1
|
Kochetkova TO, Maslennikov DN, Tolmacheva ER, Shubina J, Bolshakova AS, Suvorova DI, Degtyareva AV, Orlovskaya IV, Kuznetsova MV, Rachkova AA, Sukhikh GT, Rebrikov DV, Trofimov DY. De Novo Variant in the KCNJ9 Gene as a Possible Cause of Neonatal Seizures. Genes (Basel) 2023; 14:genes14020366. [PMID: 36833293 PMCID: PMC9956824 DOI: 10.3390/genes14020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The reduction in next-generation sequencing (NGS) costs allows for using this method for newborn screening for monogenic diseases (MDs). In this report, we describe a clinical case of a newborn participating in the EXAMEN project (ClinicalTrials.gov Identifier: NCT05325749). METHODS The child presented with convulsive syndrome on the third day of life. Generalized convulsive seizures were accompanied by electroencephalographic patterns corresponding to epileptiform activity. Proband WES expanded to trio sequencing was performed. RESULTS A differential diagnosis was made between symptomatic (dysmetabolic, structural, infectious) neonatal seizures and benign neonatal seizures. There were no data in favor of the dysmetabolic, structural, or infectious nature of seizures. Molecular karyotyping and whole exome sequencing were not informative. Trio WES revealed a de novo variant in the KCNJ9 gene (1:160087612T > C, p.Phe326Ser, NM_004983), for which, according to the OMIM database, no association with the disease has been described to date. Three-dimensional modeling was used to predict the structure of the KCNJ9 protein using the known structure of its homologs. According to the predictions, Phe326Ser change possibly disrupts the hydrophobic contacts with the valine side chain. Destabilization of the neighboring structures may undermine the formation of GIRK2/GIRK3 tetramers necessary for their proper functioning. CONCLUSIONS We believe that the identified variant may be the cause of the disease in this patient but further studies, including the search for other patients with the KCNJ9 variants, are needed.
Collapse
|
2
|
Lopez-Sola E, Sanchez-Todo R, Lleal È, Köksal Ersöz E, Yochum M, Makhalova J, Mercadal B, Guasch M, Salvador R, Lozano-Soldevilla D, Modolo J, Bartolomei F, Wendling F, Benquet P, Ruffini G. A personalizable autonomous neural mass model of epileptic seizures. J Neural Eng 2022; 19. [PMID: 35995031 DOI: 10.1088/1741-2552/ac8ba8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Work in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input into the pyramidal cell population, the model dynamics are autonomous. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically motivated algorithm for chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of chloride in pyramidal cells due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals for comparison with real seizure recordings, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods based on NMMs.
Collapse
Affiliation(s)
- Edmundo Lopez-Sola
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Barcelona, 08035, SPAIN
| | - Roser Sanchez-Todo
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Èlia Lleal
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Elif Köksal Ersöz
- LTSI, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Maxime Yochum
- LTSI, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Julia Makhalova
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Borja Mercadal
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Maria Guasch
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Barcelona, 08035, SPAIN
| | - Ricardo Salvador
- Neuroelectrics Barcelona SL, Av Tibidabo, 47bis, Barcelona, Barcelona, Catalunya, 08035, SPAIN
| | | | - Julien Modolo
- LTSI, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Fabrice Bartolomei
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Fabrice Wendling
- LTSI, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Pascal Benquet
- LTSI, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35065, FRANCE
| | - Giulio Ruffini
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| |
Collapse
|
3
|
Koene LM, Niggl E, Wallaard I, Proietti-Onori M, Rotaru DC, Elgersma Y. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight 2021; 6:e150120. [PMID: 34877936 PMCID: PMC8675202 DOI: 10.1172/jci.insight.150120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tuberous sclerosis complex (TSC), caused by heterozygous mutations in TSC1 or TSC2, frequently results in intractable epilepsy. Here, we made use of an inducible Tsc1-knockout mouse model, allowing us to study electrophysiological and molecular changes of Tsc1-induced epileptogenesis over time. We recorded from pyramidal neurons in the hippocampus and somatosensory cortex (L2/L3) and combined this with an analysis of transcriptome changes during epileptogenesis. Deletion of Tsc1 resulted in hippocampus-specific changes in excitability and adaptation, which emerged before seizure onset and progressed over time. All phenotypes were rescued after early treatment with rapamycin, an mTOR inhibitor. Later in epileptogenesis, we observed a hippocampal increase of excitation-to-inhibition ratio. These cellular changes were accompanied by dramatic transcriptional changes, especially after seizure onset. Most of these changes were rescued upon rapamycin treatment. Of the genes encoding ion channels or belonging to the Gene Ontology term action potential, 27 were differentially expressed just before seizure onset, suggesting a potential driving role in epileptogenesis. Our data highlight the complex changes driving epileptogenesis in TSC, including the changed expression of multiple ion channels. Our study emphasizes inhibition of the TSC/mTOR signaling pathway as a promising therapeutic approach to target epilepsy in patients with TSC.
Collapse
|
4
|
Roberti R, De Caro C, Iannone LF, Zaccara G, Lattanzi S, Russo E. Pharmacology of Cenobamate: Mechanism of Action, Pharmacokinetics, Drug-Drug Interactions and Tolerability. CNS Drugs 2021; 35:609-618. [PMID: 33993416 DOI: 10.1007/s40263-021-00819-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Cenobamate is one of the latest antiseizure medications (ASMs) developed for the treatment of focal onset seizures in adult patients. The recommended starting dose is 12.5 mg/day, titrated gradually to the target daily dose of 200 mg, which may be increased to a maximum of 400 mg/day based on clinical response. Although the high rate of seizure freedom observed in randomized, placebo-controlled clinical trials has resulted in exciting expectations, further clinical studies are needed to better define its clinical profile. Cenobamate is characterized by a peculiar pharmacology regarding both pharmacodynamics and pharmacokinetics. The mechanism of action has only partly been described, with the drug acting on voltage-gated sodium channels through a pronounced action on persistent rather than transient currents. Cenobamate also acts as a positive allosteric modulator of GABAA receptors independently from the benzodiazepine binding site. The bioavailability of cenobamate is not influenced by other drugs, except phenytoin; it can inhibit cytochrome P450 (CYP) 2C19 and induce CYP3A4 and 2B6, and hence can potentially interact with many drugs (e.g. dose adjustments may be required for lamotrigine, carbamazepine and clobazam). The pharmacokinetics of cenobamate are not linear and dosage increases imply a disproportional increase in plasma levels, particularly at doses higher than 300 mg. The most common and dose-related adverse effects associated with cenobamate include central nervous system-related symptoms, mainly somnolence, dizziness, diplopia, and disturbances in gait and coordination. A somewhat higher incidence of adverse events has been observed in patients concomitantly treated with sodium channel blockers. The most relevant safety issues are currently represented by the risk of severe skin reactions (apparently avoidable by a slow titration) and QT shortening (the drug is contraindicated in patients with familial short QT syndrome or taking QT-shortening drugs). Overall, cenobamate is a promising ASM with an intriguing and not fully understood mechanism of action; pharmacokinetic issues need to be considered in clinical practice.
Collapse
Affiliation(s)
- Roberta Roberti
- Science of Health Department, University Magna Grecia of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Carmen De Caro
- Science of Health Department, University Magna Grecia of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Luigi Francesco Iannone
- Science of Health Department, University Magna Grecia of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.
| |
Collapse
|
5
|
Qaswal AB, Ababneh O, Khreesha L, Al-Ani A, Suleihat A, Abbad M. Mathematical Modeling of Ion Quantum Tunneling Reveals Novel Properties of Voltage-Gated Channels and Quantum Aspects of Their Pathophysiology in Excitability-Related Disorders. PATHOPHYSIOLOGY 2021; 28:116-154. [PMID: 35366274 PMCID: PMC8830480 DOI: 10.3390/pathophysiology28010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Voltage-gated channels are crucial in action potential initiation and propagation and there are many diseases and disorders related to them. Additionally, the classical mechanics are the main mechanics used to describe the function of the voltage-gated channels and their related abnormalities. However, the quantum mechanics should be considered to unravel new aspects in the voltage-gated channels and resolve the problems and challenges that classical mechanics cannot solve. In the present study, the aim is to mathematically show that quantum mechanics can exhibit a powerful tendency to unveil novel electrical features in voltage-gated channels and be used as a promising tool to solve the problems and challenges in the pathophysiology of excitability-related diseases. The model of quantum tunneling of ions through the intracellular hydrophobic gate is used to evaluate the influence of membrane potential and gating free energy on the tunneling probability, single channel conductance, and quantum membrane conductance. This evaluation is mainly based on graphing the mathematical relationships between these variables. The obtained mathematical graphs showed that ions can achieve significant quantum membrane conductance, which can affect the resting membrane potential and the excitability of cells. In the present work, quantum mechanics reveals original electrical properties associated with voltage-gated channels and introduces new insights and implications into the pathophysiology of excitability- related disorders. In addition, the present work sets a mathematical and theoretical framework that can be utilized to conduct experimental studies in order to explore the quantum aspects of voltage-gated channels and the quantum bioelectrical property of biological membranes.
Collapse
Affiliation(s)
- Abdallah Barjas Qaswal
- Department of Internship Program, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Omar Ababneh
- Department of Anesthesia and Intensive Care, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Lubna Khreesha
- Department of Special Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Abdallah Al-Ani
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Ahmad Suleihat
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.S.); (M.A.)
| | - Mutaz Abbad
- Department of General Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan; (A.S.); (M.A.)
| |
Collapse
|
6
|
Peng J, Zhou Y, Wang K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Sci Rep 2021; 11:952. [PMID: 33441621 PMCID: PMC7806931 DOI: 10.1038/s41598-020-78654-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
It is well established that epilepsy and autism spectrum disorder (ASD) commonly co-occur; however, the underlying biological mechanisms of the co-occurence from their genetic susceptibility are not well understood. Our aim in this study is to characterize genetic modules of subgroups of epilepsy and autism genes that have similar phenotypic manifestations and biological functions. We first integrate a large number of expert-compiled and well-established epilepsy- and ASD-associated genes in a multiplex network, where one layer is connected through protein-protein interaction (PPI) and the other layer through gene-phenotype associations. We identify two modules in the multiplex network, which are significantly enriched in genes associated with both epilepsy and autism as well as genes highly expressed in brain tissues. We find that the first module, which represents the Gene Ontology category of ion transmembrane transport, is more epilepsy-focused, while the second module, representing synaptic signaling, is more ASD-focused. However, because of their enrichment in common genes and association with both epilepsy and ASD phenotypes, these modules point to genetic etiologies and biological processes shared between specific subtypes of epilepsy and ASD. Finally, we use our analysis to prioritize new candidate genes for epilepsy (i.e. ANK2, CACNA1E, CACNA2D3, GRIA2, DLG4) for further validation. The analytical approaches in our study can be applied to similar studies in the future to investigate the genetic connections between different human diseases.
Collapse
Affiliation(s)
- Jacqueline Peng
- grid.25879.310000 0004 1936 8972School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Yunyun Zhou
- grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kai Wang
- grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
7
|
Guignet M, Campbell A, White HS. Cenobamate (XCOPRI): Can preclinical and clinical evidence provide insight into its mechanism of action? Epilepsia 2020; 61:2329-2339. [DOI: 10.1111/epi.16718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Michelle Guignet
- Department of Pharmacy School of Pharmacy University of Washington Seattle WA USA
| | - Amanda Campbell
- Department of Pharmacy School of Pharmacy University of Washington Seattle WA USA
| | - H. Steve White
- Department of Pharmacy School of Pharmacy University of Washington Seattle WA USA
| |
Collapse
|
8
|
Sinha D, Steyer B, Shahi PK, Mueller KP, Valiauga R, Edwards KL, Bacig C, Steltzer SS, Srinivasan S, Abdeen A, Cory E, Periyasamy V, Siahpirani AF, Stone EM, Tucker BA, Roy S, Pattnaik BR, Saha K, Gamm DM. Human iPSC Modeling Reveals Mutation-Specific Responses to Gene Therapy in a Genotypically Diverse Dominant Maculopathy. Am J Hum Genet 2020; 107:278-292. [PMID: 32707085 DOI: 10.1016/j.ajhg.2020.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Dominantly inherited disorders are not typically considered to be therapeutic candidates for gene augmentation. Here, we utilized induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in an iPSC-RPE model of recessive bestrophinopathy as well as in two models of dominant Best disease caused by different mutations in regions encoding ion-binding domains. A third dominant Best disease iPSC-RPE model did not respond to gene augmentation, but showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then subjected all three dominant Best disease iPSC-RPE models to gene editing, which produced premature stop codons specifically within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of retinal pigment epithelium (RPE) transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some individuals with dominant Best disease and that non-responders are candidates for alternate approaches such as gene editing. However, testing gene editing strategies for on-target efficiency and off-target events using personalized iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected individuals.
Collapse
Affiliation(s)
- Divya Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Benjamin Steyer
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Pawan K Shahi
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Katherine P Mueller
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rasa Valiauga
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Cole Bacig
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stephanie S Steltzer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sandhya Srinivasan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Amr Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Evan Cory
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Viswesh Periyasamy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biostatistics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bikash R Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Hesse AN, Bevilacqua J, Shankar K, Reddi HV. Retrospective genotype-phenotype analysis in a 305 patient cohort referred for testing of a targeted epilepsy panel. Epilepsy Res 2018; 144:53-61. [PMID: 29778030 DOI: 10.1016/j.eplepsyres.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Epilepsy is a diverse neurological condition with extreme genetic and phenotypic heterogeneity. The introduction of next-generation sequencing into the clinical laboratory has made it possible to investigate hundreds of associated genes simultaneously for a patient, even in the absence of a clearly defined syndrome. This has resulted in the detection of rare and novel mutations at a rate well beyond our ability to characterize their effects. This retrospective study reviews genotype data in the context of available phenotypic information on 305 patients spanning the epileptic spectrum to identify established and novel patterns of correlation. METHODS Our epilepsy panel comprising 377 genes was used to sequence 305 patients referred for genetic testing. Qualifying variants were annotated with phenotypic data obtained from either the test requisition form or supporting clinical documentation. Observed phenotypes were compared with established phenotypes in OMIM, published literature and the ILAEs 2010 report on genetic testing to assess congruity with known gene aberrations. RESULTS We identified a number of novel and recognized genetic variants consistent with established epileptic phenotypes. Forty-one pathogenic or predicted deleterious variants were detected in 39 patients with accompanying clinical documentation. Twenty-five of these variants across 15 genes were novel. Furthermore, evaluation of phenotype data for 194 patients with variants of unknown significance in genes with autosomal dominant and X-linked disease inheritance elucidated potentially disease-causing variants that were not currently characterized in the literature. CONCLUSIONS Assessment of key genotype-phenotype correlations from our cohort provide insight into variant classification, as well as the importance of including ILAE recommended genes as part of minimum panel content for comprehensive epilepsy tests. Many of the reported VUSs are likely genuine pathogenic variants driving the observed phenotypes, but not enough evidence is available for assertive classifications. Similar studies will provide more utility via mounting independent genotype-phenotype data from unrelated patients. The possible outcome would be a better molecular diagnostic product, with fewer indeterminate reports containing only VUSs.
Collapse
Affiliation(s)
- Andrew N Hesse
- Transgenomic Inc, 5 Science Park, New Haven, CT, 06511, USA
| | | | - Kritika Shankar
- Transgenomic Inc, 5 Science Park, New Haven, CT, 06511, USA.
| | - Honey V Reddi
- Transgenomic Inc, 5 Science Park, New Haven, CT, 06511, USA.
| |
Collapse
|
10
|
Abstract
Accumulating evidence suggest that TRPC channels play critical roles in various aspects of epileptogenesis. TRPC1/4 channels are major contributors to nonsynaptically derived epileptiform burst firing in the CA1 and the lateral septum. TRPC7 channels play a critical role in synaptically derived epileptiform burst firing. The reduction of spontaneous epileptiform bursting in the CA3 is correlated to a reduction in pilocarpine-induced SE in vivo in TRPC7 knockout mice. TRPC channels are also significant contributors to SE-induced neuronal cell death. Although the pilocarpine-induced SE itself is not significantly reduced, the SE-induced neuronal cell death is significantly reduced in the CA1 and the lateral septum, indicating that TRPC1/4 channels directly contribute to SE-induced neuronal cell death. Genetic ablation of TRPC5 also reduces SE-induced neuronal cell death in the CA1 and CA3 areas of the hippocampus.
Collapse
|
11
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
12
|
Deep Blue “Seq”: Fishing for Epilepsy Genes. Epilepsy Curr 2016; 16:110-1. [DOI: 10.5698/1535-7511-16.2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Schutte SS, Schutte RJ, Barragan EV, O'Dowd DK. Model systems for studying cellular mechanisms of SCN1A-related epilepsy. J Neurophysiol 2016; 115:1755-66. [PMID: 26843603 DOI: 10.1152/jn.00824.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
Mutations in SCN1A, the gene encoding voltage-gated sodium channel NaV1.1, cause a spectrum of epilepsy disorders that range from genetic epilepsy with febrile seizures plus to catastrophic disorders such as Dravet syndrome. To date, more than 1,250 mutations in SCN1A have been linked to epilepsy. Distinct effects of individual SCN1A mutations on neuronal function are likely to contribute to variation in disease severity and response to treatment in patients. Several model systems have been used to explore seizure genesis in SCN1A epilepsies. In this article we review what has been learned about cellular mechanisms and potential new therapies from these model systems, with a particular emphasis on the novel model system of knock in Drosophila and a look toward the future with expanded use of patient-specific induced pluripotent stem cell-derived neurons.
Collapse
Affiliation(s)
- Soleil S Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Ryan J Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Eden V Barragan
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| |
Collapse
|
14
|
Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion Channels in Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:97-136. [DOI: 10.1016/bs.apcsb.2015.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
16
|
Idiopathic generalized epilepsy and hypokalemic periodic paralysis in a family of South Indian descent. Case Rep Neurol Med 2015; 2015:906049. [PMID: 25893123 PMCID: PMC4393904 DOI: 10.1155/2015/906049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/01/2015] [Accepted: 03/15/2015] [Indexed: 12/12/2022] Open
Abstract
Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4) and nonsense mutations in voltage gated calcium channels (CACNA1A) have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies.
Collapse
|
17
|
Anderson LL, Thompson CH, Hawkins NA, Nath RD, Petersohn AA, Rajamani S, Bush WS, Frankel WN, Vanoye CG, Kearney JA, George AL. Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 2014; 55:1274-83. [PMID: 24862204 PMCID: PMC4126848 DOI: 10.1111/epi.12657] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV ) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability, mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity. METHODS We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, a U.S. Food and Drug Administration (FDA)-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2a(Q54) mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting, and survival of Scn2a(Q54) mice. RESULTS We found that ranolazine was capable of reducing seizure frequency by approximately 50% in Scn2a(Q54) mice. The more potent persistent current blocker GS967 reduced seizure frequency by >90% in Scn2a(Q54) mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2a(Q54) mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2a(Q54) mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting. SIGNIFICANCE Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and that this compound could inform development of new agents.
Collapse
Affiliation(s)
| | | | | | - Ravi D. Nath
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | - William S. Bush
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | | | - Carlos G. Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Alfred L. George
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure 2013; 23:36-40. [PMID: 24113539 DOI: 10.1016/j.seizure.2013.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy. METHODS Seven children with drug-resistant structural-metabolic, unknown or genetic (e.g., Dravet syndrome [DS]) epilepsy received verapamil as an add-on drug to baseline antiepileptic therapy. Verapamil was slowly introduced at the dosage of 1mg/kg/day and titrated up to 1.5mg/kg/day. After completing the titration period, patients entered a 14-month maintenance period and were followed up at 3, 8, and 14 months. Heart monitoring was performed at baseline and at each follow-up. The primary outcome measure was the response of seizures to verapamil. RESULTS Three subjects with genetically determined DS showed a partial (reduction of 50-99%) response for all types of seizures. A patient with DS without known mutation showed a partial control of all types of seizures in the first 13 months; then seizures worsened and verapamil was suspended. Two patients with structural epilepsy and one with Lennox-Gastaut syndrome showed no improvement. Any side effects were recorded. CONCLUSIONS Add-on treatment with verapamil seems to have some effect in controlling seizures in patients with genetically determined DS. Our observations justify further research on the relationship between calcium channels, calcium channel blockers, and channelopathies.
Collapse
|
19
|
Tejada J, Costa KM, Bertti P, Garcia-Cairasco N. The epilepsies: complex challenges needing complex solutions. Epilepsy Behav 2013; 26:212-28. [PMID: 23146364 DOI: 10.1016/j.yebeh.2012.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/19/2022]
Abstract
It is widely accepted that epilepsies are complex syndromes due to their multi-factorial origins and manifestations. Different mathematical and computational descriptions use appropriate methods to address nonlinear relationships, chaotic behaviors and emergent properties. These theoretical approaches can be divided into two major categories: descriptive, such as flowcharts, graphs and other statistical analyses, and explicative, which include both realistic and abstract models. Although these modeling tools have brought great advances, a common framework to guide their design, implementation and evaluation, with the goal of future integration, is still needed. In the current review, we discuss two examples of complexity analysis that can be performed with epilepsy data: behavioral sequences of temporal lobe seizures and alterations in an experimental cellular model. We also highlight the importance of the creation of model repositories for the epileptology field and encourage the development of mathematical descriptions of complex systems, together with more accurate simulation techniques.
Collapse
Affiliation(s)
- Julián Tejada
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
20
|
Obata K. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:139-56. [PMID: 23574805 PMCID: PMC3669732 DOI: 10.2183/pjab.89.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/25/2013] [Indexed: 05/26/2023]
Abstract
Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.
Collapse
Affiliation(s)
- Kunihiko Obata
- National Institute for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
21
|
Glaaser IW, Osteen JD, Puckerin A, Sampson KJ, Jin X, Kass RS. Perturbation of sodium channel structure by an inherited Long QT Syndrome mutation. Nat Commun 2012; 3:706. [PMID: 22426227 PMCID: PMC3518026 DOI: 10.1038/ncomms1717] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/31/2012] [Indexed: 12/22/2022] Open
Abstract
The cardiac voltage-gated sodium channel (NaV1.5) underlies impulse conduction in the heart and its depolarization-induced inactivation is essential in control of the duration of the QT interval of the electrocardiogram (ECG). Perturbation of Nav1.5 inactivation by drugs or inherited mutation can underlie and trigger cardiac arrhythmias. The carboxy terminus plays an important role in channel inactivation, but complete structural information on its predicted structural domain is unknown. Here we measure interactions between the functionally critical distal C-T alpha helix (H6) and the proximal structured EF hand motif using transition metal ion FRET. We measure distances at three loci along H6 relative to an intrinsic tryptophan, demonstrating the proximal-distal interaction in a contiguous carboxy terminus polypeptide. Using these data together with the existing NaV1.5 carboxy terminus NMR structure, we construct a model of the predicted structured region of the carboxy terminus. An arrhythmia associated H6 mutant which impairs inactivation decreases FRET, indicating destabilization of the distal-proximal intramolecular interaction. These data provide a structural correlate to the pathological phenotype of the mutant channel.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, Columbia University Medical Center, 630 W 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Sodium currents are essential for the initiation and propagation of neuronal firing. Alterations of sodium currents can lead to abnormal neuronal activity, such as occurs in epilepsy. The transient voltage-gated sodium current mediates the upstroke of the action potential. A small fraction of sodium current, termed the persistent sodium current (I(NaP)), fails to inactivate significantly, even with prolonged depolarization. I(NaP) is activated in the subthreshold voltage range and is capable of amplifying a neuron's response to synaptic input and enhancing its repetitive firing capability. A burgeoning literature is documenting mutations in sodium channels that underlie human disease, including epilepsy. Some of these mutations lead to altered neuronal excitability by increasing I(NaP). This review focuses on the pathophysiological effects of I(NaP) in epilepsy.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Section of Pediatric Neurology, Department of Neurology, University of Wisconsin Madison, Wisconsin, USA.
| |
Collapse
|
23
|
|
24
|
Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res 2009; 85:89-95. [DOI: 10.1016/j.eplepsyres.2009.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 11/22/2022]
|
25
|
Anderson WS, Kudela P, Weinberg S, Bergey GK, Franaszczuk PJ. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation. Epilepsy Res 2009; 84:42-55. [PMID: 19185465 DOI: 10.1016/j.eplepsyres.2008.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/12/2008] [Accepted: 12/18/2008] [Indexed: 01/19/2023]
Abstract
PURPOSE A neural network simulation with realistic cortical architecture has been used to study synchronized bursting as a seizure representation. This model has the property that bursting epochs arise and cease spontaneously, and bursting epochs can be induced by external stimulation. We have used this simulation to study the time-frequency properties of the evolving bursting activity, as well as effects due to network stimulation. METHODS The model represents a cortical region of 1.6 mm x 1.6mm, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. There are a total of 65,536 modeled single compartment neurons that operate according to a version of Hodgkin-Huxley dynamics. The intercellular wiring is based on histological studies and our previous modeling efforts. RESULTS The bursting phase is characterized by a flat frequency spectrum. Stimulation pulses are applied to this modeled network, with an electric field provided by a 1mm radius circular electrode represented mathematically in the simulation. A phase dependence to the post-stimulation quiescence is demonstrated, with local relative maxima in efficacy occurring before or during the network depolarization phase in the underlying activity. Brief periods of network insensitivity to stimulation are also demonstrated. The phase dependence was irregular and did not reach statistical significance when averaged over the full 2.5s of simulated bursting investigated. This result provides comparison with previous in vivo studies which have also demonstrated increased efficacy of stimulation when pulses are applied at the peak of the local field potential during cortical after discharges. The network bursting is synchronous when comparing the different neuron classes represented up to an uncertainty of 10 ms. Studies performed with an excitatory chandelier cell component demonstrated increased synchronous bursting in the model, as predicted from experimental work. CONCLUSIONS This large-scale multi-neuron neural network simulation reproduces many aspects of evolving cortical bursting behavior as well as the timing-dependent effects of electrical stimulation on that bursting.
Collapse
Affiliation(s)
- William S Anderson
- Harvard Medical School, Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street CA 138F, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
26
|
Ohmori I, Ouchida M, Miki T, Mimaki N, Kiyonaka S, Nishiki T, Tomizawa K, Mori Y, Matsui H. A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol Dis 2008; 32:349-54. [DOI: 10.1016/j.nbd.2008.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022] Open
|
27
|
Benuskova L, Kasabov N. Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2008; 2:319-34. [PMID: 19003458 PMCID: PMC2585617 DOI: 10.1007/s11571-008-9061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 01/10/2023] Open
Abstract
The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene-protein regulatory networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural network. Through tuning the gene-protein interaction network and the initial gene/protein expression values, different states of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.
Collapse
Affiliation(s)
- Lubica Benuskova
- Department of Computer Science, University of Otago, 90 Union Place East, Dunedin, 9016 New Zealand
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, AUT Technology Park, 583-585 Great South Road, Penrose, Auckland, 1135 New Zealand
| |
Collapse
|
28
|
Voss LJ, Sleigh JW, Barnard JPM, Kirsch HE. The Howling Cortex: Seizures and General Anesthetic Drugs. Anesth Analg 2008; 107:1689-703. [PMID: 18931234 DOI: 10.1213/ane.0b013e3181852595] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
|
30
|
Fieberkrämpfe und Epilepsie. Monatsschr Kinderheilkd 2007. [DOI: 10.1007/s00112-007-1510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Striano P, Mancardi MM, Biancheri R, Madia F, Gennaro E, Paravidino R, Beccaria F, Capovilla G, Dalla Bernardina B, Darra F, Elia M, Giordano L, Gobbi G, Granata T, Ragona F, Guerrini R, Marini C, Mei D, Longaretti F, Romeo A, Siri L, Specchio N, Vigevano F, Striano S, Tortora F, Rossi A, Minetti C, Dravet C, Gaggero R, Zara F. Brain MRI findings in severe myoclonic epilepsy in infancy and genotype-phenotype correlations. Epilepsia 2007; 48:1092-6. [PMID: 17381446 DOI: 10.1111/j.1528-1167.2007.01020.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To determine the occurrence of neuroradiological abnormalities and to perform genotype-phenotype correlations in severe myoclonic epilepsy of infancy (SMEI, Dravet syndrome). PATIENTS AND METHODS Alpha-subunit type A of voltage-gated sodium channel (SCN1A) mutational screening was performed by denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation probe amplification (MLPA). MRI inclusion criteria were: last examination obtained after the age of 4 years on 1.5-T systems; hippocampal cuts acquired perpendicular to the long axis of the hippocampus; qualitative assessment was performed on T(1)-weighted, T(2)-weighted, proton density, and 1-3 mm thick coronal FLAIR images. RESULTS We collected 58 SMEI patients in whom last MRI was performed at or later than 4 years of age. SCN1A mutations occurred in 35 (60%) cases. Thirteen (22.4%) out of 58 patients showed abnormal MRIs. Eight patients showed cortical brain atrophy of which 3 associated to ventricles abnormalities, 1 to cerebellar atrophy, 1 to white matter hyperintensity; 3 patients had ventricles enlargement only; 1 patient showed hippocampal sclerosis (HS); 1 had focal cortical dysplasia. Genotype-phenotype analysis indicated that abnormal MRIs occurred more frequently in patients without SCN1A mutations (9/23; 39.1%) compared to those carrying SCN1A mutations (4/35; 11.4%) (p=0.02). CONCLUSION Different brain abnormalities may occur in SMEI. Only one case with HS was observed; thus, our study does not support the association between prolonged febrile seizures and HS in SMEI. Abnormal MRIs were significantly more frequent in patients without SCN1A mutations. Prospective MRI studies will assess the etiological role of the changes observed in these patients.
Collapse
Affiliation(s)
- Pasquale Striano
- Muscular and Neurodegenerative Disease Unit, Institute G. Gaslini, University of Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Waxman SG. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nat Neurosci 2007; 10:405-9. [PMID: 17387329 DOI: 10.1038/nn1857] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
What is the relationship between sodium channel function, neuronal function and clinical status in channelopathies of the nervous system? Given the central role of sodium channels in the generation of neuronal activity, channelopathies involving sodium channels might be expected to cause either enhanced sodium channel function and neuronal hyperexcitability associated with positive clinical manifestations such as seizures, or attenuated channel function and neuronal hypoexcitability associated with negative clinical manifestations such as paralysis. In this article, I review observations showing that changes in neuronal function and clinical status associated with channelopathies are not necessarily predictable solely from the altered physiological properties of the mutated channel itself. I discuss evidence showing that cell background acts as a filter that can strongly influence the effects of ion channel mutations.
Collapse
Affiliation(s)
- Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
33
|
Ion Channel Disorders. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
34
|
Glaaser IW, Bankston JR, Liu H, Tateyama M, Kass RS. A Carboxyl-terminal Hydrophobic Interface Is Critical to Sodium Channel Function. J Biol Chem 2006; 281:24015-23. [PMID: 16798729 DOI: 10.1074/jbc.m605473200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Perturbation of sodium channel inactivation, a finely tuned process that critically regulates the flow of sodium ions into excitable cells, is a common functional consequence of inherited mutations associated with epilepsy, skeletal muscle disease, autism, and cardiac arrhythmias. Understanding the structural basis of inactivation is key to understanding these disorders. Here we identify a novel role for a structural motif in the COOH terminus of the heart NaV1.5 sodium channel in determining channel inactivation. Structural modeling predicts an interhelical hydrophobic interface between paired EF hands in the proximal region of the NaV1.5 COOH terminus. The predicted interface is conserved among almost all EF hand-containing proteins and is the locus of a number of disease-associated mutations. Using the structural model as a guide, we provide biochemical and biophysical evidence that the structural integrity of this interface is necessary for proper Na+ channel inactivation gating. We thus demonstrate a novel role of the sodium channel COOH terminus structure in the control of channel inactivation and in pathologies caused by inherited mutations that disrupt it.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
35
|
Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, Dibbens LM. Susceptibility genes for complex epilepsy. Hum Mol Genet 2006; 14 Spec No. 2:R243-9. [PMID: 16244322 DOI: 10.1093/hmg/ddi355] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Common idiopathic epilepsies are, clinically and genetically, a heterogeneous group of complex seizure disorders. Seizures arise from periodic neuronal hyperexcitability of unknown cause. The genetic component is mostly polygenic, where each susceptibility gene in any given individual is likely to represent a small component of the total heritability. Two susceptibility genes have been so far identified, where genetic variation is associated with experimentally demonstrated changes in ion channel properties, consistent with seizure susceptibility. Rare variants and a polymorphic allele of the T-type calcium channel CACNA1H and a polymorphic allele and a rare variant of the GABA(A) receptor delta subunit gene have differential functional effects. We speculate that these and other as yet undiscovered susceptibility genes for complex epilepsy could act as 'modifier' loci, affecting penetrance and expressivity of the mutations of large effect in those 'monogenic' epilepsies with simple inheritance that segregate through large families. Discovery of epilepsy-associated ion channel defects in these rare families has opened the door to the discovery of the first two susceptibility genes in epilepsies with complex genetics. The susceptibility genes so far detected are not commonly involved in complex epilepsy suggesting the likelihood of considerable underlying polygenic heterogeneity.
Collapse
Affiliation(s)
- John C Mulley
- Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- John M Pellock
- Division of Child Neurology, Department of Neurology, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA.
| |
Collapse
|