1
|
Dohle E, Parkhoo K, Bennardo F, Schmeinck L, Sader R, Ghanaati S. Immunomodulation of Cancer Cells Using Autologous Blood Concentrates as a Patient-Specific Cell Culture System: A Comparative Study on Osteosarcoma and Fibrosarcoma Cell Lines. Bioengineering (Basel) 2024; 11:303. [PMID: 38671725 PMCID: PMC11048113 DOI: 10.3390/bioengineering11040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding that tumor cells might evade immunity through various mutations and the potential of an augmented immune system to eliminate abnormal cells led to the idea of utilizing platelet-rich fibrin (PRF), a blood concentrate containing the body's immune elements as an adjunctive therapy for localized tumors. This study is the first that evaluated the effect of PRF generated with different relative centrifugal forces (RCFs) on osteoblastic and fibroblastic tumor cell lines MG63 and HT1080 with regard to cell viability, cytokine and growth factor release, and the gene expression of factors related to the cell cycle and apoptosis. Our findings could demonstrate decreased cell proliferation of MG63 and HT1080 when treated indirectly with PRF compared to cell cultures without PRF. This effect was more distinct when the cells were treated with low-RCF PRF, where higher concentrations of growth factors and cytokines with reduced RCFs can be found. Similar patterns were observed when assessing the regulation of gene expression related to the cell cycle and apoptosis in both MG63 and HT1080 cells treated with PRF. Despite variations, there was a consistent trend of an up-regulation of tumor-suppressive genes and a down-regulation of anti-apoptotic genes in both cell types following treatment with high- and, particularly, low-RCF PRF formulations.
Collapse
Affiliation(s)
- Eva Dohle
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Kamelia Parkhoo
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Francesco Bennardo
- School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lena Schmeinck
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Robert Sader
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Shahram Ghanaati
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| |
Collapse
|
2
|
Monteiro M, Almeida L, Morais M, Dias L. Bernard Soulier syndrome: a rare, frequently misdiagnosed and poorly managed bleeding disorder. BMJ Case Rep 2021; 14:e243518. [PMID: 34400424 PMCID: PMC8370507 DOI: 10.1136/bcr-2021-243518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 11/04/2022] Open
Abstract
Bernard Soulier syndrome is a rare, congenital platelet bleeding disorder, with autosomal recessive inheritance. It is characterised by macrothrombocytopenia and platelet dysfunction, leading to mucocutaneous bleeding noted in early childhood. This entity poses an important diagnostic challenge, and blood smear and DNA sequencing are paramount for the correct diagnosis. Differential diagnosis includes May-Hegglin anomaly, Glanzmann Thrombasthenia and von Willebrand disease; it is also often misdiagnosed as idiopathic thrombocytopenic purpura. We report a 68-year-old man diagnosed with von Willebrand disease for three decades, admitted with gastrointestinal bleeding, anaemia and severe thrombocytopenia. Replacement with von Willebrand factor did not stop the haemorrhage, suggesting another aetiology for the bleeding disorder. Corticosteroids and intravenous immune globulin were also ineffective. Genetic sequencing showed a homozygous mutation in GP1BA gene, thus establishing the correct diagnosis.
Collapse
Affiliation(s)
- Manuel Monteiro
- Internal Medicine 1.2, Hospital de São José, Lisboa, Portugal
| | - Luis Almeida
- Internal Medicine 1.2, Hospital de São José, Lisboa, Portugal
| | - Mariana Morais
- Internal Medicine 1.2, Hospital de São José, Lisboa, Portugal
| | - Luis Dias
- Internal Medicine 1.2, Hospital de São José, Lisboa, Portugal
| |
Collapse
|
3
|
Koker MY, Sarper N, Albayrak C, Zulfikar B, Zengin E, Saraymen B, Albayrak D, Koc B, Avcilar H, Karakükcü M, Chenet C, Bianchi F, de Brevern AG, Petermann R, Jallu V. New αIIbβ3 variants in 28 Turkish Glanzmann patients; Structural hypothesis for complex activation by residues variations in I-EGF domains. Platelets 2021; 33:551-561. [PMID: 34275420 DOI: 10.1080/09537104.2021.1947481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare autosomal recessive bleeding disorder characterized by impaired platelet aggregation due to defects in integrin αIIbβ3, a fibrinogen receptor. Platelet phenotypes and allelic variations in 28 Turkish GT patients are reported. Platelets αIIbβ3 expression was evaluated by flow cytometry. Sequence analyzes of ITGA2B and ITGB3 genes allowed identifying nine variants. Non-sense variation effect on αIIbβ3 expression was studied by using transfected cell lines. 3D molecular dynamics (MDs) simulations allowed characterizing structural alterations. Five new alleles were described. αIIb:p.Gly423Asp, p.Asp560Ala and p.Tyr784Cys substitutions impaired αIIbβ3 expression. The αIIb:p.Gly128Val substitution allowed normal expression; however, the corresponding NM_000419.3:c.476G>T variation would create a cryptic donor splicing site altering mRNA processing. The β3:p.Gly540Asp substitution allowed αIIbβ3 expression in HEK-293 cells but induced its constitutive activation likely by impairing αIIb and β3 legs interaction. The substitution alters the β3 I-EGF-3 domain flexibility as shown by MDs simulations. GT variations are mostly unique although the NM_000419.3:c.1752 + 2 T > C and NM_000212.2:c.1697 G > A variations identified in 4 and 8 families, respectively, might be a current cause of GT in Turkey. MD simulations suggested how some subtle structural variations in the β3 I-EGF domains might induce constitutive activation of αIIbβ3 without altering the global domain structure.
Collapse
Affiliation(s)
- M Y Koker
- Faculty of Medicine, Department of Immunology, Erciyes University, Kayseri, Turkey
| | - N Sarper
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University, Kocaeli, Turkey
| | - C Albayrak
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Ondokuz Mayis University, Samsun, Turkey
| | - B Zulfikar
- Oncology Institute, Department of Pediatric Hematology/Oncology, Istanbul University, İstanbul, Turkey
| | - E Zengin
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University, Kocaeli, Turkey
| | - B Saraymen
- Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - D Albayrak
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Ondokuz Mayis University, Samsun, Turkey
| | - B Koc
- Oncology Institute, Department of Pediatric Hematology/Oncology, Istanbul University, İstanbul, Turkey
| | - H Avcilar
- Faculty of Medicine, Department of Immunology, Erciyes University, Kayseri, Turkey
| | - M Karakükcü
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Erciyes University, Kayseri, Turkey
| | - C Chenet
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE
| | - F Bianchi
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE
| | - A G de Brevern
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, DSIMB, Univ. Paris, Univ. De La Réunion, Univ. Des Antilles, Paris, France.,Institut National de la Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - R Petermann
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE.,Centre De Recherche Des Cordeliers, UMRS-1138, INSERM, Sorbone Université De Paris, Equipe ETREs (Ethics, Research, Translations), Paris, France
| | - V Jallu
- Département d'Immunologie Plaquettaire, Institut National De La Transfusion Sanguine (INTS), Paris, France.,Centre National de Référence en Hémobiologie Périnatale (CNRHP), Site St Antoine, DMU Biologie et Génomique Médicales, AP-HP, Sorbonne Université PARIS, FRANCE
| |
Collapse
|
4
|
Gomez K. Genomic Analysis for the Detection of Bleeding and Thrombotic Disorders. Semin Thromb Hemost 2021; 47:174-182. [PMID: 33636748 DOI: 10.1055/s-0041-1722865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of high-throughput sequencing technologies has ushered in a new era of genomic testing in clinical medicine. This has greatly enhanced our diagnostic repertoire for hemostatic diseases particularly for milder or rarer bleeding disorders. New genetic causes for heritable platelet disorders have been discovered along with the recognition of clinical manifestations outside hemostasis, such as the association of leukemia with RUNX1 variation. Genome-wide association studies in heritable thrombophilia have demonstrated that some of the genetic variants that are commonly included in thrombophilia testing are of no clinical relevance, while uncovering new variants that should potentially be included. The implementation of new technology has necessitated far-reaching changes in clinical practice to deal with incidental findings, variants of uncertain significance, and genetic disease modifiers. Mild bleeding disorders that were previously considered to have a monogenic basis now appear to have an oligogenic etiology. To harness these advances in knowledge large databases have been developed to capture the new genomic information with phenotypic features on a population-wide scale. The use of this so-called "big data" requires new bioinformatics tools with the promise of delivering precision medicine in the foreseeable future. This review discusses the use of these technologies in clinical practice, the benefits of genomic testing, and some of the challenges associated with implementation.
Collapse
Affiliation(s)
- Keith Gomez
- Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J Clin Med 2021; 10:jcm10050894. [PMID: 33668091 PMCID: PMC7956450 DOI: 10.3390/jcm10050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Platelets are active key players in haemostasis. Qualitative platelet dysfunctions result in thrombocytopathies variously characterized by defects of their adhesive and procoagulant activation endpoints. In this review, we summarize the traditional platelet defects in adhesion, secretion, and aggregation. In addition, we review the current knowledge about procoagulant platelets, focusing on their role in bleeding or thrombotic pathologies and their pharmaceutical modulation. Procoagulant activity is an important feature of platelet activation, which should be specifically evaluated during the investigation of a suspected thrombocytopathy.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Maxime G. Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Matteo Marchetti
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Service de Médecine Interne, Hôpital de Nyon, CH-1260 Nyon, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Correspondence:
| |
Collapse
|
6
|
Schreier S, Triampo W. The Blood Circulating Rare Cell Population. What is it and What is it Good For? Cells 2020; 9:cells9040790. [PMID: 32218149 PMCID: PMC7226460 DOI: 10.3390/cells9040790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Blood contains a diverse cell population of low concentration hematopoietic as well as non-hematopoietic cells. The majority of such rare cells may be bone marrow-derived progenitor and stem cells. This paucity of circulating rare cells, in particular in the peripheral circulation, has led many to believe that bone marrow as well as other organ-related cell egress into the circulation is a response to pathological conditions. Little is known about this, though an increasing body of literature can be found suggesting commonness of certain rare cell types in the peripheral blood under physiological conditions. Thus, the isolation and detection of circulating rare cells appears to be merely a technological problem. Knowledge about rare cell types that may circulate the blood stream will help to advance the field of cell-based liquid biopsy by supporting inter-platform comparability, making use of biological correct cutoffs and “mining” new biomarkers and combinations thereof in clinical diagnosis and therapy. Therefore, this review intends to lay ground for a comprehensive analysis of the peripheral blood rare cell population given the necessity to target a broader range of cell types for improved biomarker performance in cell-based liquid biopsy.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand;
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
7
|
Riley R, Khan A, Pai S, Warmke L, Winkler M, Gunning W. A Case of Chronic Thrombocytopenia in a 17-Year-Old Female. Lab Med 2019; 50:406-420. [PMID: 31228350 DOI: 10.1093/labmed/lmz013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Storage pool deficiency (SPD) is a group of rare platelet disorders that result from deficiencies in α-granules, δ-granules, or both. One type of α-SPD is gray platelet syndrome (GPS), caused by mutations in the neurobeachin-like 2 (NBEAL2) gene that results in a bleeding diathesis, thrombocytopenia, splenomegaly, and progressive myelofibrosis. Due to the lack of α-granules, platelets have a gray and degranulated appearance by light microscopy. However, definitive diagnosis of GPS requires confirmation of α-granule deficiency by electron microscopy. Treatment is nonspecific, with the conservative utilization of platelet transfusions being the most important form of therapy. We present a case of a 17-year-old female with a past medical history of thrombocytopenia, first identified at the age of five. Her clinical symptomatology included chronic fatigue, gingival bleeding, bruising, menorrhagia, and leg pain. This report will discuss both the clinical and the pathophysiologic aspects of this rare platelet disorder.
Collapse
Affiliation(s)
- Roger Riley
- Departments of Pathology, Virginia Commonwealth University (VCU) School of Medicine, Richmond
| | - Asad Khan
- Departments of Pediatrics, Virginia Commonwealth University (VCU) School of Medicine, Richmond
| | - Shella Pai
- Departments of Pathology, Virginia Commonwealth University (VCU) School of Medicine, Richmond
| | - Laura Warmke
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston
| | | | - William Gunning
- Department of Pathology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
8
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol 2018; 182:621-632. [DOI: 10.1111/bjh.15409] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- John D. Grainger
- Faculty of Medical & Human Sciences; University of Manchester; England UK
- Department of Paediatric Haematology; Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust; Manchester UK
| | - Jecko Thachil
- Department of Haematology; Manchester Royal Infirmary; Manchester University NHS Foundation Trust; Manchester UK
| | - Andrew M. Will
- Department of Paediatric Haematology; Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust; Manchester UK
| |
Collapse
|
10
|
Enayat S, Ravanbod S, Rassoulzadegan M, Jazebi M, Tarighat S, Ala F, Emsley J, Othman M. A novel D235Y mutation in the GP1BA gene enhances platelet interaction with von Willebrand factor in an Iranian family with platelet-type von Willebrand disease. Thromb Haemost 2017; 108:946-54. [DOI: 10.1160/th12-04-0189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/08/2012] [Indexed: 11/05/2022]
Abstract
SummaryPlatelet-type von Willebrand disease (PT-VWD) is a rare bleeding disorder with an intrinsic defect in platelets rather than von Willebrand factor (VWF), but has clinical and laboratory features similar to the more common type 2B VWD. The intriguing nature of the pathophysiology and molecular genetics of PT-VWD has created lengthy debate in literature regarding its discrimination from type 2B VWD, and essentially confirming DNA analysis as the gold standard in diagnosis and revealing pathologic mutations. In this report we identify a novel Asp235Tyr mutation in the GP1BA gene of two Iranian patients showing the PT-VWD phenotype who were originally misdiagnosed as type 2B VWD. By structural modelling of the mutant by introducing Tyr235 into the available crystal structure of the glycoprotein (GP)Ibα N-terminal domain, we observed the mutant Tyr235 generates a hydrophobic tip to the extended β-switch loop of GPIbα. Further modelling of the resulting complex with VWFA1 indicates this could result in an enhanced interface compared to wild-type Asp235. This data provides an update to the present knowledge about this rare disorder, and confirms the necessity of genetic testing for accurate diagnosis, and the importance of studying natural mutations to better understand molecular aspects of GPIbα-VWFA1 interaction.
Collapse
|
11
|
Dütting S, Gaits-Iacovoni F, Stegner D, Popp M, Antkowiak A, van Eeuwijk JMM, Nurden P, Stritt S, Heib T, Aurbach K, Angay O, Cherpokova D, Heinz N, Baig AA, Gorelashvili MG, Gerner F, Heinze KG, Ware J, Krohne G, Ruggeri ZM, Nurden AT, Schulze H, Modlich U, Pleines I, Brakebusch C, Nieswandt B. A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis. Nat Commun 2017. [PMID: 28643773 PMCID: PMC5481742 DOI: 10.1038/ncomms15838] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.
Collapse
Affiliation(s)
- Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Frederique Gaits-Iacovoni
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires-I2MC, UMR1048, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Michael Popp
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Adrien Antkowiak
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires-I2MC, UMR1048, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | - Judith M M van Eeuwijk
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Paquita Nurden
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33604 Pessac, France
| | - Simon Stritt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Oguzhan Angay
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Deya Cherpokova
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main and the Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Ayesha A Baig
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Maximilian G Gorelashvili
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Frank Gerner
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansass 72205, USA
| | - Georg Krohne
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037, USA
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33604 Pessac, France
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main and the Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Cord Brakebusch
- BRIC, Biomedical Institute, University of Copenhagen, Nørregade 10, 1165 Copenhagen, Denmark
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
12
|
Stasko J, Galajda P, Ivanková J, Hollý P, Rozborilová E, Kubisz P. Soluble P-Selectin During a Single Hemodialysis Session in Patients With Chronic Renal Failure and Erythropoietin Treatment. Clin Appl Thromb Hemost 2016; 13:410-5. [PMID: 17911193 DOI: 10.1177/1076029607303348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In several studies, hemodialysis (HD) patients treated with recombinant human erythropoietin (rHuEPO) because of renal anemia showed increased levels of soluble adhesion molecules. The purpose of the study was to investigate the changes of soluble P-selectin (sSELP) and its relationship to platelet activation during a single HD session in patients with long-term rHuEPO treatment. Fifty-two HD patients with chronic renal failure were involved—26 with rHuEPO treatment (EPO group) and 26 without (non-EPO group). Thirty healthy subjects served as the control group. The sSELP, β-thromboglobulin, and platelet factor 4 plasma levels were measured before and after a single 4-hour HD session on a cuprophane dialyzer. The basal β-thromboglobulin and platelet factor 4 plasma levels were significantly increased in both HD groups compared with healthy controls but did not change after a single HD session, except for a significant decrease of platelet factor 4 in the non-EPO group. The predialysis sSELP plasma levels did not differ significantly compared with those of the healthy controls, but there was a significant increase of sSELP levels after a single HD session in both groups (EPO, P < .005; non-EPO, P < .05, respectively). These results suppose that the increased sSELP level was released from platelets during the course of a single HD session. The more significant increase of the sSELP plasma levels in EPO group during HD indicates that platelets are more activated in patients with long-term rHuEPO treatment, and this fact could partially explain the suspected tendency for thrombosis in these patients.
Collapse
Affiliation(s)
- Ján Stasko
- National Centre of Haemostasis and Thrombosis, Comenius University, Martin, Slovakia
| | | | | | | | | | | |
Collapse
|
13
|
Williams CM, Savage JS, Harper MT, Moore SF, Hers I, Poole AW. Identification of roles for the SNARE-associated protein, SNAP29, in mouse platelets. Platelets 2015; 27:286-94. [PMID: 26587753 DOI: 10.3109/09537104.2015.1100282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelets are critical for maintaining vascular hemostasis, but also play a major role in the formation of occlusive cardiovascular and cerebrovascular thrombi under disease conditions. Secretion of platelet alpha and dense granules is a requirement for efficient thrombus formation. Understanding and targeting the mechanisms of secretion is important to aid the development of effective antithrombotics. SNAP29 is a tSNARE found in platelets, but whose role has not been defined. Using a platelet-specific SNAP29 knockout mouse model, we assessed the role of SNAP29 in platelet secretion and function under standardized conditions and also in in vitro and in vivo thrombosis. The data showed no major defects in SNAP29-null platelets, but revealed a minor defect in α-granule secretion and a significant increase in embolization rate of thrombi in vivo. These data suggest that SNAP29 contributes to the regulation of platelet α-granule secretion and thrombus stability, possibly partially masked by functional redundancy with other tSNAREs, such as SNAP23.
Collapse
Affiliation(s)
- C M Williams
- a School of Physiology & Pharmacology , University of Bristol , Bristol , UK
| | - J S Savage
- a School of Physiology & Pharmacology , University of Bristol , Bristol , UK.,b Cancer Research UK Clinical Trials Unit (CRCTU), School of Cancer Sciences , University of Birmingham , Edgbaston, Birmingham , UK
| | - M T Harper
- a School of Physiology & Pharmacology , University of Bristol , Bristol , UK.,c Department of Pharmacology , University of Cambridge , Cambridge , UK
| | - S F Moore
- a School of Physiology & Pharmacology , University of Bristol , Bristol , UK
| | - I Hers
- a School of Physiology & Pharmacology , University of Bristol , Bristol , UK
| | - A W Poole
- a School of Physiology & Pharmacology , University of Bristol , Bristol , UK
| |
Collapse
|
14
|
Franchini M, Lippi G. NovoSeven (recombinant factor VIIa) for the treatment of bleeding episodes and perioperative management in patients with Glanzmann's thrombasthenia. Expert Rev Hematol 2015; 7:733-40. [PMID: 25387838 DOI: 10.1586/17474086.2014.980811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glanzmann's thrombasthenia is a rare inherited autosomal recessive bleeding disorder caused by qualitative or quantitative defects of the platelet membrane glycoprotein IIb/IIIa. The ensuing lack of platelet aggregation is frequently associated with mucocutaneous bleeding that may be variable in both frequency and intensity, ranging from minimal bruising to severe and life-threatening hemorrhages. A number of treatment modalities have been proposed to manage the bleeding episodes, which include local measures, antifibrinolytic agents, platelet transfusions and recombinant activated factor VII. The role of this bypassing hemostatic agent for treatment or prevention of bleeding episodes in Glanzmann's thrombasthenia patients is critically analyzed in this review.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, C. Poma Hospital, Mantova, Italy
| | | |
Collapse
|
15
|
Coppola A, Windyga J, Tufano A, Yeung C, Di Minno MND. Treatment for preventing bleeding in people with haemophilia or other congenital bleeding disorders undergoing surgery. Cochrane Database Syst Rev 2015; 2015:CD009961. [PMID: 25922858 PMCID: PMC11245682 DOI: 10.1002/14651858.cd009961.pub2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND In people with haemophilia or other congenital bleeding disorders undergoing surgical interventions, haemostatic treatment is needed in order to correct the underlying coagulation abnormalities and minimise the bleeding risk. This treatment varies according to the specific haemostatic defect, its severity and the type of surgical procedure. The aim of treatment is to ensure adequate haemostatic coverage for as long as the bleeding risk persists and until wound healing is complete. OBJECTIVES To assess the effectiveness and safety of different haemostatic regimens (type, dose and duration, modality of administration and target haemostatic levels) administered in people with haemophilia or other congenital bleeding disorders for preventing bleeding complications during and after surgical procedures. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of the last search: 20 November 2014. SELECTION CRITERIA Randomised and quasi-randomised controlled trials comparing any hemostatic treatment regimen to no treatment or to another active regimen in children and adults with haemophilia or other congenital bleeding disorders undergoing any surgical intervention. DATA COLLECTION AND ANALYSIS Two authors independently assessed trials (eligibility and risks of bias) and extracted data. Meta-analyses were performed on available and relevant data. MAIN RESULTS Of the 16 identified trials, four (112 participants) were eligible for inclusion.Two trials evaluated 59 people with haemophilia A and B undergoing 63 dental extractions. Trials compared the use of a different type (tranexamic acid or epsilon-aminocaproic acid) and regimen of antifibrinolytic agents as haemostatic support to the initial replacement treatment. Neither trial specifically addressed mortality (one of this review's primary outcomes); however, in the frame of safety assessments, no fatal adverse events were reported. The second primary outcome of blood loss was assessed after surgery and these trials showed the reduction of blood loss and requirement of post-operative replacement treatment in people receiving antifibrinolytic agents compared with placebo. The remaining primary outcome of need for re-intervention was not reported by either trial.Two trials reported on 53 people with haemophilia A and B with inhibitors treated with different regimens of recombinant activated factor VII (rFVIIa) for haemostatic coverage of 33 major and 20 minor surgical interventions. Neither of the included trials specifically addressed any of the review's primary outcomes (mortality, blood loss and need for re-intervention). In one trial a high-dose rFVIIa regimen (90 μg/kg) was compared with a low-dose regimen (35 μg/kg); the higher dose showed increased haemostatic efficacy, in particular in major surgery, with shorter duration of treatment, similar total dose of rFVIIa administered and similar safety levels. In the second trial, bolus infusion and continuous infusion of rFVIIa were compared, showing similar haemostatic efficacy, duration of treatment and safety. AUTHORS' CONCLUSIONS There is insufficient evidence from randomised controlled trials to assess the most effective and safe haemostatic treatment to prevent bleeding in people with haemophilia or other congenital bleeding disorders undergoing surgical procedures. Ideally large, adequately powered, and well-designed randomised controlled trials would be needed, in particular to address the cost-effectiveness of such demanding treatments in the light of the increasing present economic constraints, and to explore the new challenge of ageing patients with haemophilia or other congenital bleeding disorders. However, performing such trials is always a complex task in this setting and presently does not appear to be a clinical and research priority. Indeed, major and minor surgeries are effectively and safely performed in these individuals in clinical practice, with the numerous national and international recommendations and guidelines providing regimens for treatment in this setting mainly based on data from observational, uncontrolled studies.
Collapse
|
16
|
Bragadottir G, Birgisdottir ER, Gudmundsdottir BR, Hilmarsdottir B, Vidarsson B, Magnusson MK, Larsen OH, Sorensen B, Ingerslev J, Onundarson PT. Clinical phenotype in heterozygote and biallelic Bernard-Soulier syndrome--a case control study. Am J Hematol 2015; 90:149-55. [PMID: 25370924 DOI: 10.1002/ajh.23891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/06/2022]
Abstract
Bernard-Soulier syndrome (BSS) is a rare severe autosomal recessive bleeding disorder. To date heterozygous carriers of BSS mutations have not been shown to have bleeding symptoms. We assessed bleeding using a semi-quantitative questionnaire, platelet parameters, PFA-100 closure times, ristocetin response, GP Ib/IX expression and VWF antigen in 14 BSS patients, 30 heterozygote carriers for related mutations and 29 controls. Eight mutations in GP1BA, GP1BB or GP9 were identified including four previously unknown pathogenic mutations. Subjects with BSS reported markedly more mucocutaneous bleeding than controls. Increased bleeding was also observed in heterozygotes. Compared to controls, patients with BSS had lower optical platelet counts (P < 0.001), CD61-platelet counts (P < 0.001) and higher mean platelet volume (17.7 vs. 7.8 fL, P < 0.001) and ristocetin response and closure times were unmeasurable. Heterozygotes had higher MPV (9.7 fL, P < 0.001) and lower platelet counts (P < 0.001) than controls but response to ristocetin and closure times were normal. The VWF was elevated in both BSS and in heterozygotes (P = 0.005). We conclude that heterozygotes for BSS mutations have lower platelet counts than controls and show a bleeding phenotype albeit much milder than in BSS. Both patients with BSS and heterozygote carriers of pathogenic mutations have raised VWF.
Collapse
Affiliation(s)
- Gudrun Bragadottir
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
| | - Elisabet R. Birgisdottir
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
| | - Brynja R. Gudmundsdottir
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
| | - Bylgja Hilmarsdottir
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
| | - Brynjar Vidarsson
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
| | - Magnus K. Magnusson
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
- Faculty of Medicine; University of Iceland School of Health Sciences; Reykjavík Iceland
| | - Ole Halfdan Larsen
- Center for Haemophilia and Thrombosis; Aarhus University Hospital; Aarhus Denmark
| | - Benny Sorensen
- Center for Haemophilia and Thrombosis; Aarhus University Hospital; Aarhus Denmark
| | - Jorgen Ingerslev
- Center for Haemophilia and Thrombosis; Aarhus University Hospital; Aarhus Denmark
| | - Pall T. Onundarson
- Laboratory Hematology and Coagulation Disorder Unit; Central Laboratory; Landspitali University Hospital; Reykjavik Iceland
- Faculty of Medicine; University of Iceland School of Health Sciences; Reykjavík Iceland
| |
Collapse
|
17
|
Cox K, Price V, Kahr WHA. Inherited platelet disorders: a clinical approach to diagnosis and management. Expert Rev Hematol 2014; 4:455-72. [DOI: 10.1586/ehm.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Current diagnostic trends in coagulation disorders among dogs and cats. Vet Clin North Am Small Anim Pract 2013; 43:1349-72, vii. [PMID: 24144095 DOI: 10.1016/j.cvsm.2013.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The diagnostic workup to differentiate hemorrhage caused by vascular injury from a systemic hemostatic imbalance typically involves a combination of broad screening tests and specific assays. The characterization of 3 overlapping phases of primary hemostasis, secondary hemostasis, and fibrinolysis provides a simple diagnostic framework for evaluating patients with clinical signs of hemorrhage. New techniques such as flow cytometry, thrombin-generation assays, thrombelastography, and anticoagulant drug monitoring are under investigation for veterinary patients; however, their ability to improve diagnosis or treatment requires further study in clinical trials.
Collapse
|
19
|
Palsson R, Vidarsson B, Gudmundsdottir BR, Larsen OH, Ingerslev J, Sorensen B, Onundarson PT. Complementary effect of fibrinogen and rFVIIa on clottingex vivoin Bernard-Soulier syndrome and combined use during three deliveries. Platelets 2013; 25:357-62. [DOI: 10.3109/09537104.2013.819971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Poirault-Chassac S, Nguyen KA, Pietrzyk A, Casari C, Veyradier A, Denis CV, Baruch D. Terminal platelet production is regulated by von Willebrand factor. PLoS One 2013; 8:e63810. [PMID: 23737952 PMCID: PMC3667798 DOI: 10.1371/journal.pone.0063810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/07/2013] [Indexed: 12/21/2022] Open
Abstract
It is established that proplatelets are formed from mature megakaryocytes (MK) as intermediates before platelet production. Recently, the presence of proplatelets was described in blood incubated in static conditions. We have previously demonstrated that platelet and proplatelet formation is upregulated by MK exposure to high shear rates (1800 s−1) on immobilized von Willebrand factor (VWF). The purpose of the present study was to investigate whether VWF is involved in the regulation of terminal platelet production in blood. To this end, Vwf −/− mice, a model of severe von Willebrand disease, were used to create a situation in which blood cells circulate in a vascular tree that is completely devoid of VWF. Murine platelets were isolated from Vwf −/− and Vwf +/+ blood, exposed to VWF at 1800 s−1 in a microfluidic platform, and examined by means of videomicroscopy, as well as fluorescence and activation studies. Proplatelets became visible within 5 minutes, representing 38% of all platelets after 12 minutes and 46% after 28 min. The proportion of proplatelets was 1.8-fold higher in blood from Vwf−/− mice than from Vwf+/+ mice, suggesting a role of VWF in vivo. Fragmentation of these proplatelets into smaller discoid platelets was also observed in real-time. Platelets remained fully activatable by thrombin. Compensation of plasmatic VWF following hydrodynamic gene transfer in Vwf−/− mice reduced the percentage of proplatelets to wild-type levels. A thrombocytopenic mouse model was studied in the flow system, 7 days after a single 5-FU injection. Compared to untreated mouse blood, a 2-fold increase in the percentage of proplatelets was detected following exposure to 1800 s−1 on VWF of samples from mice treated with 5-FU. In conclusion, VWF and shear stress together appear to upregulate proplatelet reorganization and platelet formation. This suggests a new function for VWF in vivo as regulator of bloodstream thrombopoiesis.
Collapse
Affiliation(s)
- Sonia Poirault-Chassac
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kim Anh Nguyen
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Pietrzyk
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caterina Casari
- INSERM UMR 770, Le Kremlin-Bicetre, France
- Univ Sud Paris, Le Kremlin-Bicetre, France
| | - Agnes Veyradier
- INSERM UMR 770, Le Kremlin-Bicetre, France
- Univ Sud Paris, Le Kremlin-Bicetre, France
- Antoine Béclère Hospital and National Reference Center for von Willebrand disease, Clamart, France
| | - Cecile V. Denis
- INSERM UMR 770, Le Kremlin-Bicetre, France
- Univ Sud Paris, Le Kremlin-Bicetre, France
| | - Dominique Baruch
- INSERM UMR 765, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Berquist R. Menorrhagia and rash in a female adolescent. J Pediatr Health Care 2013; 27:209-14. [PMID: 22613738 DOI: 10.1016/j.pedhc.2012.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022]
|
22
|
Vara DS, Campanella M, Canobbio I, Dunn WB, Pizzorno G, Hirano M, Pula G. Autocrine amplification of integrin αIIbβ3 activation and platelet adhesive responses by deoxyribose-1-phosphate. Thromb Haemost 2013; 109:1108-19. [PMID: 23494007 DOI: 10.1160/th12-10-0751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/13/2013] [Indexed: 12/21/2022]
Abstract
Using direct injection mass spectrometry (DIMS) we discovered that deoxyribose-1-phosphate (dRP) is released by platelets upon activation. Interestingly, the addition of exogenous dRP to human platelets significantly increased platelet aggregation and integrin αIIbβ3 activation in response to thrombin. In parallel, genetically modified platelets with double genetic deletion of thymidine phosphorylase and uridine phosphorylase were characterised by reduced release of dRP, impaired aggregation and decreased integrin αIIbβ3 activation in response to thrombin. In vitro platelet adhesion onto fibrinogen and collagen under physiological flow conditions was potentiated by treatment of human platelets with exogenous dRP and impaired in transgenic platelets with reduced dRP release. Human and mouse platelets responded to dRP treatment with a sizeable increase in reactive oxygen species (ROS) generation and the pre-treament with the antioxidant apocynin abolished the effect of dRP on aggregation and integrin activation. Experiments directly assessing the activation of the small G protein Rap1b and protein kinase C suggested that dRP increases the basal levels of activity of these two pivotal platelet-activating pathways in a redox-dependent manner. Taken together, we present evidence that dRP is a novel autocrine amplifier of platelet activity, which acts on platelet redox levels and modulates integrin αIIbβ3.
Collapse
Affiliation(s)
- Dina S Vara
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Campus, BA2 7AY, Bath, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wilcox DA. Gene Therapy for Platelet Disorders. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Latger-Cannard V, Fenneteau O, Salignac S, Lecompte TP, Schlegel N. Platelet morphology analysis. Methods Mol Biol 2013; 992:207-25. [PMID: 23546716 DOI: 10.1007/978-1-62703-339-8_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelets are very small blood cells (1.5-3 μm), which play a major role in primary haemostasis and in coagulation mechanisms. Platelet characterization requires their counting (see Chapter 15 ) associated with accurate morphology analysis. We describe the major steps in order to correctly obtain stained blood films, which can be analyzed by optical microscope. Platelet morphology abnormalities are found in acquired malignant hematological diseases such myeloproliferative or myelodysplastic syndromes and acute megakaryoblastic leukemia. A careful analysis of the platelet size and morphology, by detecting either normal platelets with or without excessive anisocytosis, microplatelets, or large/giant platelets, will contribute to inherited thrombocytopenia diagnosis and gather substantial data when looking for an acquired platelet disorders.
Collapse
Affiliation(s)
- Véronique Latger-Cannard
- Hematology Department and Grand East Competence Center on Inherited Platelet Disorders, CHU Nancy, Nancy, France
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Platelet (PLT) production represents the final stage of megakaryocyte (MK) development. During differentiation, bone marrow MKs extend and release long, branched proPLTs into sinusoidal blood vessels, which undergo repeated abscissions to yield circulating PLTs. Circular-prePLTs are dynamic intermediate structures in this sequence that have the capacity to reversibly convert into barbell-proPLTs and may be related to "young PLTs" and "large PLTs" of both inherited and acquired macrothrombocytopenias. Conversion is regulated by the diameter and thickness of the peripheral microtubule coil, and PLTs are capable of enlarging in culture to generate barbell-proPLTs that divide to yield 2 smaller PLT products. Because PLT number and size are inversely proportional, this raises the question: do macrothrombocytopenias represent a failure in the intermediate stages of PLT production? This review aims to bring together and contextualize our current understanding of terminal PLT production against the backdrop of human macrothrombocytopenias to establish how "large PLTs" observed in both conditions are similar, how they are different, and what they can teach us about PLT formation. A better understanding of the cytoskeletal mechanisms that regulate PLT formation and determine PLT size offers the promise of improved therapies for clinical disorders of PLT production and an important source of PLTs for infusion.
Collapse
|
27
|
Thon JN, Macleod H, Begonja AJ, Zhu J, Lee KC, Mogilner A, Hartwig JH, Italiano JE. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 2012; 3:852. [DOI: 10.1038/ncomms1838] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/11/2012] [Indexed: 01/17/2023] Open
|
28
|
Valera MC, Kemoun P, Cousty S, Sie P, Payrastre B. Inherited platelet disorders and oral health. J Oral Pathol Med 2012; 42:115-24. [PMID: 22583386 DOI: 10.1111/j.1600-0714.2012.01151.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Platelets play a key role in thrombosis and hemostasis. Accumulation of platelets at the site of vascular injury is the first step in the formation of hemostatic plugs, which play a pivotal role in preventing blood loss after injury. Platelet adhesion at sites of injury results in spreading, secretion, recruitment of additional platelets, and formation of platelet aggregates. Inherited platelet disorders are rare causes of bleeding syndromes, ranging from mild bruising to severe hemorrhage. The defects can reflect deficiency or dysfunction of platelet surface glycoproteins, granule contents, cytoskeletal proteins, platelet pro-coagulant function, and signaling pathways. For instance, Bernard-Soulier syndrome and Glanzmann thrombasthenia are attributed to deficiencies of glycoprotein Ib/IX/V and GPIIb/IIIa, respectively, and are rare but severe platelet disorders. Inherited defects that impair platelet secretion and/or signal transduction are among the most common forms of mild platelet disorders and include gray platelet syndrome, Hermansky-Pudlak syndrome, and Chediak-Higashi syndrome. When necessary, desmopressin, antifibrinolytic agents, and transfusion of platelets remain the most common treatment of inherited platelet disorders. Alternative therapies such as recombinant activated factor VII are also available for a limited number of situations. In this review, we will discuss the management of patients with inherited platelet disorders in various clinical situations related to dental cares, including surgical intervention.
Collapse
Affiliation(s)
- Marie-Cécile Valera
- INSERM, U1048, Université Toulouse 3, I2MC, Equipe 11, CHU-Rangueil, Toulouse, France
| | | | | | | | | |
Collapse
|
29
|
LATGER-CANNARD V, HOARAU M, SALIGNAC S, BAUMGART D, NURDEN P, LECOMPTE T. Mean platelet volume: comparison of three analysers towards standardization of platelet morphological phenotype. Int J Lab Hematol 2012; 34:300-10. [DOI: 10.1111/j.1751-553x.2011.01396.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Blood platelet production and morphology. Thromb Res 2012; 129:241-4. [PMID: 22226434 DOI: 10.1016/j.thromres.2011.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/02/2023]
Abstract
Circulating platelets are highly specialized cells produced by megakaryocytes (Mks) that participate in hemostatic and inflammatory functions. Despite their critical role little is known about the molecular mechanisms involved in their production from megakaryocytes, or about the pathogenesis of platelet disorders. Megakaryopoiesis occurs in a complex microenvironment within the bone marrow. The underlying relationships between Mk maturation and bone marrow components are key factors in this process. Mk interactions with extracellular matrices (ECM) via specific surface receptors control many functions, with chemistry, physical parameters and membrane elasticity as fundamental elements of the processes involved. Alteration of Mk-ECM interactions in the bone marrow environment may lead to pathophysiologic situations, such as myelofibrosis and congenital thrombocytopenia. Searching the mechanisms related to Mks-bone marrow environment interactions, will provide novel insight into fundamental control of Mk function, leading to new concepts in the study of Mk-related disease states and future modes for therapeutic inquiry.
Collapse
|
31
|
Abstract
Platelets pose unique challenges to cell biologists due to their lack of nucleus and low levels of messenger RNA. Platelets cannot be cultured in great abundance or manipulated using common recombinant DNA technologies. As a result, platelet research has lagged behind that of nucleated cells. The advent of mass spectrometry and its application to protein biochemistry brought with it great hopes for the platelet community that are now being realized. This technology is ideally suited for identifying low-abundance proteins, protein-protein interactions, and post-translational modifications in complex protein mixtures. Over the past 10 years, proteomics has delivered in many ways, providing platelet biologists with a comprehensive list of proteins expressed in platelets, information on post-translational modifications, protein interactions and sub-cellular localization. Several novel and important platelet membrane proteins, including CLEC-2, CD148, G6b-B, G6f, and Hsp47, have been identified using proteomics-based approaches. New, more sensitive instrumentation and novel approaches are making it increasingly possible to identify ever lower amounts of proteins. In this chapter we highlight some of the major achievements of platelet proteomics to date, discussing challenges and how they were overcome. We also discuss new frontiers and applications of proteomics to platelets and microparticles in health and disease, as we strive to better understand the molecular mechanisms underlying the platelet response to vascular injury.
Collapse
Affiliation(s)
- Yotis Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
32
|
González-Villalva A, Piñón-Zárate G, De la Peña Díaz A, Flores-García M, Bizarro-Nevares P, Rendón-Huerta EP, Colín-Barenque L, Fortoul TI. The effect of vanadium on platelet function. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:447-456. [PMID: 22004965 DOI: 10.1016/j.etap.2011.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/04/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
Vanadium pentoxide (V(2)O(5)) inhalation effect on platelet function in mice was explored, as well as the in vitro effect on human platelets. Mouse blood samples were collected and processed for aggregometry and flow cytometry to assess the presence of P-selectin and monocyte-platelet conjugates. Simultaneously, human platelets were processed for aggregometry(.) The mouse results showed platelet aggregation inhibition in platelet-rich-plasma (PRP) at four-week exposure time, and normality returned at eight weeks of exposure, remaining unchanged after the exposure was discontinued after four weeks. This platelet aggregation inhibition effect was reinforced with the in vitro assay. In addition, P-selectin preserved their values during the exposure, until the exposure was discontinued during four weeks, when this activation marker increased. We conclude that vanadium affects platelet function, but further studies are required to evaluate its effect on other components of the hemostatic system.
Collapse
Affiliation(s)
- Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, CP 04510, Mexico City, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Platelet-type Von Willebrand disease: Three decades in the life of a rare bleeding disorder. Blood Rev 2011; 25:147-53. [DOI: 10.1016/j.blre.2011.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Dunois-Lardé C, Baruch D. [In vitro platelet production]. Transfus Clin Biol 2011; 18:158-64. [PMID: 21411355 DOI: 10.1016/j.tracli.2011.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/28/2022]
Abstract
This review aims at presenting a state of the art on platelet functions, not only in well-characterized hemostasis and thrombosis, but also in various domains such as inflammation, immunity, angiogenesis, source of growth factors, metastasis and vascular remodelling. This multivalent phenotype of platelets suggests new potential applications of platelets. The second objective is to present new advances in platelet formation from megakaryocytes and direct platelet release, as initially shown by our group and more recently by others.
Collapse
Affiliation(s)
- C Dunois-Lardé
- Unité 765, Inserm, 4, avenue de l'Observatoire, 75270 Paris cedex 06, France
| | | |
Collapse
|
35
|
Abstract
Thrombocytopenia is the underlying cause of a number of major clinical conditions and genetic disorders worldwide. While therapeutic agents that bind and stimulate the thrombopoietin receptor are currently available, the development of drugs that directly stimulate megakaryocytes to generate platelets has lagged behind. To improve the management of thrombocytopenia, we will need to define the cell biological pathways that drive the production of platelets from megakaryocytes. This review integrates the latest research of platelet biogenesis and focuses on the molecular pathways that power and regulate proplatelet production.
Collapse
Affiliation(s)
- Jonathan N Thon
- Translational Medicine Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Knöfler R, Streif W. Strategies in Clinical and Laboratory Diagnosis of Inherited Platelet Function Disorders in Children. ACTA ACUST UNITED AC 2010; 37:231-235. [PMID: 21113245 DOI: 10.1159/000320762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Inherited disorders of platelet function are a rare and heterogeneous group of diseases usually characterised by a mild to moderate bleeding tendency. Typical bleeding symptoms are easy bruising, epistaxis, menorrhagia as well as mucocutaneous and perioperative bleeding. The performance of platelet function diagnostics in children is hampered by age-dependent restriction of blood sample size, poor venous access, and the lack of reproducible test reference ranges for children of different age groups. Platelet function testing is limited to specialised centres, because platelet function test procedures are complicated and time-consuming, which most likely results in a relevant number of undiagnosed and incorrectly classified children with clinically relevant platelet function defects. Evaluation of bleeding history and bleeding symptoms is essential for a rational step-by-step approach to diagnosis. Platelet function diagnostics should be preceded by the exclusion of thrombocytopenia, von Willebrand disease, and secondary haemostasis defects. Light transmission aggregometry is still considered the standard for the assessment of platelet function. Every effort should be made to classify the specific platelet function defect in the patient, because this is essential for accurate treatment and counselling.
Collapse
Affiliation(s)
- Ralf Knöfler
- Children's Hospital, Carl Gustav Carus Dresden University Hospital, Dresden, Germany
| | | |
Collapse
|
37
|
Gruel Y. [Specificities of neonatal hemostasis and implications in pathologic situations]. Arch Pediatr 2010; 17 Suppl 3:S93-100. [PMID: 20728815 DOI: 10.1016/s0929-693x(10)70907-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The haemostasis of healthy newborn differs from those of normal adult but remains well balanced without bleeding or thrombosis. However, this equilibrium is unstable, and the neonate is exposed to acquired or inherited haemostasis disorders that necessitate to be early diagnosed in order to be appropriately treated. Several studies provided reference ranges for haemostatic components in the foetus, the newborn and throughout childhood. The particularities of neonatal haemostasis are therefore better defined and contribute to further understand the pathophysiology and characteristics of hemorrhagic and thrombotic disorders that occur in newborns. Some examples of the impact of age on haemostasis are: the risk of neonatal alloimmune thrombocytopenia is high in the first newborn of a woman at risk since the involved antigens are fully expressed by foetal platelets; the newborn is at risk for vitamin K deficiency with bleeding due to poor transport of vitamin K across the placenta and low levels of coagulation factors II, VII, IX, X; the diagnosis of some inherited coagulation deficiencies can be difficult in the newborn due to physiologically low levels of coagulation factors; thrombotic events are rare in the healthy neonate, despite physiologically very low levels of several coagulation inhibitors; the pharmacokinetic and effects of antithrombotic agents are influenced by the specificities of haemostasis in neonates. This review will discuss about the foetal development of haemostasis until birth, and some implications regarding the pathophysiology, the diagnosis and the treatment of bleeding disorders in the human neonate.
Collapse
Affiliation(s)
- Y Gruel
- Service d'Hématologie-Hémostase, Hôpital Trousseau, 37044 Tours cedex 9, France.
| |
Collapse
|
38
|
Roxo Júnior P. Primary immunodeficiency diseases: relevant aspects for pulmonologists. J Bras Pneumol 2010; 35:1008-17. [PMID: 19918634 DOI: 10.1590/s1806-37132009001000010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/31/2009] [Indexed: 11/22/2022] Open
Abstract
Primary immunodeficiency diseases comprise a genetically heterogeneous group of disorders that affect distinct components of the innate and adaptive immune system, such as neutrophils, macrophages, dendritic cells, complement proteins and natural killer cells, as well as T and B lymphocytes. The study of these diseases has provided essential insights into the functioning of the immune system. Primary immunodeficiency diseases have been linked to over 120 different genes, abnormalities in which account for approximately 180 different forms of these diseases. Patients with primary immunodeficiency diseases are most often recognized because of their increased susceptibility to infections. However, these patients can also present with a variety of other manifestations, such as autoimmune diseases, inflammatory diseases and cancer. The purpose of this article is to update the main aspects of primary immunodeficiency diseases, especially regarding the clinical manifestations related to the diagnosis, emphasizing the need for the early recognition of warning signs for these diseases.
Collapse
Affiliation(s)
- Pérsio Roxo Júnior
- University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, Brazil.
| |
Collapse
|
39
|
Jallu V, Dusseaux M, Panzer S, Torchet MF, Hezard N, Goudemand J, de Brevern AG, Kaplan C. αIIbβ3 integrin: new allelic variants in Glanzmann thrombasthenia, effects onITGA2BandITGB3mRNA splicing, expression, and structure-function. Hum Mutat 2010; 31:237-46. [DOI: 10.1002/humu.21179] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Jackson SP, Schoenwaelder SM. PI 3-Kinase p110β regulation of platelet integrin α(IIb)β3. Curr Top Microbiol Immunol 2010; 346:203-24. [PMID: 20517720 DOI: 10.1007/82_2010_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hemopoietic cells express relatively high levels of the type I phosphoinositide (PI) 3-kinase isoforms, with p110δ and γ exhibiting specialized signaling functions in neutrophils, monocytes, mast cells, and lymphocytes. In platelets, p110β appears to be the dominant PI 3-kinase isoform regulating platelet activation, irrespective of the nature of the primary platelet activating stimulus. Based on findings with isoform-selective p110β pharmacological inhibitors and more recently with p110β-deficient platelets, p110β appears to primarily signal downstream of G(i)- and tyrosine kinase-coupled receptors. Functionally, inhibition of p110β kinase function leads to a marked defect in integrin α(IIb)β₃ adhesion and reduced platelet thrombus formation in vivo. This defect in platelet adhesive function is not associated with increased bleeding, suggesting that therapeutic targeting of p110β may represent a safe approach to reduce thrombotic complications in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Shaun P Jackson
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
41
|
Abstract
A great many cell types are necessary for the myriad capabilities of complex, multicellular organisms. One interesting aspect of this diversity of cell type is that many cells in diploid organisms are polyploid. This is called endopolyploidy and arises from cell cycles that are often characterized as "variant," but in fact are widespread throughout nature. Endopolyploidy is essential for normal development and physiology in many different organisms. Here we review how both plants and animals use variations of the cell cycle, termed collectively as endoreplication, resulting in polyploid cells that support specific aspects of development. In addition, we discuss briefly how endoreplication occurs in response to certain physiological stresses, and how it may contribute to the development of cancer. Finally, we describe the molecular mechanisms that support the onset and progression of endoreplication.
Collapse
|
42
|
Pretorius E, Oberholzer HM, van der Spuy WJ, Meiring JH. Macrothrombocytopenia: Investigating the Ultrastructure of Platelets and Fibrin Networks Using Scanning and Transmission Electron Microscopy. Ultrastruct Pathol 2009; 33:216-21. [DOI: 10.3109/01913120903288587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Franchini M, Favaloro EJ, Lippi G. Glanzmann thrombasthenia: an update. Clin Chim Acta 2009; 411:1-6. [PMID: 19854165 DOI: 10.1016/j.cca.2009.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/03/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare autosomal recessive disorder characterized by qualitative or quantitative abnormalities of the platelet membrane glycoprotein (GP) IIb/IIIa. Physiologically, this platelet receptor normally binds several adhesive plasma proteins, and this facilitates attachment and aggregation of platelets to ensure thrombus formation at sites of vascular injury. The lack of resultant platelet aggregation in GT leads to mucocutaneous bleeding whose manifestation may be clinically variable, ranging from easy bruising to severe and potentially life-threatening hemorrhages. In this review we discuss the main characteristics of GT, focusing on molecular defects, diagnostic evaluation and treatment strategies.
Collapse
Affiliation(s)
- Massimo Franchini
- Servizio di Immunoematologia e Medicina Trasfusionale, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | | | | |
Collapse
|
44
|
Cesar JM, Vecino AM. Survival and function of transfused platelets. Studies in two patients with congenital deficiencies of platelet membrane glycoproteins. Platelets 2009; 20:158-62. [DOI: 10.1080/09537100902751925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Abstract
Platelets originate from megakaryocytes (MKs) by cytoplasmic elongation into proplatelets. Direct platelet release is not seen in bone marrow hematopoietic islands. It was suggested that proplatelet fragmentation into platelets can occur intravascularly, yet evidence of its dependence on hydrodynamic forces is missing. Therefore, we investigated whether platelet production from MKs could be up-regulated by circulatory forces. Human mature MKs were perfused at a high shear rate on von Willebrand factor. Cells were observed in real time by videomicroscopy, and by confocal and electron microscopy after fixation. Dramatic cellular modifications followed exposure to high shear rates: 30% to 45% adherent MKs were converted into proplatelets and released platelets within 20 minutes, contrary to static conditions that required several hours, often without platelet release. Tubulin was present in elongated proplatelets and platelets, thus ruling out membrane tethers. By using inhibitors, we demonstrated the fundamental roles of microtubule assembly and MK receptor GPIb. Secretory granules were present along the proplatelet shafts and in shed platelets, as shown by P-selectin labeling. Platelets generated in vitro were functional since they responded to thrombin by P-selectin expression and cytoskeletal reorganization. In conclusion, MK exposure to high shear rates promotes platelet production via GPIb, depending on microtubule assembly and elongation.
Collapse
|
46
|
Sustained engraftment and resolution of bleeding phenotype after unrelated cord blood hematopoietic stem cell transplantation for severe glanzmann thrombasthenia. J Pediatr Hematol Oncol 2009; 31:437-9. [PMID: 19648793 DOI: 10.1097/mph.0b013e31819b7228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glanzmann thrombasthenia is a rare, autosomal recessive, qualitative platelet disorder resulting from abnormal platelet surface glycoprotein IIb/IIIa. In phenotypically severe cases, medical management is often challenging. Although definitive hemostasis can be achieved with platelet transfusion, alloimmunization and subsequent platelet refractoriness remain a real risk. To date, only hematopoietic stem cell transplantation has been curative; however, suitable donor availability can be a barrier for some patients. We are the first to report the use of umbilical cord blood hematopoietic stem cell transplantation for Glanzmann thrombasthenia.
Collapse
|
47
|
Balduini A, Malara A, Pecci A, Badalucco S, Bozzi V, Pallotta I, Noris P, Torti M, Balduini CL. Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano. J Thromb Haemost 2009; 7:478-84. [PMID: 19067792 DOI: 10.1111/j.1538-7836.2008.03255.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although mutations of GPIb alpha are among the most frequent causes of inherited platelet disorders, the mechanisms for the onset of thrombocytopenia and platelet macrocytosis are still poorly defined. OBJECTIVE In this work we analyzed in vitro megakaryocyte differentiation and proplatelet formation in six subjects heterozygous for the Ala156Val mutation in the GPIb alpha (Bolzano mutation). METHODS Human megakaryocytes were obtained by differentiation of patient cord blood-derived CD34(+) cells and peripheral blood-derived CD45(+) cells. Proplatelet formation was evaluated by phase contrast and fluorescence microscopy. RESULTS Megakaryocyte differentiation from both cord blood (one patient) and peripheral blood (five patients) was comparable to controls. However, proplatelet formation was reduced by about 50% with respect to controls. An identical defect of proplatelet formation was observed when megakaryocytes were plated on fibrinogen, von Willebrand factor or grown in suspension. Morphological evaluation of proplatelet formation revealed an increased size of proplatelet tips, which was consistent with the increased diameters of patients' blood platelets. Moreover, alpha-tubulin distribution within proplatelets was severely deranged. CONCLUSIONS Megakaryocytes from patients carrying a Bolzano allele of GPIb alpha display both quantitative and qualitative abnormalities of proplatelet formation in vitro. These results suggest that a defect of platelet formation contributes to macrothrombocytopenia associated to the Bolzano mutation, and indicate a key role for GPIb alpha in proplatelet formation.
Collapse
Affiliation(s)
- A Balduini
- Department of Biochemistry, University of Pavia - IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood 2009; 113:3831-7. [PMID: 19221038 DOI: 10.1182/blood-2008-10-184234] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mean platelet volume (MPV) and platelet count (PLT) are highly heritable and tightly regulated traits. We performed a genome-wide association study for MPV and identified one SNP, rs342293, as having highly significant and reproducible association with MPV (per-G allele effect 0.016 +/- 0.001 log fL; P < 1.08 x 10(-24)) and PLT (per-G effect -4.55 +/- 0.80 10(9)/L; P < 7.19 x 10(-8)) in 8586 healthy subjects. Whole-genome expression analysis in the 1-MB region showed a significant association with platelet transcript levels for PIK3CG (n = 35; P = .047). The G allele at rs342293 was also associated with decreased binding of annexin V to platelets activated with collagen-related peptide (n = 84; P = .003). The region 7q22.3 identifies the first QTL influencing platelet volume, counts, and function in healthy subjects. Notably, the association signal maps to a chromosome region implicated in myeloid malignancies, indicating this site as an important regulatory site for hematopoiesis. The identification of loci regulating MPV by this and other studies will increase our insight in the processes of megakaryopoiesis and proplatelet formation, and it may aid the identification of genes that are somatically mutated in essential thrombocytosis.
Collapse
|
49
|
Gibbins JM. Tweaking the gain on platelet regulation: the tachykinin connection. Atherosclerosis 2008; 206:1-7. [PMID: 19150714 DOI: 10.1016/j.atherosclerosis.2008.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/30/2008] [Accepted: 12/08/2008] [Indexed: 01/18/2023]
Abstract
Soluble factors such as ADP and thromboxane (TX) A(2) that are secreted or released by platelets at sites of tissue injury, mediate autocrine and paracrine regulation of platelet function, resulting in rapid localised thrombus formation. The suppression of platelet function, particularly through targeting such secondary regulatory mechanisms, that serve to 'fine-tune' the platelet response, has proven effective in the prevention of inappropriate platelet activation that results in thrombosis. The most commonly used anti-platelet approaches (ADP receptor antagonism or inhibition of TXA(2) synthesis), however, lack efficacy in many patients, suggesting the existence of additional uncharacterised mechanisms for the regulation of platelet function. Recent data, which form a focus of this review, have identified peripheral tachykinin peptide family members, such as substance P and the newly identified endokinins, as physiologically important positive feedback regulators of platelet function. The actions of tachykinins that are released from platelets during activation are mediated by the neurokinin-1 receptor. Initial analysis of the role of this receptor in platelet thrombus formation, and thrombosis in the mouse, indicate this to be a promising new target for the development of anti-thrombotic drugs.
Collapse
Affiliation(s)
- Jonathan M Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Hopkins Building, Whiteknights, Reading, Berkshire, UK.
| |
Collapse
|
50
|
Balduini A, Pallotta I, Malara A, Lova P, Pecci A, Viarengo G, Balduini CL, Torti M. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes. J Thromb Haemost 2008; 6:1900-7. [PMID: 18752571 DOI: 10.1111/j.1538-7836.2008.03132.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Megakaryocytes release platelets from the tips of cytoplasmic extensions, called proplatelets. In humans, the regulation of this process is still poorly characterized. OBJECTIVE To analyse the regulation of proplatelet formation by megakaryocyte adhesion to extracellular adhesive proteins through different membrane receptors. METHODS Human megakaryocytes were obtained by differentiation of cord blood-derived CD34(+) cells, and proplatelet formation was evaluated by phase contrast and fluorescence microscopy. RESULTS We found that human megakaryocytes extended proplatelets in a time-dependent manner. Adhesion to fibrinogen, fibronectin or von Willebrand factor (VWF) anticipated the development of proplatelets, but dramatically limited both amplitude and duration of the process. Type I, but not type III or type IV, collagen totally suppressed proplatelet extension, and this effect was overcome by the myosin IIA antagonist blebbistatin. Integrin alphaIIbbeta3 was essential for megakaryocyte spreading on fibrinogen or VWF, but was not required for proplatelet formation. In contrast, proplatelet formation was prevented by blockade of GPIb-IX-V, or upon cleavage of GPIbalpha by the metalloproteinase mocarhagin. Membrane-associated VWF was detected exclusively on proplatelet-forming megakaryocytes, but not on round mature cells that do not extend proplatelets. CONCLUSIONS Our findings show that proplatelet formation in human megakaryocytes undergoes a complex spatio-temporal regulation orchestrated by adhesive proteins, GPIb-IX-V and myosin IIA.
Collapse
Affiliation(s)
- A Balduini
- Department of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|