0.8%), dietary anti-IL-10 supplementation (with or without), and coccidiosis challenge (control or challenge). Briefly, the broilers were supplied with either 0.6% or 0.8% SID M+C, each with or without anti-IL-10 (300 μg/kg), from d 10 to 21. On d 14, broilers from each diet were gavaged with either PBS or Eimeria. The resulting Eimeria infection induced fecal oocyst shedding and intestinal lesions. Broilers fed 0.8% SID M+C (main effects, P ≤ 0.05) had decreased feed-to-gain ratio, increased duodenum and cecum luminal anti-Eimeria IgA titers, and decreased fecal oocyst counts, when compared to 0.6% SID M+C. The supplementation of anti-IL-10 (main effects, P ≤ 0.05) increased cecum luminal total IgA concentration and decreased cecum lesions. Interactions (P ≤ 0.05) were detected for growth performance and cecum luminal IFN-γ. Briefly, the highest body weight gain and feed intake were reached in PBS-gavaged broilers fed 0.8% SID M+C with no anti-IL-10 and in Eimeria-challenged broilers fed 0.8% SID M+C with anti-IL-10. In Eimeria-infected broilers, anti-IL-10 increased intestinal luminal IFN-γ and body weight gain only at 0.8% SID M+C. Collectively, anti-IL-10 increased intestinal luminal IFN-γ levels, decreased cecum lesions and restored growth only when fed with adequate amounts of sulfur amino acids. Our findings underscore the importance of providing sufficient essential nutrients to support the anti-IL-10 induced immunity against coccidiosis.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Daniel E. Bütz
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Maria K. Arendt
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Mark E. Cook
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Thomas D. Crenshaw
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Takahashi-Nakaguchi A, Shishido E, Yahara M, Urayama SI, Ninomiya A, Chiba Y, Sakai K, Hagiwara D, Chibana H, Moriyama H, Gonoi T. Phenotypic and Molecular Biological Analysis of Polymycovirus AfuPmV-1M From Aspergillus fumigatus: Reduced Fungal Virulence in a Mouse Infection Model. Front Microbiol 2020; 11:607795. [PMID: 33424809 PMCID: PMC7794001 DOI: 10.3389/fmicb.2020.607795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
The filamentous fungal pathogen Aspergillus fumigatus is one of the most common causal agents of invasive fungal infection in humans; the infection is associated with an alarmingly high mortality rate. In this study, we investigated whether a mycovirus, named AfuPmV-1M, can reduce the virulence of A. fumigatus in a mouse infection model. AfuPmV-1M has high sequence similarity to AfuPmV-1, one of the polymycovirus that is a capsidless four-segment double-stranded RNA (dsRNA) virus, previously isolated from the genome reference strain of A. fumigatus, Af293. However, we found the isolate had an additional fifth dsRNA segment, referred to as open reading frame 5 (ORF5), which has not been reported in AfuPmV-1. We then established isogenic lines of virus-infected and virus-free A. fumigatus strains. Mycovirus infection had apparent influences on fungal phenotypes, with the virus-infected strain producing a reduced mycelial mass and reduced conidial number in comparison with these features of the virus-free strain. Also, resting conidia of the infected strain showed reduced adherence to pulmonary epithelial cells and reduced tolerance to macrophage phagocytosis. In an immunosuppressed mouse infection model, the virus-infected strain showed reduced mortality in comparison with mortality due to the virus-free strain. RNA sequencing and high-performance liquid chromatography (HPLC) analysis showed that the virus suppressed the expression of genes for gliotoxin synthesis and its production at the mycelial stage. Conversely, the virus enhanced gene expression and biosynthesis of fumagillin. Viral RNA expression was enhanced during conidial maturation, conidial germination, and the mycelial stage. We presume that the RNA or translation products of the virus affected fungal phenotypes, including spore formation and toxin synthesis. To identify the mycovirus genes responsible for attenuation of fungal virulence, each viral ORF was ectopically expressed in the virus-free KU strain. We found that the expression of ORF2 and ORF5 reduced fungal virulence in the mouse model. In addition, ORF3 affected the stress tolerance of host A. fumigatus in culture. We hypothesize that the respective viral genes work cooperatively to suppress the pathogenicity of the fungal host.
Collapse
Affiliation(s)
| | - Erika Shishido
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Misa Yahara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Syun-Ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuto Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Chen P, Hu M, Liu F, Yu H, Chen C. S-allyl-l-cysteine (SAC) protects hepatocytes from alcohol-induced apoptosis. FEBS Open Bio 2019; 9:1327-1336. [PMID: 31161729 PMCID: PMC6609569 DOI: 10.1002/2211-5463.12684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte apoptosis is frequently observed in alcohol‐related liver disease (ARLD), which ranks among the 30 leading causes of death worldwide. In the current study, we explored the impact of S‐allyl‐l‐cysteine (SAC), an organosulfur component of garlic, on hepatocyte apoptosis induced by alcohol. Rat liver (BRL‐3A) cells were challenged by ethanol with or without SAC treatment. Cell death/viability, reactive oxygen species (ROS) generation, mitochondrial Cytochrome C release, and caspase 3 activity were then examined. We found that ethanol remarkably induced apoptosis of hepatocytes, while SAC treatment rescued ethanol‐induced hepatocyte injury, as demonstrated by cell counting kit‐8 (CCK8) assay, TUNEL assay, and annexin V/PI staining assay. Ethanol evoked ROS generation in BRL‐3A cells, and this was abated by SAC pretreatment, as indicated by 2′,7′‐dichlorofluorescin diacetate (DCFDA) staining assay. Moreover, ethanol suppressed cellular anti‐apoptotic protein B‐cell lymphoma‐2 (Bcl‐2) expression, increased pro‐apoptotic protein Bcl‐2‐associated X protein (Bax) expression, induced mitochondrial Cytochrome C release, and activated the caspase 3‐dependent apoptosis pathway in BRL‐3A cells. SAC was sufficient to abolish all these changes induced by ethanol, thereby revealing the molecular mechanisms underlying its protective effects. In conclusion, SAC protects hepatocytes from ethanol‐induced apoptosis and may be suitable for use as a novel anti‐apoptotic agent for treating ARLD.
Collapse
Affiliation(s)
- Peng Chen
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Mingdao Hu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Feng Liu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Henghai Yu
- Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, China
| | - Chen Chen
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Neuman MG, French SW, Zakhari S, Malnick S, Seitz HK, Cohen LB, Salaspuro M, Voinea-Griffin A, Barasch A, Kirpich IA, Thomes PG, Schrum LW, Donohue TM, Kharbanda KK, Cruz M, Opris M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 2017; 102:162-180. [PMID: 28077318 DOI: 10.1016/j.yexmp.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Stephen Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Andreea Voinea-Griffin
- Public Health Science Texas A&M University, College of Dentistry, Dallas University, TX, USA
| | - Andrei Barasch
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marcus Cruz
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Opris
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| |
Collapse
|
6
|
Ganesan M, Feng D, Barton RW, Thomes PG, McVicker BL, Tuma DJ, Osna NA, Kharbanda KK. Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis. Alcohol Clin Exp Res 2016; 40:2312-2319. [PMID: 27581622 DOI: 10.1111/acer.13214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. METHODS For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. RESULTS We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. CONCLUSIONS Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan W Barton
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| | - Benita L McVicker
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
7
|
Osna NA, Feng D, Ganesan M, Maillacheruvu PF, Orlicky DJ, French SW, Tuma DJ, Kharbanda KK. Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced liver injury. World J Gastroenterol 2016; 22:8497-8508. [PMID: 27784962 PMCID: PMC5064031 DOI: 10.3748/wjg.v22.i38.8497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/27/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage.
METHODS Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted.
RESULTS Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol.
CONCLUSION To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage.
Collapse
|
8
|
Abstract
Alcohol consumption is often associated with viral hepatitis. Although alcohol is known to worsen viral liver disease, the interactions between alcohol and viral hepatitis are not fully understood. Molecular alterations in the liver due to alcohol and viral hepatitis include effects on viral replication, increased oxidative stress, cytotoxicity, and a weakened immune response. Clinically, alcohol enhances disease progression and favors induction of primitive liver neoplasm. The use of new antivirals for hepatitis C and well-established drugs for hepatitis B will determine how viral hepatitis can be controlled in a large percentage of these patients. However, alcohol-related liver disease continues to represent a barrier for access to antivirals, and it remains an unresolved health issue.
Collapse
Affiliation(s)
- Stefano Gitto
- Dipartimento di Gastroenterologia, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Vitale
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna and Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola Malpighi, Bologna, Italy
| | - Erica Villa
- Dipartimento di Gastroenterologia, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Andreone
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna and Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola Malpighi, Bologna, Italy
| |
Collapse
|
9
|
Gitto S, Vitale G, Villa E, Andreone P. Update on Alcohol and Viral Hepatitis. J Clin Transl Hepatol 2014; 2:228-33. [PMID: 26356547 PMCID: PMC4521233 DOI: 10.14218/jcth.2014.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption is often associated with viral hepatitis. Although alcohol is known to worsen viral liver disease, the interactions between alcohol and viral hepatitis are not fully understood. Molecular alterations in the liver due to alcohol and viral hepatitis include effects on viral replication, increased oxidative stress, cytotoxicity, and a weakened immune response. Clinically, alcohol enhances disease progression and favors induction of primitive liver neoplasm. The use of new antivirals for hepatitis C and well-established drugs for hepatitis B will determine how viral hepatitis can be controlled in a large percentage of these patients. However, alcohol-related liver disease continues to represent a barrier for access to antivirals, and it remains an unresolved health issue.
Collapse
Affiliation(s)
- Stefano Gitto
- Dipartimento di Gastroenterologia, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Vitale
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna and Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola Malpighi, Bologna, Italy
| | - Erica Villa
- Dipartimento di Gastroenterologia, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Andreone
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna and Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola Malpighi, Bologna, Italy
- Correspondence to: Pietro Andreone, Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna and Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Policlinico Sant'Orsola Malpighi, Padiglione 11, Via Massarenti 9, 40138 Bologna, Italy. Tel: +39-051-6363618, Fax: +39-051-345-806. E-mail:
| |
Collapse
|
10
|
Kharbanda KK, Todero SL, Thomes PG, Orlicky DJ, Osna NA, French SW, Tuma DJ. Increased methylation demand exacerbates ethanol-induced liver injury. Exp Mol Pathol 2014; 97:49-56. [PMID: 24842317 DOI: 10.1016/j.yexmp.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 02/05/2023]
Abstract
We previously reported that chronic ethanol intake lowers hepatocellular S-adenosylmethionine to S-adenosylhomocysteine ratio and significantly impairs many liver methylation reactions. One such reaction, catalyzed by guanidinoacetate methyltransferase (GAMT), is a major consumer of methyl groups and utilizes as much as 40% of the SAM-derived groups to convert guanidinoacetate (GAA) to creatine. The exposure to methyl-group consuming compounds has substantially increased over the past decade that puts additional stresses on the cellular methylation potential. The purpose of our study was to investigate whether increased ingestion of a methyl-group consumer (GAA) either alone or combined with ethanol intake, plays a role in the pathogenesis of liver injury. Adult male Wistar rats were pair-fed the Lieber DeCarli control or ethanol diet in the presence or absence of GAA for 2weeks. At the end of the feeding regimen, biochemical and histological analyses were conducted. We observed that 2 weeks of GAA- or ethanol-alone treatment increases hepatic triglyceride accumulation by 4.5 and 7-fold, respectively as compared with the pair-fed controls. However, supplementing GAA in the ethanol diet produced panlobular macro- and micro-vesicular steatosis, a marked decrease in the methylation potential and a 28-fold increased triglyceride accumulation. These GAA-supplemented ethanol diet-fed rats displayed inflammatory changes and significantly increased liver toxicity compared to the other groups. In conclusion, increased methylation demand superimposed on chronic ethanol consumption causes more pronounced liver injury. Thus, alcoholic patients should be cautioned for increased dietary intake of methyl-group consuming compounds even for a short period of time.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Sandra L Todero
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Denver, Aurora, CO 80010, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samuel W French
- Department of Anatomic Pathology, Harbor UCLA Medical Center, Torrance, CA 90509, USA
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|