1
|
Zhao Y, Tang R. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater 2021; 120:57-80. [PMID: 32629191 DOI: 10.1016/j.actbio.2020.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Biomineralization, a bio-organism controlled mineral formation process, plays an important role in linking biological organisms and mineral materials in nature. Inspired by biomineralization, biomimetic mineralization is used as a bridge tool to integrate biological organisms and functional materials together, which can be beneficial for the development of diversified functional organism-material hybrids. In this review, recent progresses on the techniques of biomimetic mineralization for organism-material combinations are summarized and discussed. Based upon these techniques, the preparations and applications of virus-, prokaryotes-, and eukaryotes-material hybrids have been presented and they demonstrate the great potentials in the fields of vaccine improvement, cell protection, energy production, environmental and biomedical treatments, etc. We suggest that more researches about functional organism and material combination with more biocompatible techniques should be developed to improve the design and applications of specific organism-material hybrids. These rationally designed organism-material hybrids will shed light on the production of "live materials" with more advanced functions in future. STATEMENT OF SIGNIFICANCE: This review summaries the recent attempts on improving biological organisms by their integrations with functional materials, which can be achieved by biomimetic mineralization as the combination tool. The integrated materials, as the artificial shells or organelles, confer diversified functions on the enclosed organisms. The successful constructions of various virus-, prokaryotes-, and eukaryotes-material hybrids have demonstrated the great potentials of the material incorporation strategy in vaccine development, cancer treatment, biological photosynthesis and environment protection etc. The suggested challenges and perspectives indicate more inspirations for the future development of organism-material hybrids.
Collapse
Affiliation(s)
- Yueqi Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China; Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027 China.
| |
Collapse
|
2
|
Regulations of organism by materials: a new understanding of biological inorganic chemistry. J Biol Inorg Chem 2019; 24:467-481. [DOI: 10.1007/s00775-019-01673-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
3
|
Hornberger K, Yu G, McKenna D, Hubel A. Cryopreservation of Hematopoietic Stem Cells: Emerging Assays, Cryoprotectant Agents, and Technology to Improve Outcomes. Transfus Med Hemother 2019; 46:188-196. [PMID: 31244587 DOI: 10.1159/000496068] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell (HSC) therapy is widely used to treat a growing number of hematological and non-hematological diseases. Cryopreservation of HSCs allows for cells to be transported from the site of processing to the site of clinical use, creates a larger window of time in which cells can be administered to patients, and allows sufficient time for quality control and regulatory testing. Currently, HSCs and other cell therapies conform to the same cryopreservation techniques as cells used for research purposes: cells are cryopreserved in dimethyl sulfoxide (DMSO) at a slow cooling rate. As a result, HSC therapy can result in numerous adverse symptoms in patients due to the infusion of DMSO. Efforts are being made to improve the cryopreservation of HSCs for clinical use. This review discusses advances in the cryopreservation of HSCs from 2007 to the present. The preclinical development of new cryoprotectants and new technology to eliminate cryoprotectants after thawing are discussed in detail. Additional cryopreservation considerations are included, such as cooling rate, storage temperature, and cell concentration. Preclinical cell assessment and quality control are discussed, as well as clinical studies from the past decade that focus on new cryopreservation protocols to improve patient outcomes.
Collapse
Affiliation(s)
- Kathlyn Hornberger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Lan D, Chen X, Li P, Zou W, Wu L, Chen W. Using a Novel Supramolecular Gel Cryopreservation System in Microchannel to Minimize the Cell Injury. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5088-5096. [PMID: 29629777 DOI: 10.1021/acs.langmuir.8b00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The storage of living cells is the major challenge for cell research and cell treatment. Here, we introduced a novel supramolecular gel cryopreservation system which was prepared in the microchannel, and the supramolecular gel (BDTC) was self-assembled by gelator Boc- O-dodecyl-l-tyrosine (BDT). This cryopreservation system could obviously minimize the cell injury because the BDTC supramolecular gel had a more compact three-dimensional network structure when the BDT gelator self-assembled in the confined space of microchannel. This compact structure could confine the growth of the ice crystal, reduce the change rate of cell volumes and osmotic shock, decrease the freezing point of the cryopreservation system, and possess better protection capability. Furthermore, the results of functionality assessments showed that the thawed cells could grow and proliferate well and remain the same growth trend of the fresh cells after the RSC96 cells flowed out from the microchannel. This novel method has potential to be used for the cryopreservation of cells, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Dongxu Lan
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Xi Chen
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Pengcheng Li
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Wei Zou
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Lili Wu
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Wanyu Chen
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| |
Collapse
|
5
|
Zuo W, Xie B, Li C, Yan Y, Zhang Y, Liu W, Huang J, Chen D. The Clinical Applications of Endometrial Mesenchymal Stem Cells. Biopreserv Biobank 2018; 16:158-164. [PMID: 29265881 PMCID: PMC5906727 DOI: 10.1089/bio.2017.0057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endometrial mesenchymal stem cells (enMSCs) are a class of novel adult stem cells with self-renewal capacity, differentiation potential, low immunogenicity, low tumorigenicity, and other biological characteristics. Since the discovery of enMSCs, they have become a hot research topic. In recent years, research on enMSC isolation and application have made great progress. In this review, we focus on the clinical applications of this cell type. The latest research on the applications of enMSCs in the immune, gynecological, cardiovascular, digestive, nervous systems and metabolic diseases, as well as biobanking of enMSCs will be reviewed.
Collapse
Affiliation(s)
- Wanyun Zuo
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bingyu Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenglong Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhan Yan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yangyi Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Institute of Human Reproductive and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Youn W, Ko EH, Kim MH, Park M, Hong D, Seisenbaeva GA, Kessler VG, Choi IS. Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO2
Shells for T-Cell Therapy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wongu Youn
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Eun Hyea Ko
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 46241 Korea
| | - Gulaim A. Seisenbaeva
- Department of Chemistry and Biotechnology; BioCenter; Swedish University of Agriculural Sciences; Box 7015 75007 Uppsala Sweden
| | - Vadim G. Kessler
- Department of Chemistry and Biotechnology; BioCenter; Swedish University of Agriculural Sciences; Box 7015 75007 Uppsala Sweden
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| |
Collapse
|
7
|
Youn W, Ko EH, Kim MH, Park M, Hong D, Seisenbaeva GA, Kessler VG, Choi IS. Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO 2 Shells for T-Cell Therapy. Angew Chem Int Ed Engl 2017; 56:10702-10706. [PMID: 28544545 DOI: 10.1002/anie.201703886] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Indexed: 11/09/2022]
Abstract
Lymphocytes, such as T cells and natural killer (NK) cells, have therapeutic promise in adoptive cell transfer (ACT) therapy, where the cells are activated and expanded in vitro and then infused into a patient. However, the in vitro preservation of labile lymphocytes during transfer, manipulation, and storage has been one of the bottlenecks in the development and commercialization of therapeutic lymphocytes. Herein, we suggest a cell-in-shell (or artificial spore) strategy to enhance the cell viability in the practical settings, while maintaining biological activities for therapeutic efficacy. A durable titanium oxide (TiO2 ) shell is formed on individual Jurkat T cells, and the CD3 and other antigens on cell surfaces remain accessible to the antibodies. Interleukin-2 (IL-2) secretion is also not hampered by the shell formation. This work suggests a chemical toolbox for effectively preserving lymphocytes in vitro and developing the lymphocyte-based cancer immunotherapy.
Collapse
Affiliation(s)
- Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Eun Hyea Ko
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 46241, Korea
| | - Gulaim A Seisenbaeva
- Department of Chemistry and Biotechnology, BioCenter, Swedish University of Agriculural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Vadim G Kessler
- Department of Chemistry and Biotechnology, BioCenter, Swedish University of Agriculural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
8
|
Sharma J, Hampton JM, Valiente GR, Wada T, Steigelman H, Young MC, Spurbeck RR, Blazek AD, Bösh S, Jarjour WN, Young NA. Therapeutic Development of Mesenchymal Stem Cells or Their Extracellular Vesicles to Inhibit Autoimmune-Mediated Inflammatory Processes in Systemic Lupus Erythematosus. Front Immunol 2017; 8:526. [PMID: 28539924 PMCID: PMC5423896 DOI: 10.3389/fimmu.2017.00526] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Since being discovered over half a century ago, mesenchymal stem cells (MSCs) have been investigated extensively to characterize their cellular and physiological influences. MSCs have been shown to possess immunosuppressive capacity through inhibiting lymphocyte activation/proliferation and proinflammatory cytokine secretion while simultaneously demonstrating limited allogenic reactivity, which subsequently led to the evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory constraints have restricted MSC development pharmacologically, limited clinical studies have shown encouraging results using MSC infusions to treat systemic lupus erythematosus (SLE); but, more trials will have to be performed to conclusively determine the clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that MSCs possess tumorigenic potential and that the immunosuppressive influence can be dramatically affected by both donor variability and ex vivo expansion. Given that recent studies have found that the immunosuppressive effects of MSCs are a result, at least in part, to extracellular vesicle (EV) secretion, the use of MSC-derived EVs has been suggested as a cell-free therapeutic alternative. Despite the positive data observed using EVs isolated from human MSCs to suppress inflammatory responses in vitro and in inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to date examining EVs from MSCs to treat SLE in humans or animal models. Considering that EVs are not subject to the strict regulatory constraints of stem cell-based pharmacological development and are more readily standardized with regard to industrial-scale production and storage, this review outlines the anti-inflammatory biology of MSCs and the scientific evidence supporting the potential use of EVs derived from human MSCs to treat patients with SLE.
Collapse
Affiliation(s)
- Juhi Sharma
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Jeffrey M Hampton
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Giancarlo R Valiente
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Takuma Wada
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Holly Steigelman
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | | | | | | | - Steffi Bösh
- Université de Nantes, Immuno-endocrinologie Cellulaire et Moléculaire, Nantes, France
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Nicholas A Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Pollock K, Samsonraj RM, Dudakovic A, Thaler R, Stumbras A, McKenna DH, Dosa PI, van Wijnen AJ, Hubel A. Improved Post-Thaw Function and Epigenetic Changes in Mesenchymal Stromal Cells Cryopreserved Using Multicomponent Osmolyte Solutions. Stem Cells Dev 2017; 26:828-842. [PMID: 28178884 DOI: 10.1089/scd.2016.0347] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current methods for freezing mesenchymal stromal cells (MSCs) result in poor post-thaw function, which limits the clinical utility of these cells. This investigation develops a novel approach to preserve MSCs using combinations of sugars, sugar alcohols, and small-molecule additives. MSCs frozen using these solutions exhibit improved post-thaw attachment and a more normal alignment of the actin cytoskeleton compared to cells exposed to dimethylsulfoxide (DMSO). Osteogenic and chondrogenic differentiation assays show that cells retain their mesenchymal lineage properties. Genomic analysis indicates that the different freezing media evaluated have different effects on the levels of DNA hydroxymethylation, which are a principal epigenetic mark and a key step in the demethylation of CpG doublets. RNA sequencing and quantitative real time-polymerase chain reaction validation demonstrate that transcripts for distinct classes of cytoprotective genes, as well as genes related to extracellular matrix structure and growth factor/receptor signaling are upregulated in experimental freezing solutions compared to DMSO. For example, the osmotic regulator galanin, the antiapoptotic marker B cell lymphoma 2, as well as the cell surface adhesion molecules CD106 (vascular cell adhesion molecule 1) and CD54 (intracellular adhesion molecule 1) are all elevated in DMSO-free solutions. These studies validate the concept that DMSO-free solutions improve post-thaw biological functions and are viable alternatives for freezing MSCs. These novel solutions promote expression of cytoprotective genes, modulate the CpG epigenome, and retain the differentiation ability of MSCs, suggesting that osmolyte-based freezing solutions may provide a new paradigm for therapeutic cell preservation.
Collapse
Affiliation(s)
- Kathryn Pollock
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | - Amel Dudakovic
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Roman Thaler
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Aron Stumbras
- 3 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| | - David H McKenna
- 4 Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, Minnesota
| | - Peter I Dosa
- 5 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| | | | - Allison Hubel
- 6 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
10
|
Unloading of cryoprotectants from cryoprotectant-loaded cells on a microfluidic platform. Biomed Microdevices 2017; 19:15. [DOI: 10.1007/s10544-017-0155-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Adamo RF, Fishbein I, Zhang K, Wen J, Levy RJ, Alferiev IS, Chorny M. Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries. J Control Release 2015; 222:169-75. [PMID: 26704936 DOI: 10.1016/j.jconrel.2015.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/27/2023]
Abstract
Arterial injury and disruption of the endothelial layer are an inevitable consequence of interventional procedures used for treating obstructive vascular disease. The slow and often incomplete endothelium regrowth after injury is the primary cause of serious short- and long-term complications, including thrombosis, restenosis and neoatherosclerosis. Rapid endothelium restoration has the potential to prevent these sequelae, providing a rationale for developing strategies aimed at accelerating the reendothelialization process. The present studies focused on magnetically guided delivery of endothelial cells (EC) functionalized with biodegradable magnetic nanoparticles (MNP) as an experimental approach for achieving rapid and stable cell homing and expansion in stented arteries. EC laden with polylactide-based MNP exhibited strong magnetic responsiveness, capacity for cryopreservation and rapid expansion, and the ability to disintegrate internalized MNP in both proliferating and contact-inhibited states. Intracellular decomposition of BODIPY558/568-labeled MNP monitored non-invasively based on assembly state-dependent changes in the emission spectrum demonstrated cell proliferation rate-dependent kinetics (average disassembly rates: 6.6±0.8% and 3.6±0.4% per day in dividing and contact-inhibited EC, respectively). With magnetic guidance using a transient exposure to a uniform 1-kOe field, stable localization and subsequent propagation of MNP-functionalized EC, markedly enhanced in comparison to non-magnetic delivery conditions, were observed in stented rat carotid arteries. In conclusion, magnetically guided delivery is a promising experimental strategy for accelerating endothelial cell repopulation of stented blood vessels after angioplasty.
Collapse
Affiliation(s)
- Richard F Adamo
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ilia Fishbein
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kehan Zhang
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Wen
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Pollock K, Sumstad D, Kadidlo D, McKenna DH, Hubel A. Clinical mesenchymal stromal cell products undergo functional changes in response to freezing. Cytotherapy 2014; 17:38-45. [PMID: 25457275 DOI: 10.1016/j.jcyt.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Current methods of mesenchymal stromal cell (MSC) cryopreservation result in variable post-thaw recovery and phenotypic changes caused by freezing. The objective of this investigation was to determine the influence of ex vivo cell expansion on phenotype of MSCs and the response of resulting phenotypes to freezing and thawing. METHODS Human bone marrow aspirate was used. MSCs were isolated and cells were assessed for total count, viability, apoptosis and senescence over 6 passages (8-10 doublings/passage) in ex vivo culture. One half of cells harvested at each passage were re-plated for continued culture and the other half were frozen at 1°C/min in a controlled-rate freezer. Frozen samples were stored in liquid nitrogen, thawed and reassessed for total cell count, viability and senescence immediately and 48 h after thaw. RESULTS Viability did not differ significantly between samples before freeze or after thaw. Senescence increased over time in pre-freeze culture and was significantly higher in one sample that had growth arrest both before freeze and after thaw. Freezing resulted in similar initial post-thaw recovery in all samples, but 48-h post-thaw growth arrest was observed in the sample with high senescence only. CONCLUSIONS High pre-freeze senescence appears to correlate with poor post-thaw function in MSC samples, but additional studies are necessary to obtain a sample sizes large enough to quantify results.
Collapse
Affiliation(s)
- Kathryn Pollock
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darin Sumstad
- Molecular and Cellular Therapy Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Diane Kadidlo
- Molecular and Cellular Therapy Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - David H McKenna
- Molecular and Cellular Therapy Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
13
|
O'Cearbhaill ED, Ng KS, Karp JM. Emerging medical devices for minimally invasive cell therapy. Mayo Clin Proc 2014; 89:259-73. [PMID: 24485137 DOI: 10.1016/j.mayocp.2013.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The past decade has seen the first wave of cell-based therapeutics undergo clinical trials with varying degrees of success. Although attention is increasingly focused on clinical trial design, owing to spiraling regulatory costs, tools used in delivering cells and sustaining the cells' viability and functions in vivo warrant careful scrutiny. While the clinical administration of cell-based therapeutics often requires additional safeguarding and targeted delivery compared with traditional therapeutics, there is significant opportunity for minimally invasive device-assisted cell therapy to provide the physician with new regenerative options at the point of care. Herein we detail exciting recent advances in medical devices that will aid in the safe and efficacious delivery of cell-based therapeutics.
Collapse
Affiliation(s)
- Eoin D O'Cearbhaill
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Kelvin S Ng
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jeffrey M Karp
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA.
| |
Collapse
|
14
|
Eaker S, Armant M, Brandwein H, Burger S, Campbell A, Carpenito C, Clarke D, Fong T, Karnieli O, Niss K, Van't Hof W, Wagey R. Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl Med 2013; 2:871-83. [PMID: 24101671 DOI: 10.5966/sctm.2013-0050] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell therapy is poised to play an enormous role in regenerative medicine. However, little guidance is being made available to academic and industrial entities in the start-up phase. In this technical review, members of the International Society for Cell Therapy provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Special emphasis is placed on providing guidance to small academic or biotech researchers as to what simple questions can be addressed or answered at the bench in order to make their cell therapy products more feasible for commercial-scale production. We discuss the processes that are required for scale-out at the manufacturing level, and how many questions can be addressed at the bench level. The goal of this review is to provide guidance in the form of topics that can be addressed early in the process of development to better the chances of the product being successful for future commercialization.
Collapse
|