1
|
Huang L, Zhu Y, Kong Q, Guan X, Lei X, Zhang L, Yang H, Yao X, Liang S, An X, Yu J. Inhibition of Integrin α vβ 3-FAK-MAPK signaling constrains the invasion of T-ALL cells. Cell Adh Migr 2023; 17:1-14. [PMID: 36944577 PMCID: PMC10038045 DOI: 10.1080/19336918.2023.2191913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The role of adhesion receptor integrin αvβ3 in T-ALL was unclear. Firstly, we performed quantitative real-time PCR to assess medullary expression of integrin β3(ITGB3) in T-ALL patients and high ITGB3 expression was relevant with the central nervous system leukemia(CNSL) incidence. Decreasing of cell invasion was observed in Jurkat and Molt4 treated with integrin αvβ3 specific antibody and inhibitor as well as cells with ITGB3 interference. Further, phosphorylation of FAK, cRAF, MEK and ERK decreased in cells with integrin αvβ3 inhibition or interference. Invasion decreased in T-ALL cells treated with FAK and ERK inhibitors. In conclusion, inhibition of integrin αvβ3 signals significantly limits the cell invasion of T-ALL cells.
Collapse
Affiliation(s)
- Lan Huang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhu
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinglin Kong
- Department of Hematology and Oncology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianmin Guan
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaoying Lei
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Luying Zhang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Yang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinyuan Yao
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shaoyan Liang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xizhou An
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Yu
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
2
|
Chi Y, Yang G, Guo C, Zhang S, Hong L, Tang H, Sang X, Wang J, Ma J, Xue Y, Zeng F. Identification of Cellular Compositions in Different Microenvironments and Their Potential Impacts on Hematopoietic Stem Cells HSCs Using Single-Cell RNA Sequencing with Systematical Confirmation. Life (Basel) 2023; 13:2157. [PMID: 38004297 PMCID: PMC10671877 DOI: 10.3390/life13112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are stem cells that can differentiate into various blood cells and have long-term self-renewal capacity. At present, HSC transplantation is an effective therapeutic means for many malignant hematological diseases, such as aplastic hematological diseases and autoimmune diseases. The hematopoietic microenvironment affects the proliferation, differentiation, and homeostasis of HSCs. The regulatory effect of the hematopoietic microenvironment on HSCs is complex and has not been thoroughly studied yet. In this study, we focused on mononuclear cells (MNCs), which provided an important microenvironment for HSCs and established a methodological system for identifying cellular composition by means of multiple technologies and methods. First, single-cell RNA sequencing (scRNA-seq) technology was used to investigate the cellular composition of cells originating from different microenvironments during different stages of hematopoiesis, including mouse fetal liver mononuclear cells (FL-MNCs), bone marrow mononuclear cells (BM-MNCs), and in vitro-cultured fetal liver stromal cells. Second, bioinformatics analysis showed a higher proportion and stronger proliferation of the HSCs in FL-MNCs than those in BM-MNCs. On the other hand, macrophages in in vitro-cultured fetal liver stromal cells were enriched to about 76%. Differential gene expression analysis and Gene Ontology (GO) functional enrichment analysis demonstrated that fetal liver macrophages have strong cell migration and actin skeleton formation capabilities, allowing them to participate in the hematopoietic homeostasis through endocytosis and exocytosis. Last, various validation experiments such as quantitative real-time PCR (qRT-PCR), ELISA, and confocal image assays were performed on randomly selected target genes or proteins secreted by fetal liver macrophages to further demonstrate the potential relationship between HSCs and the cells inhabiting their microenvironment. This system, which integrates multiple methods, could be used to better understand the fate of these specific cells by determining regulation mechanism of both HSCs and macrophages and could also be extended to studies in other cellular models.
Collapse
Affiliation(s)
- Yanan Chi
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Shaoqing Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Huixiang Tang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Xiao Sang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Jie Wang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Ji Ma
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yan Xue
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
3
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Lee K, Ahn HS, Estevez B, Poncz M. RUNX1-deficient human megakaryocytes demonstrate thrombopoietic and platelet half-life and functional defects. Blood 2023; 141:260-270. [PMID: 36219879 PMCID: PMC9936297 DOI: 10.1182/blood.2022017561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
Heterozygous defects in runt-related transcription factor 1 (RUNX1) are causative of a familial platelet disorder with associated myeloid malignancy (FPDMM). Because RUNX1-deficient animal models do not mimic bleeding disorder or leukemic risk associated with FPDMM, development of a proper model system is critical to understanding the underlying mechanisms of the observed phenotype and to identifying therapeutic interventions. We previously reported an in vitro megakaryopoiesis system comprising human CD34+ hematopoietic stem and progenitor cells that recapitulated the FPDMM quantitative megakaryocyte defect through a decrease in RUNX1 expression via a lentiviral short hairpin RNA strategy. We now show that shRX-megakaryocytes have a marked reduction in agonist responsiveness. We then infused shRX-megakaryocytes into immunocompromised NOD scid gamma (NSG) mice and demonstrated that these megakaryocytes released fewer platelets than megakaryocytes transfected with a nontargeting shRNA, and these platelets had a diminished half-life. The platelets were also poorly responsive to agonists, unable to correct thrombus formation in NSG mice homozygous for a R1326H mutation in von Willebrand Factor (VWFR1326H), which switches the species-binding specificity of the VWF from mouse to human glycoprotein Ibα. A small-molecule inhibitor RepSox, which blocks the transforming growth factor β1 (TGFβ1) pathway and rescued defective megakaryopoiesis in vitro, corrected the thrombopoietic defect, defects in thrombus formation and platelet half-life, and agonist response in NSG/VWFR1326H mice. Thus, this model recapitulates the defects in FPDMM megakaryocytes and platelets, identifies previously unrecognized defects in thrombopoiesis and platelet half-life, and demonstrates for the first time, reversal of RUNX1 deficiency-induced hemostatic defects by a drug.
Collapse
Affiliation(s)
- Kiwon Lee
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hyun Sook Ahn
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brian Estevez
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Abstract
Human induced pluripotent stem cells (iPSCs), since their discovery in 2007, have rapidly become a starting cell type of choice for the differentiation of many mature cell types. Their flexibility, amenability to gene editing and functional equivalence to embryonic stem cells ensured their subsequent adoption by many manufacturing processes for cellular products. In this chapter, we will discuss the process whereby iPSCs are generated, key quality control steps which should be considered during manufacturing, the application of good manufacturing practice to production processes and iPSC-derived cellular products which are already undergoing clinical trials. iPSCs provide a new avenue for the next generation of cellular therapeutics and by combining new differentiation protocols, quality control and reproducible manufacturing, iPSC-derived cellular products could provide treatments for many currently untreatable diseases, allowing the large-scale manufacture of high-quality cell therapies.
Collapse
Affiliation(s)
- Moyra Lawrence
- Centre for iPS Cell Research and Application (CiRA) and Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Toward in Vitro Production of Platelet from Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:2376-2387. [PMID: 35397051 DOI: 10.1007/s12015-022-10366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Platelets (PLTs) are small anucleate blood cells that release from polyploidy megakaryocytes(MKs). PLT transfusion is standard therapy to prevent hemorrhage. PLT transfusion is donor-dependent way which have limitations including the inadequate donor blood supply, poor quality, and issues related to infection and immunity. Overcoming these obstacles is possible with in vitro production of human PLTs. Currently several cells have been considered as source to in vitro production of PLTs such as hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, HSCs are a limited source for PLT production and large-scale expansion of HSC-derived PLT remains difficult. Alternative sources can be ESCs which have unlimited expansion capacity. But ESCs have ethical issues related to destroying human embryos. iPSCs are considered as an ideal unlimited source for PLT production. They are able to differentiate into any cells and have the capacity of self-renewal. Moreover, iPSCs can be acquired from any donor and easily manipulated. Due to new advances in development of MK cell lines, bioreactors, feeder cell-free production and the ability of large scale generation, iPSC-based PLTs are moving toward clinical applicability and considering the minimal risk of alloimmunization and tumorigenesis of these products, there is great hopefulness they will become the standard source for blood transfusions in the future. This review will focus on how to progress of in vitro generation of PLT from stem cell especially iPSCs and some of the successful strategies that can be easily used in clinic will be described.
Collapse
|
7
|
Figueiredo C, Blasczyk R. Generation of HLA Universal Megakaryocytes and Platelets by Genetic Engineering. Front Immunol 2021; 12:768458. [PMID: 34777386 PMCID: PMC8579098 DOI: 10.3389/fimmu.2021.768458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Patelet transfusion refractoriness remains a relevant hurdle in the treatment of severe alloimmunized thrombocytopenic patients. Antibodies specific for the human leukocyte antigens (HLA) class I are considered the major immunological cause for PLT transfusion refractoriness. Due to the insufficient availability of HLA-matched PLTs, the development of new technologies is highly desirable to provide an adequate management of thrombocytopenia in immunized patients. Blood pharming is a promising strategy not only to generate an alternative to donor blood products, but it may offer the possibility to optimize the therapeutic effect of the produced blood cells by genetic modification. Recently, enormous technical advances in the field of in vitro production of megakaryocytes (MKs) and PLTs have been achieved by combining progresses made at different levels including identification of suitable cell sources, cell pharming technologies, bioreactors and application of genetic engineering tools. In particular, use of RNA interference, TALEN and CRISPR/Cas9 nucleases or nickases has allowed for the generation of HLA universal PLTs with the potential to survive under refractoriness conditions. Genetically engineered HLA-silenced MKs and PLTs were shown to be functional and to have the capability to survive cell- and antibody-mediated cytotoxicity using in vitro and in vivo models. This review is focused on the methods to generate in vitro genetically engineered MKs and PLTs with the capacity to evade allogeneic immune responses.
Collapse
Affiliation(s)
- Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Liu H, Liu J, Wang L, Zhu F. In vitro Generation of Megakaryocytes and Platelets. Front Cell Dev Biol 2021; 9:713434. [PMID: 34458269 PMCID: PMC8397471 DOI: 10.3389/fcell.2021.713434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Platelets, the tiny anucleate cells responsible for stopping bleeding through thrombosis, are derived from hematopoietic stem cells through a series of differentiation steps. Thrombocytopenia, characterized by abnormally low blood platelet counts, may arise from cancer therapies, trauma, sepsis, as well as blood disorders, and could become a life-threatening problem. Platelet transfusion is the most effective strategy to treat thrombocytopenia, however, the source of platelets is in great shortage. Therefore, in vitro generation of platelets has become an important topic and numerous attempts have been made toward generating platelets from different types of cells, including hematopoietic stem cells, pluripotent stem cells, fibroblast cells, and adipose-derived cells. In this review, we will detail the efforts made to produce, in the in vitro culture, platelets from these different cell types. Importantly, as transfusion medicine requires a huge number of platelets, we will highlight some studies on producing platelets on a large scale. Although new methods of gene manipulation, new culture conditions, new cytokines and chemical compounds have been introduced in platelet generation research since the first study of hematopoietic stem cell-derived platelets nearly 30 years ago, limited success has been achieved in obtaining truly mature and functional platelets in vitro, indicating the studies of platelets fall behind those of other blood cell types. This is possibly because megakaryocytes, which produce platelets, are very rare in blood and marrow. We have previously developed a platform to identify new extrinsic and intronic regulators for megakaryocytic lineage development, and in this review, we will also cover our effort on that. In summary, stem cell-based differentiation is a promising way of generating large-scale platelets to meet clinical needs, and continuous study of the cellular development of platelets will greatly facilitate this.
Collapse
Affiliation(s)
- Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Specific Blood Cells Derived from Pluripotent Stem Cells: An Emerging Field with Great Potential in Clinical Cell Therapy. Stem Cells Int 2021; 2021:9919422. [PMID: 34434242 PMCID: PMC8380505 DOI: 10.1155/2021/9919422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Widely known for self-renewal and multilineage differentiation, stem cells can be differentiated into all specialized tissues and cells in the body. In the past few years, a number of researchers have focused on deriving hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) as alternative sources for clinic. Existing findings demonstrated that it is feasible to obtain HSCs and certain mature blood lineages from PSCs, except for several issues to be addressed. This short review outlines the technologies used for hematopoietic differentiation in recent years. In addition, the therapeutic value of PSCs as a potential source of various blood cells is also discussed as well as its challenges and directions in future clinical applications.
Collapse
|
10
|
Huang W, Gu H, Zhan Z, Wang R, Song L, Zhang Y, Zhang Y, Li S, Li J, Zang Y, Li Y, Qian B. The plant hormone abscisic acid stimulates megakaryocyte differentiation from human iPSCs in vitro. Platelets 2021; 33:462-470. [PMID: 34223794 DOI: 10.1080/09537104.2021.1944616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the clinic, the supply of platelets is frequently insufficient to meet transfusion needs. To address this issue, many scientists have established the derivation of functional platelets from CD34+ cells or human pluripotent stem cells (PSCs). However, the yield of platelets is still far below what is required. Here we found that the plant hormone abscisic acid (ABA) could increase the generation of megakaryocytes (MKs) and platelets from human induced PSCs (hiPSCs). During platelet derivation, ABA treatment promoted the generation of CD34+/CD45+ HPCs and CD41+ MKs on day 14 and then increased CD41+/CD42b+ MKs and platelets on day 19. Moreover, we found ABA-mediated activation of Akt and ERK1/2 signal pathway through receptors LANCL2 and GRP78 in a PKA-dependent manner on CD34+/CD45+ cells. In conclusion, our data suggest that ABA treatment can promote CD34+/CD45+ HPC proliferation and CD41+ MK differentiation.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China.,Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Haihui Gu
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Zhiyan Zhan
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Ruoru Wang
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Lili Song
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yan Zhang
- Department of Hematology, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Yingwen Zhang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Jinqi Li
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Yan Zang
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| | - Yanxin Li
- Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Baohua Qian
- Department of Transfusion Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai China
| |
Collapse
|
11
|
Lawrence M, Evans A, Moreau T, Bagnati M, Smart M, Hassan E, Hasan J, Pianella M, Kerby J, Ghevaert C. Process analysis of pluripotent stem cell differentiation to megakaryocytes to make platelets applying European GMP. NPJ Regen Med 2021; 6:27. [PMID: 34040001 PMCID: PMC8155004 DOI: 10.1038/s41536-021-00138-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Quality, traceability and reproducibility are crucial factors in the reliable manufacture of cellular therapeutics, as part of the overall framework of Good Manufacturing Practice (GMP). As more and more cellular therapeutics progress towards the clinic and research protocols are adapted to comply with GMP standards, guidelines for safe and efficient adaptation have become increasingly relevant. In this paper, we describe the process analysis of megakaryocyte manufacture from induced pluripotent stem cells with a view to manufacturing in vitro platelets to European GMP for transfusion. This process analysis has allowed us an overview of the entire manufacturing process, enabling us to pinpoint the cause and severity of critical risks. Risk mitigations were then proposed for each risk, designed to be GMP compliant. These mitigations will be key in advancing this iPS-derived therapy towards the clinic and have broad applicability to other iPS-derived cellular therapeutics, many of which are currently advancing towards GMP-compliance. Taking these factors into account during protocol design could potentially save time and money, expediting the advent of safe, novel therapeutics from stem cells.
Collapse
Affiliation(s)
- Moyra Lawrence
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK
- Department of Haematology and NHS Blood and Transplant, University of Cambridge, Cambridge, UK
| | - Amanda Evans
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK
- Department of Haematology and NHS Blood and Transplant, University of Cambridge, Cambridge, UK
| | - Thomas Moreau
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK
- Department of Haematology and NHS Blood and Transplant, University of Cambridge, Cambridge, UK
- Bit Bio, Discovery Drive, Cambridge Biomedical Campus, Cambridge, UK
| | - Marta Bagnati
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Matthew Smart
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Enas Hassan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Jahid Hasan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Monica Pianella
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Julie Kerby
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Cedric Ghevaert
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK.
- Department of Haematology and NHS Blood and Transplant, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Xu MX, Liu LP, Li YM, Zheng YW. The Opportunities and Challenges regarding Induced Platelets from Human Pluripotent Stem Cells. Stem Cells Int 2021; 2021:5588165. [PMID: 34054969 PMCID: PMC8112939 DOI: 10.1155/2021/5588165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
As a standard clinical treatment, platelet transfusion has been employed to prevent hemorrhage in patients with thrombocytopenia or platelet dysfunctions. Platelets also show therapeutic potential for aiding liver regeneration and bone healing and regeneration and for treating dermatological conditions. However, the supply of platelets rarely meets the rising clinical demand. Other issues, including short shelf life, strict storage temperature, and allogeneic immunity caused by frequent platelet transfusions, have become serious challenges that require the development of high-yielding alternative sources of platelets. Human pluripotent stem cells (hPSCs) are an unlimited substitution source for regenerative medicine, and patient-derived iPSCs can provide novel research models to explore the pathogenesis of some diseases. Many studies have focused on establishing and modifying protocols for generating functional induced platelets (iPlatelets) from hPSCs. To reach high efficiency production and eliminate the exogenous antigens, media supplements and matrix have been optimized. In addition, the introduction of some critical transgenes, such as c-MYC, BMI1, and BCL-XL, can also significantly increase hPSC-derived platelet production; however, this may pose some safety concerns. Furthermore, many novel culture systems have been developed to scale up the production of iPlatelets, including 2D flow systems, 3D rotary systems, and vertical reciprocal motion liquid culture bioreactors. The development of new gene-editing techniques, such as CRISPR/Cas9, can be used to solve allogeneic immunity of platelet transfusions by knocking out the expression of B2M. Additionally, the functions of iPlatelets were also evaluated from multiple aspects, including but not limited to morphology, structure, cytoskeletal organization, granule content, DNA content, and gene expression. Although the production and functions of iPlatelets are close to meeting clinical application requirements in both quantity and quality, there is still a long way to go for their large-scale production and clinical application. Here, we summarize the diverse methods of platelet production and update the progresses of iPlatelets. Furthermore, we highlight recent advances in our understanding of key transcription factors or molecules that determine the platelet differentiation direction.
Collapse
Affiliation(s)
- Meng-Xue Xu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki 305-8575, Japan
- Yokohama City University School of Medicine, Yokohama, Kanagawa 234-0006, Japan
| |
Collapse
|
13
|
Catelli LF, Saad STO. Ex Vivo Manufacture of Megakaryocytes and Platelets from Stem Cells: Recent Advances Toward Transfusion in Humans. Stem Cells Dev 2021; 30:351-362. [PMID: 33622080 DOI: 10.1089/scd.2020.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The generation of ex vivo functional megakaryocytes (MK) and platelets is an important issue in transfusion medicine as donor dependence implies in limitations, such as shortage of eligible volunteers. Indeed, platelet transfusion is still a procedure that saves the lives of patients with defective platelet production. Recent technological development has enabled the isolation and expansion of stem cells that can be used as a source for the production of functional platelets for transfusion. In this review, we discuss recent approaches of in vitro or ex vivo production of MK and platelets, suggesting that, in the near future, donor-independent sources may become a possibility. The feasibility of using these cells in the clinic may be safer, and in vitro manipulation could generate universally compatible products, solving problems related to platelet refractoriness. However, functionality and survival testing of these products in human beings are scarce; therefore, additional studies are needed to consolidate this purpose.
Collapse
Affiliation(s)
- Lucas Ferioli Catelli
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
14
|
Generation and manipulation of human iPSC-derived platelets. Cell Mol Life Sci 2021; 78:3385-3401. [PMID: 33439272 PMCID: PMC7804213 DOI: 10.1007/s00018-020-03749-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
The discovery of iPSCs has led to the ex vivo production of differentiated cells for regenerative medicine. In the case of transfusion products, the derivation of platelets from iPSCs is expected to complement our current blood-donor supplied transfusion system through donor-independent production with complete pathogen-free assurance. This derivation can also overcome alloimmune platelet transfusion refractoriness by resulting in autologous, HLA-homologous or HLA-deficient products. Several developments were necessary to produce a massive number of platelets required for a single transfusion. First, expandable megakaryocytes were established from iPSCs through transgene expression. Second, a turbulent-type bioreactor with improved platelet yield and quality was developed. Third, novel drugs that enabled efficient feeder cell-free conditions were developed. Fourth, the platelet-containing suspension was purified and resuspended in an appropriate buffer. Finally, the platelet product needed to be assured for competency and safety including non-tumorigenicity through in vitro and in vivo preclinical tests. Based on these advancements, a clinical trial has started. The generation of human iPSC-derived platelets could evolve transfusion medicine to the next stage and assure a ubiquitous, safe supply of platelet products. Further, considering the feasibility of gene manipulations in iPSCs, other platelet products may bring forth novel therapeutic measures.
Collapse
|
15
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. On the Quest for In Vitro Platelet Production by Re-Tailoring the Concepts of Megakaryocyte Differentiation. ACTA ACUST UNITED AC 2020; 56:medicina56120671. [PMID: 33287459 PMCID: PMC7761839 DOI: 10.3390/medicina56120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
The demand of platelet transfusions is steadily growing worldwide, inter-donor variation, donor dependency, or storability/viability being the main contributing factors to the current global, donor-dependent platelet concentrate shortage concern. In vitro platelet production has been proposed as a plausible alternative to cover, at least partially, the increasing demand. However, in practice, such a logical production strategy does not lack complexity, and hence, efforts are focused internationally on developing large scale industrial methods and technologies to provide efficient, viable, and functional platelet production. This would allow obtaining not only sufficient numbers of platelets but also functional ones fit for all clinical purposes and civil scenarios. In this review, we cover the evolution around the in vitro culture and differentiation of megakaryocytes into platelets, the progress made thus far to bring the culture concept from basic research towards good manufacturing practices certified production, and subsequent clinical trial studies. However, little is known about how these in vitro products should be stored or whether any safety measure should be implemented (e.g., pathogen reduction technology), as well as their quality assessment (how to isolate platelets from the rest of the culture cells, debris, microvesicles, or what their molecular and functional profile is). Importantly, we highlight how the scientific community has overcome the old dogmas and how the new perspectives influence the future of platelet-based therapy for transfusion purposes.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London NW3 3AA, UK;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (P.M.-B.); (A.A.-H.)
- Department of Medicine, University of Oviedo, 33003 Oviedo, Spain
- Correspondence:
| |
Collapse
|
16
|
Yang J, Luan J, Shen Y, Chen B. Developments in the production of platelets from stem cells (Review). Mol Med Rep 2020; 23:7. [PMID: 33179095 PMCID: PMC7673345 DOI: 10.3892/mmr.2020.11645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Platelets are small pieces of cytoplasm that have become detached from the cytoplasm of mature megakaryocytes (MKs) in the bone marrow. Platelets modulate vascular system integrity and serve important role, particularly in hemostasis. With the rapid development of clinical medicine, the demand for platelet transfusion as a life‑saving intervention increases continuously. Stem cell technology appears to be highly promising for transfusion medicine, and the generation of platelets from stem cells would be of great value in the clinical setting. Furthermore, several studies have been undertaken to investigate the potential of producing platelets from stem cells. Initial success has been achieved in terms of the yields and function of platelets generated from stem cells. However, the requirements of clinical practice remain unmet. The aim of the present review was to focus on several sources of stem cells and factors that induce MK differentiation. Updated information on current research into the genetic regulation of megakaryocytopoiesis and platelet generation was summarized. Additionally, advanced strategies of platelet generation were reviewed and the progress made in this field was discussed.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianfeng Luan
- Jinling Hospital Department of Blood Transfusion, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
17
|
Flahou C, Sugimoto N, Eto K. [Novel platelet pharming using human induced pluripotent stem cells]. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2020; 204:961-970. [PMID: 33012790 PMCID: PMC7521593 DOI: 10.1016/j.banm.2020.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022]
Abstract
La production in vitro de plaquettes offre une opportunité de résoudre les problèmes liés aux limitations d’approvisionnement et à la sécurité des dons de produits dérivés du sang. Les cellules souches pluripotentes induites – ou iPSC – sont une source idéale pour la production de cellules à des fins de thérapies régénératives. Nous avons précédemment établi avec succès une lignée mégacaryocytaire immortalisée à partir d’iPSC. Celle-ci possède une capacité de prolifération fiable. Par ailleurs, il est possible de les cryoconserver. Elle est donc une source adaptée de cellules primaires pour la production de plaquettes suivant les Bonnes Pratiques de Fabrication (BPF). Dans le même temps, la capacité améliorée des bioréacteurs à reproduire certaines conditions physiologiques, telle que la turbulence, de pair avec la découverte de molécules favorisant la thrombopoïèse, a contribué à l’accomplissement de la production de plaquettes en quantité et qualité suffisantes pour répondre aux besoins cliniques. La production de plaquettes à partir de cellules iPS s’étend aussi aux patients en état de réfraction allo-immune, par la production de plaquettes autologues ou dont on a génétiquement manipulé l’expression des Antigènes des Leucocytes Humains (HLA) et des Antigènes Plaquettaires Humain (HPA). Considérant ces avancées fondamentales, les plaquettes iPSC avec expression des HLA modifiées se présentent comme un potentiel produit de transfusion universel. Dans cette revue, nous souhaitons apporter une vue d’ensemble de la production in vitro de plaquettes à partir de cellules iPS, et de son possible potentiel transformatif, d’importance capitale dans le domaine de la transfusion des produits sanguins.
Collapse
Affiliation(s)
- C Flahou
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53, Kawahara-cho, 606-8507 Shogoin, Sakyo-ku, Kyoto, Japon
| | - N Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53, Kawahara-cho, 606-8507 Shogoin, Sakyo-ku, Kyoto, Japon
| | - K Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53, Kawahara-cho, 606-8507 Shogoin, Sakyo-ku, Kyoto, Japon.,Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japon
| |
Collapse
|
18
|
Martínez-Botía P, Acebes-Huerta A, Seghatchian J, Gutiérrez L. In vitro platelet production for transfusion purposes: Where are we now? Transfus Apher Sci 2020; 59:102864. [PMID: 32646795 DOI: 10.1016/j.transci.2020.102864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last decade there has been a worldwide increase in the demand of platelet concentrates (PCs) for transfusion. This is, to a great extent, due to a growing and aging population with the concomitant increase in the incidence of onco-hematological diseases, which require frequent platelet (PLT) transfusions. Currently, PLTs are sourced uniquely from donations, and their storage time is limited only to a few days. The necessity to store PCs at room temperature (to minimize loss of PLT functional integrity), poses a major risk for bacterial contamination. While the implementation of pathogen reduction treatments (PRTs) and new-generation PLT additive solutions have allowed the extension of the shelf life and a safer PLT transfusion product, the concern of PCs shortage still pressures the scientific community to find alternative solutions with the aim of meeting the PLT transfusion increasing demand. In this concise report, we will focus on the efforts made to produce, in in vitro culture, high yields of viable and functional PLTs for transfusion purposes in a cost-effective manner, meeting not only current Good Manufacturing Practices (cGMPs), but also transfusion safety standards.
Collapse
Affiliation(s)
- Patricia Martínez-Botía
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit / Inspection, London, England, UK
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Dept. of Medicine, University of Oviedo, Spain.
| |
Collapse
|
19
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cells ex vivo: Toward large-scale platelet production. World J Stem Cells 2019; 11:666-676. [PMID: 31616542 PMCID: PMC6789181 DOI: 10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Platelet transfusion is one of the most reliable strategies to cure patients suffering from thrombocytopenia or platelet dysfunction. With the increasing demand for transfusion, however, there is an undersupply of donors to provide the platelet source. Thus, scientists have sought to design methods for deriving clinical-scale platelets ex vivo. Although there has been considerable success ex vivo in the generation of transformative platelets produced by human stem cells (SCs), the platelet yields achieved using these strategies have not been adequate for clinical application. In this review, we provide an overview of the developmental process of megakaryocytes and the production of platelets in vivo and ex vivo, recapitulate the key advances in the production of SC-derived platelets using several SC sources, and discuss some strategies that apply three-dimensional bioreactor devices and biochemical factors synergistically to improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Xiao-Hua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Qing Yang
- Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Chi-Yuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - En-Kui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cellsex vivo: Toward large-scale platelet production. World J Stem Cells 2019. [DOI: dx.doi.org/10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Ingavle G, Shabrani N, Vaidya A, Kale V. Mimicking megakaryopoiesis in vitro using biomaterials: Recent advances and future opportunities. Acta Biomater 2019; 96:99-110. [PMID: 31319203 DOI: 10.1016/j.actbio.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
Presently donor-derived platelets used in the clinic are associated with concerns about adequate availability, expense, risk of bacterial contamination and complications due to immunological reaction. To prevail over our dependence on transfusion of donor-derived platelets, efforts are being made to generate them in vitro. Development of biomaterials that support or mimic bone marrow niche micro-environmental cues could improve the in vitro production of platelets from megakaryocytes (MKs) derived from various stem cell sources. In spite of significant advances in the production of MKs from various stem cell sources using 2D as well as 3D culture approaches in vitro and the development of biomaterials-based platelet systems, yield and quality of these platelets remains unsuitable for clinical use. Thus, in vitro production of clinically useful platelets on a large scale remains an unmet target to date. This review summarizes the most frequently used 2D and 3D approaches to generate MKs and platelets in vitro, emphasizing the importance of mimicking in vivo micro-environment. Further, this review proposes the use of interpenetrating network (IPN) biomaterial-based approach as a promising strategy for improving the generation of MK and platelets in sufficient numbers in vitro. STATEMENT OF SIGNIFICANCE: Thrombocytopenia is one of the major global health and socio-economic problems. Transfusion with donor-derived platelets (PLTs) is the only effective treatment for this condition. However, this approach is limited by factors like short shelf-life of PLTs, PLT activation, alloimmunization, risk of bacterial contamination, infection etc. In vitro generated MKs and PLTs derived from non-donor-dependent sources may help to overcome the platelet transfusion concerns. Here we have reviewed various 2D and 3D strategies used for in vitro generation of MKs and PLTs, with special emphasis on various biomaterial platforms and different physico/chemical cues being used for the purpose. We have also proposed a biomaterial-based approach of using interpenetrating network (IPN) for generating clinically relevant numbers of MKs and PLTs.
Collapse
|
22
|
Using genome editing to engineer universal platelets. Emerg Top Life Sci 2019; 3:301-311. [PMID: 33523140 PMCID: PMC7289015 DOI: 10.1042/etls20180153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022]
Abstract
Genome editing technologies such as zinc finger nucleases, TALENs and CRISPR/Cas9 have recently emerged as tools with the potential to revolutionise cellular therapy. This is particularly exciting for the field of regenerative medicine, where the large-scale, quality-controlled editing of large numbers of cells could generate essential cellular products ready to move towards the clinic. This review details recent progress towards generating HLA Class I null platelets using genome editing technologies for β2-microglobulin deletion, generating a universally transfusable cellular product. In addition, we discuss various methods for megakaryocyte (MK) production from human pluripotent stem cells and subsequent platelet production from the MKs. As well as simply producing platelets, differentiating MK cultures can enable us to understand megakaryopoiesis in vivo and take steps towards ameliorating bleeding disorders or deficiencies in MK maturation in patients. Thus by intersecting both these areas of research, we can produce optimised differentiation systems for the production of universal platelets, thus offering a stable supply of platelets for difficult-to-match patients and providing areas with transmissible disease concerns or an unpredictable supply of platelets with a steady supply of quality-controlled platelet units.
Collapse
|
23
|
Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors. Blood Adv 2019; 2:597-606. [PMID: 29545255 DOI: 10.1182/bloodadvances.2017010975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
In vitro-grown megakaryocytes for generating platelets may have value in meeting the increasing demand for platelet transfusions. Remaining challenges have included the poor yield and quality of in vitro-generated platelets. We have shown that infusing megakaryocytes leads to intrapulmonary release of functional platelets. A Src kinase inhibitor (SU6656), a Rho-associated kinase inhibitor (Y27632), and an aurora B kinase inhibitor (AZD1152) have been shown to increase megakaryocyte ploidy and in vitro proplatelet release. We now tested whether megakaryocytes generated from CD34+ hematopoietic cells in the presence of these inhibitors could enhance functional platelet yield following megakaryocyte infusion. As expected, all inhibitors increased megakaryocyte ploidy, size, and granularity, but these inhibitors differed in whether they injured terminal megakaryocytes: SU6656 was protective, whereas Y27632 and AZD1152 increased injury. Upon infusion, inhibitor-treated megakaryocytes released threefold to ninefold more platelets per initial noninjured megakaryocyte relative to control, but only SU6656-treated megakaryocytes had a significant increase in platelet yield when calculated based on the number of initial CD34+ cells; this was fourfold over nontreated megakaryocytes. The released platelets from drug-treated, but healthy, megakaryocytes contained similar percentages of young, uninjured platelets that robustly responded to agonists and were well incorporated into a growing thrombus in vivo as controls. These studies suggest that drug screens that select megakaryocytes with enhanced ploidy, cell size, and granularity may include a subset of drugs that can enhance the yield and function of platelets, and may have clinical application for ex vivo-generated megakaryocytes and platelet transfusion.
Collapse
|
24
|
|
25
|
|
26
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Zhang L, Liu C, Wang H, Wu D, Su P, Wang M, Guo J, Zhao S, Dong S, Zhou W, Arakaki C, Zhang X, Zhou J. Thrombopoietin knock-in augments platelet generation from human embryonic stem cells. Stem Cell Res Ther 2018; 9:194. [PMID: 30016991 PMCID: PMC6050740 DOI: 10.1186/s13287-018-0926-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Background Refinement of therapeutic-scale platelet production in vitro will provide a new source for transfusion in patients undergoing chemotherapy or radiotherapy. However, procedures for cost-effective and scalable platelet generation remain to be established. Methods In this study, we established human embryonic stem cell (hESC) lines containing knock-in of thrombopoietin (TPO) via CRISPR/Cas9-mediated genome editing. The expression and secretion of TPO was detected by western blotting and enzyme-linked immunosorbent assay. Then, we tested the potency for hematopoietic differentiation by coculturing the cells with mAGM-S3 cells and measured the generation of CD43+ and CD45+ hematopoietic progenitor cells (HPCs). The potency for megakaryocytic differentiation and platelet generation of TPO knock-in hESCs were further detected by measuring the expression of CD41a and CD42b. The morphology and function of platelets were analyzed with electronic microscopy and aggregation assay. Results The TPO gene was successfully inserted into the AAVS1 locus of the hESC genome and two cell lines with stable TPO expression and secretion were established. TPO knock-in exerts minimal effects on pluripotency but enhances early hematopoiesis and generation of more HPCs. More importantly, upon its knock-in, TPO augments megakaryocytic differentiation and platelet generation. In addition, the platelets derived from hESCs in vitro are functionally and morphologically comparable to those found in peripheral blood. Furthermore, TPO knock-in can partially replace the large quantities of extrinsic TPO necessary for megakaryocytic differentiation and platelet generation. Conclusions Our results demonstrate that autonomous production of cytokines in hESCs may become a powerful approach for cost-effective and large-scale platelet generation in translational medicine. Electronic supplementary material The online version of this article (10.1186/s13287-018-0926-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leisheng Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Jiaojiao Guo
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Shixuan Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Shuxu Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Cameron Arakaki
- Division of Regenerative Medicine MC 1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Xiaobing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China.,Division of Regenerative Medicine MC 1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
In Vitro Haematopoietic Differentiation from Pluripotent Stem Cells or by Direct Lineage Conversion: Current Advances and Challenges. J Med Biol Eng 2018. [DOI: 10.1007/s40846-017-0311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Abstract
Ex vivo production of human platelets has been pursued as an alternative measure to resolve limitations in the supply and safety of current platelet transfusion products. To this end, induced pluripotent stem cells (iPSCs) are considered an ideal global source, as they are not only pluripotent and self-renewing, but are also available from basically any person, have relatively few ethical issues, and are easy to manipulate. From human iPSCs, megakaryocyte (MK) lines with robust proliferation capacity have been established by the introduction of specified sets of genes. These expandable MKs are also cryopreservable and thus would be suitable as master cells for good manufacturing practice (GMP)-grade production of platelets, assuring availability on demand and safety against blood-borne infections. Meanwhile, developments in bioreactors that physically mimic the in vivo environment and discovery of substances that promote thrombopoiesis have yielded competent platelets with improved efficiency. The derivation of platelets from iPSCs could further resolve transfusion-related alloimmune complications through the manufacturing of autologous products and human leukocyte antigen (HLA)-compatible platelets from stocked homologous HLA-type iPSC libraries or by manipulation of HLAs and human platelet antigens (HPAs). Considering these key advances in the field, HLA-deleted platelets could become a universal product that is manufactured at industrial level to safely fulfill almost all demands. In this review, we provide an overview of the ex vivo production of iPSC-derived platelets toward clinical applications, a production that would revolutionize the blood transfusion system and lead the field of iPSC-based regenerative medicine.
Collapse
Affiliation(s)
- N Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - K Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Baigger A, Blasczyk R, Figueiredo C. Towards the Manufacture of Megakaryocytes and Platelets for Clinical Application. Transfus Med Hemother 2017. [PMID: 28626367 DOI: 10.1159/000477261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Platelet transfusions are used in standard clinical practice to prevent hemorrhage in patients suffering from thrombocytopenia or platelet dysfunctions. Recently, a constant rise on the demand of platelets for transfusion has been registered. This may be associated with several factors including demographic changes, population aging as well as incidence and prevalence of hematological diseases. In addition, platelet-regenerative properties have been started to be exploited in different areas such as tissue remodeling and anti-cancer therapies. These new applications are also expected to increase the future demand on platelets. Thus, in vitro generated platelets may constitute a highly desirable alternative to meet the rising demand on platelets. Several factors have been considered in the road trip of producing in vitro megakaryocytes and platelets for clinical application. From selection of the cell source, differentiation protocols and culture conditions to the design of optimal bioreactors, several strategies have been proposed to maximize production yields while preserving functionality. This review summarizes new advances in megakaryocyte and platelet differentiation and their production upscaling.
Collapse
Affiliation(s)
- Anja Baigger
- Institute for Transfusion Medicine, Hanover Medical School, Hanover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hanover Medical School, Hanover, Germany
| | | |
Collapse
|
31
|
Identifying and enriching platelet-producing human stem cell-derived megakaryocytes using factor V uptake. Blood 2017; 130:192-204. [PMID: 28455282 DOI: 10.1182/blood-2017-01-761049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
Stem cell-derived platelets have the potential to replace donor platelets for transfusion. Defining the platelet-producing megakaryocytes (MKs) within the heterogeneous MK culture may help to optimize the in vitro generation of platelets. Using 2 human stem cell models of megakaryopoiesis, we identified novel MK populations corresponding to distinct maturation stages. An immature, low granular (LG) MK pool (defined by side scatter on flow cytometry) gives rise to a mature high granular (HG) pool, which then becomes damaged by apoptosis and glycoprotein Ib α chain (CD42b) shedding. We define an undamaged HG/CD42b+ MK subpopulation, which endocytoses fluorescently labeled coagulation factor V (FV) from the media into α-granules and releases functional FV+CD42b+ human platelet-like particles in vitro and when infused into immunodeficient mice. Importantly, these FV+ particles have the same size distribution as infused human donor platelets and are preferentially incorporated into clots after laser injury. Using drugs to protect HG MKs from apoptosis and CD42b shedding, we also demonstrate that apoptosis precedes CD42b shedding and that apoptosis inhibition enriches the FV+ HG/CD42b+ MKs, leading to increased platelet yield in vivo, but not in vitro. These studies identify a transition between distinct MK populations in vitro, including one that is primed for platelet release. Technologies to optimize and select these platelet-ready MKs may be important to efficiently generate functional platelets from in vitro-grown MKs.
Collapse
|
32
|
Thon JN, Dykstra BJ, Beaulieu LM. Platelet bioreactor: accelerated evolution of design and manufacture. Platelets 2017; 28:472-477. [PMID: 28112988 DOI: 10.1080/09537104.2016.1265922] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most. Megakaryocytes in the bone marrow generate platelets by extruding long cytoplasmic extensions called proplatelets through gaps/fenestrations in blood vessels. Proplatelets serve as assembly lines for platelet production by sequentially releasing platelets and large discoid-shaped platelet intermediates called preplatelets into the circulation. Recent advances in platelet bioreactor development have aimed to mimic the key physiological characteristics of bone marrow, including extracellular matrix composition/stiffness, blood vessel architecture comprising tissue-specific microvascular endothelium, and shear stress. Nevertheless, how complex interactions within three-dimensional (3D) microenvironments regulate thrombopoiesis remains poorly understood, and the technical challenges associated with designing and manufacturing biomimetic microfluidic devices are often under-appreciated and under-reported. We have previously reviewed the major cell culture, platelet quality assessment, and regulatory roadblocks that must be overcome to make human platelet production possible for clinical use [1]. This review builds on our previous manuscript by: (1) detailing the historical evolution of platelet bioreactor design to recapitulate native platelet production ex vivo, and (2) identifying the associated challenges that still need to be addressed to further scale and validate these devices for commercial application. While platelets are among the first cells whose ex vivo production is spearheading major engineering advancements in microfluidic design, the resulting discoveries will undoubtedly extend to the production of other human tissues. This work is critical to identify the physiological characteristics of relevant 3D tissue-specific microenvironments that drive cell differentiation and elaborate upon how these are disrupted in disease. This is a burgeoning field whose future will define not only the ex vivo production of platelets and development of targeted therapies for thrombocytopenia, but the promise of regenerative medicine for the next century.
Collapse
Affiliation(s)
- Jonathan N Thon
- a Hematology Division, Department of Medicine , Brigham and Women's Hospital , MA , USA.,b Harvard Medical School , Boston , MA , USA.,c Platelet BioGenesis , Boston , MA , USA
| | - Brad J Dykstra
- a Hematology Division, Department of Medicine , Brigham and Women's Hospital , MA , USA.,b Harvard Medical School , Boston , MA , USA.,c Platelet BioGenesis , Boston , MA , USA
| | | |
Collapse
|
33
|
Heazlewood SY, Nilsson SK, Cartledge K, Be CL, Vinson A, Gel M, Haylock DN. Progress in bio-manufacture of platelets for transfusion. Platelets 2017; 28:649-656. [DOI: 10.1080/09537104.2016.1257783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shen Y. Heazlewood
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
- The Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Susan K. Nilsson
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
- The Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Kellie Cartledge
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
| | - Cheang Ly Be
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
| | - Andrew Vinson
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
- The Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Murat Gel
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
| | - David N. Haylock
- Manufacturing, Commonwealth Scientific Industrial Research Organisation, Clayton, Australia
- The Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Kim AR, Sankaran VG. Development of autologous blood cell therapies. Exp Hematol 2016; 44:887-94. [PMID: 27345108 DOI: 10.1016/j.exphem.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation and blood cell transfusions are performed commonly in patients with a variety of blood disorders. Unfortunately, these donor-derived cell therapies are constrained due to limited supplies, infectious risk factors, a lack of appropriately matched donors, and the risk of immunologic complications from such products. The use of autologous cell therapies has been proposed to overcome these shortcomings. One can derive such therapies directly from hematopoietic stem and progenitor cells of individuals, which can then be manipulated ex vivo to produce the desired modifications or differentiated to produce a particular target population. Alternatively, pluripotent stem cells, which have a theoretically unlimited self-renewal capacity and an ability to differentiate into any desired cell type, can be used as an autologous starting source for such manipulation and differentiation approaches. Such cell products can also be used as a delivery vehicle for therapeutics. In this review, we highlight recent advances and discuss ongoing challenges for the in vitro generation of autologous hematopoietic cells that can be used for cell therapy.
Collapse
Affiliation(s)
- Ah Ram Kim
- Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
35
|
Wang B, Zheng J. Platelet generation in vivo and in vitro. SPRINGERPLUS 2016; 5:787. [PMID: 27390629 PMCID: PMC4914488 DOI: 10.1186/s40064-016-2384-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/22/2016] [Indexed: 12/14/2022]
Abstract
Platelet (PLT) transfusion, which is the primary cell therapy for thrombocytopenia, has been a source of concern in recent years due to its limitations of donor-dependent supply and soaring costs. In vitro platelet generation on an industrial scale is a possible solution requiring exploration. The technology of platelet generation ex vivo has been widely studied across the world, though the mechanisms of physiological thrombopoiesis and platelet biology function in vivo still remain elusive today. Various culture systems have been studied, most of which proved quite inefficient in generating functional platelets ex vivo, so there is still a long way to reach our ultimate goal of generating a fully functional platelet in vitro on an industrial scale. This review integrates the latest research into physiological platelet biogenesis and ex vivo-platelet/megakaryocyte (MK) generation protocols with a focus on the ability to generate PLT/MK in large quantities, summarizes current culture systems based on induced human pluripotent stem cells and adipose-derived stem cells, and discusses significant challenges that must be overcome for these approaches to be perfected.
Collapse
Affiliation(s)
- Biao Wang
- Department of Burns and Plastic Surgery, The 175th Hospital of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, 363000 Fujian China
| | - Jiansheng Zheng
- Department of Burns and Plastic Surgery, The 175th Hospital of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, 363000 Fujian China
| |
Collapse
|
36
|
Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, Howard D, Colzani M, Arumugam M, Wu WH, Dalby A, Lampela R, Bouet G, Hobbs CM, Pask DC, Payne H, Ponomaryov T, Brill A, Soranzo N, Ouwehand WH, Pedersen RA, Ghevaert C. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 2016; 7:11208. [PMID: 27052461 PMCID: PMC4829662 DOI: 10.1038/ncomms11208] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/02/2016] [Indexed: 02/02/2023] Open
Abstract
The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.
Collapse
Affiliation(s)
- Thomas Moreau
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,The Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Amanda L. Evans
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Louella Vasquez
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton CB10 1RQ, UK
| | - Marloes R. Tijssen
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK
| | - Ying Yan
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton CB10 1RQ, UK
| | - Matthew W. Trotter
- The Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Daniel Howard
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Maria Colzani
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Meera Arumugam
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Wing Han Wu
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Amanda Dalby
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Riina Lampela
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Guenaelle Bouet
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Catherine M. Hobbs
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Dean C. Pask
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Holly Payne
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tatyana Ponomaryov
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nicole Soranzo
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton CB10 1RQ, UK
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK
| | - Roger A. Pedersen
- The Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK,
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Long Road, Cambridge CB2 0PT, UK,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK,
| |
Collapse
|
37
|
Megakaryocytic differentiation of mouse embryonic stem cells via coculture with immortalized OP9 stromal cells. Exp Cell Res 2015; 339:44-50. [DOI: 10.1016/j.yexcr.2015.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/12/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
|
38
|
Abstract
Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.
Collapse
|
39
|
Vanhee S, Vandekerckhove B. Pluripotent stem cell based gene therapy for hematological diseases. Crit Rev Oncol Hematol 2015; 97:238-46. [PMID: 26381313 DOI: 10.1016/j.critrevonc.2015.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/04/2015] [Accepted: 08/26/2015] [Indexed: 01/26/2023] Open
Abstract
Standard treatment for severe inherited hematopoietic diseases consists of allogeneic stem cell transplantation. Alternatively, patients can be treated with gene therapy: gene-corrected autologous hematopoietic stem and progenitor cells (HSPC) are transplanted. By using retro- or lentiviral vectors, a copy of the functional gene is randomly inserted in the DNA of the HSPC and becomes constitutively expressed. Gene therapy is currently limited to monogenic diseases for which clinical trials are being actively conducted in highly specialized centers around the world. This approach, although successful, carries with it inherent safety and efficacy issues. Recently, two technologies became available that, when combined, may enable treatment of genetic defects by HSPC that have the non-functional allele replaced by a functional copy. One technology consists of the generation of induced pluripotent stem cells (iPSC) from patient blood samples or skin biopsies, the other concerns nuclease-mediated gene editing. Both technologies have been successfully combined in basic research and appear applicable in the clinic. This paper reviews recent literature, discusses what can be achieved in the clinic using present knowledge and points out further research directions.
Collapse
Affiliation(s)
- Stijn Vanhee
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium.
| |
Collapse
|
40
|
Balduini A, Di Buduo CA, Kaplan DL. Translational approaches to functional platelet production ex vivo. Thromb Haemost 2015; 115:250-6. [PMID: 26353819 DOI: 10.1160/th15-07-0570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022]
Abstract
Platelets, which are released by megakaryocytes, play key roles in haemostasis, angiogenesis, immunity, tissue regeneration and wound healing. The scarcity of clinical cures for life threatening platelet diseases is in a large part due to limited insight into the mechanisms that control the developmental process of megakaryocytes and the mechanisms that govern the production of platelets within the bone marrow. To overcome these limitations, functional human tissue models have been developed and studied to extrapolate ex vivo outcomes for new insight on bone marrow functions in vivo. There are many challenges that these models must overcome, from faithfully mimicking the physiological composition and functions of bone marrow, to the collection of the platelets generated and validation of their viability and function for human use. The overall goal is to identify innovative instruments to study mechanisms of platelet release, diseases related to platelet production and new therapeutic targets starting from human progenitor cells.
Collapse
Affiliation(s)
- Alessandra Balduini
- Alessandra Balduini, Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA, Tel.: +1 617 627 2580, Fax: +1 617 627 3231, E-mail:
| | | | - David L Kaplan
- David L. Kaplan, Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA, Tel.: +1 617 627 2580, Fax: +1 617 627 3231, E-mail:
| |
Collapse
|
41
|
Siripin D, Kheolamai P, U-Pratya Y, Supokawej A, Wattanapanitch M, Klincumhom N, Laowtammathron C, Issaragrisil S. Transdifferentiation of erythroblasts to megakaryocytes using FLI1 and ERG transcription factors. Thromb Haemost 2015; 114:593-602. [PMID: 26063314 DOI: 10.1160/th14-12-1090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/11/2015] [Indexed: 12/30/2022]
Abstract
Platelet transfusion has been widely used to prevent and treat life-threatening thrombocytopenia; however, preparation of a unit of concentrated platelet for transfusion requires at least 4-6 units of whole blood. At present, a platelet unit from a single donor can be prepared using apheresis, but lack of donors is still a major problem. Several approaches to produce platelets from other sources, such as haematopoietic stem cells and pluripotent stem cells, have been attempted but the system is extremely complicated, time-consuming and expensive. We now report a novel and simpler technology to obtain platelets using transdifferentiation of human bone marrow erythroblasts to megakaryocytes with overexpression of the FLI1 and ERG genes. The obtained transdifferentiated erythroblasts (both from CD71+ and GPA+ erythroblast subpopulations) exhibit typical features of megakaryocytes including morphology, expression of specific genes (cMPL and TUBB1) and a marker protein (CD41). They also have the ability to generate megakaryocytic CFU in culture and produce functional platelets, which aggregate with normal human platelets to form a normal-looking clot. Overexpression of FLI1 and ERG genes is sufficient to transdifferentiate erythroblasts to megakaryocytes that can produce functional platelets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Surapol Issaragrisil
- Prof. Surapol Issaragrisil, Division of Hematology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Tel.: +662 419 4448 50, Fax: +662 411 2012, E-mail:
| |
Collapse
|
42
|
Abstract
Historically, platelet transfusion has proven a reliable way to treat patients suffering from thrombocytopenia or similar ailments. An undersupply of donors, however, has demanded alternative platelet sources. Scientists have therefore sought to recapitulate the biological events that convert hematopoietic stem cells into platelets in the laboratory. Such platelets have shown good function and potential for treatment. Yet the number manufactured ex vivo falls well short of clinical application. Part of the reason is the remarkable gaps in our understanding of the molecular mechanisms driving platelet formation. Using several stem cell sources, scientists have progressively clarified the chemical signaling and physical microenvironment that optimize ex vivo platelets and reconstituted them in synthetic environments. Key advances in cell reprogramming and the ability to propagate self-renewal have extended the lifetime of megakaryocytes to increase the pool of platelet progenitors.
Collapse
Affiliation(s)
- P Karagiannis
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - K Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
43
|
Liu Y, Wang Y, Gao Y, Forbes JA, Qayyum R, Becker L, Cheng L, Wang ZZ. Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents. Stem Cells Transl Med 2015; 4:309-19. [PMID: 25713465 DOI: 10.5966/sctm.2014-0183] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Megakaryocytes (MKs) are rare hematopoietic cells in the adult bone marrow and produce platelets that are critical to vascular hemostasis and wound healing. Ex vivo generation of MKs from human induced pluripotent stem cells (hiPSCs) provides a renewable cell source of platelets for treating thrombocytopenic patients and allows a better understanding of MK/platelet biology. The key requirements in this approach include developing a robust and consistent method to produce functional progeny cells, such as MKs from hiPSCs, and minimizing the risk and variation from the animal-derived products in cell cultures. In this study, we developed an efficient system to generate MKs from hiPSCs under a feeder-free and xeno-free condition, in which all animal-derived products were eliminated. Several crucial reagents were evaluated and replaced with Food and Drug Administration-approved pharmacological reagents, including romiplostim (Nplate, a thrombopoietin analog), oprelvekin (recombinant interleukin-11), and Plasbumin (human albumin). We used this method to induce MK generation from hiPSCs derived from 23 individuals in two steps: generation of CD34(+)CD45(+) hematopoietic progenitor cells (HPCs) for 14 days; and generation and expansion of CD41(+)CD42a(+) MKs from HPCs for an additional 5 days. After 19 days, we observed abundant CD41(+)CD42a(+) MKs that also expressed the MK markers CD42b and CD61 and displayed polyploidy (≥16% of derived cells with DNA contents >4N). Transcriptome analysis by RNA sequencing revealed that megakaryocytic-related genes were highly expressed. Additional maturation and investigation of hiPSC-derived MKs should provide insights into MK biology and lead to the generation of large numbers of platelets ex vivo.
Collapse
Affiliation(s)
- Yanfeng Liu
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ying Wang
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongxing Gao
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica A Forbes
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rehan Qayyum
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lewis Becker
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zack Z Wang
- Division of Hematology, Department of Medicine, Institute for Cell Engineering, Department of Chemical and Biomolecular Engineering, and Divisions of General Internal Medicine and Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Souza GTD, Maranduba CP, Souza CMD, Amaral DLASD, Guia FCD, Zanette RDSS, Rettore JVP, Rabelo NC, Nascimento LM, Pinto &IFN, Farani JB, Neto AEH, Silva FDS, Maranduba CMDC, Atalla A. Advances in cellular technology in the hematology field: What have we learned so far? World J Stem Cells 2015; 7:106-115. [PMID: 25621110 PMCID: PMC4300920 DOI: 10.4252/wjsc.v7.i1.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023] Open
Abstract
Despite the advances in the hematology field, blood transfusion-related iatrogenesis is still a major issue to be considered during such procedures due to blood antigenic incompatibility. This places pluripotent stem cells as a possible ally in the production of more suitable blood products. The present review article aims to provide a comprehensive summary of the state-of-the-art concerning the differentiation of both embryonic stem cells and induced pluripotent stem cells to hematopoietic cell lines. Here, we review the most recently published protocols to achieve the production of blood cells for future application in hemotherapy, cancer therapy and basic research.
Collapse
|
45
|
Vanhee S, De Mulder K, Van Caeneghem Y, Verstichel G, Van Roy N, Menten B, Velghe I, Philippé J, De Bleser D, Lambrecht BN, Taghon T, Leclercq G, Kerre T, Vandekerckhove B. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica 2014; 100:157-66. [PMID: 25381126 DOI: 10.3324/haematol.2014.112144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although hematopoietic precursor activity can be generated in vitro from human embryonic stem cells, there is no solid evidence for the appearance of multipotent, self-renewing and transplantable hematopoietic stem cells. This could be due to short half-life of hematopoietic stem cells in culture or, alternatively, human embryonic stem cell-initiated hematopoiesis may be hematopoietic stem cell-independent, similar to yolk sac hematopoiesis, generating multipotent progenitors with limited expansion capacity. Since a MYB was reported to be an excellent marker for hematopoietic stem cell-dependent hematopoiesis, we generated a MYB-eGFP reporter human embryonic stem cell line to study formation of hematopoietic progenitor cells in vitro. We found CD34(+) hemogenic endothelial cells rounding up and developing into CD43(+) hematopoietic cells without expression of MYB-eGFP. MYB-eGFP(+) cells appeared relatively late in embryoid body cultures as CD34(+)CD43(+)CD45(-/lo) cells. These MYB-eGFP(+) cells were CD33 positive, proliferated in IL-3 containing media and hematopoietic differentiation was restricted to the granulocytic lineage. In agreement with data obtained on murine Myb(-/-) embryonic stem cells, bright eGFP expression was observed in a subpopulation of cells, during directed myeloid differentiation, which again belonged to the granulocytic lineage. In contrast, CD14(+) macrophage cells were consistently eGFP(-) and were derived from eGFP-precursors only. In summary, no evidence was obtained for in vitro generation of MYB(+) hematopoietic stem cells during embryoid body cultures. The observed MYB expression appeared late in culture and was confined to the granulocytic lineage.
Collapse
Affiliation(s)
- Stijn Vanhee
- Laboratory for Experimental Immunology, Ghent University, Belgium
| | | | | | - Greet Verstichel
- Laboratory for Experimental Immunology, Ghent University, Belgium
| | | | - Björn Menten
- Center for Medical Genetics, Ghent University, Belgium
| | - Imke Velghe
- Laboratory for Experimental Immunology, Ghent University, Belgium
| | - Jan Philippé
- Department of Clinical Biology, Microbiology and Immunology, Ghent University Hospital, Belgium
| | | | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Pulmonary Medicine, Ghent University Hospital, Belgium Flanders Institute for Biotechnology (VIB) Inflammation Research Center, Ghent University, Belgium
| | - Tom Taghon
- Laboratory for Experimental Immunology, Ghent University, Belgium
| | - Georges Leclercq
- Laboratory for Experimental Immunology, Ghent University, Belgium
| | - Tessa Kerre
- Laboratory for Experimental Immunology, Ghent University, Belgium
| | | |
Collapse
|
46
|
Lee EJ, Godara P, Haylock D. Biomanufacture of human platelets for transfusion: Rationale and approaches. Exp Hematol 2014; 42:332-46. [DOI: 10.1016/j.exphem.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022]
|
47
|
Inoue-Yokoo T, Tani K, Sugiyama D. Mesodermal and hematopoietic differentiation from ES and iPS cells. Stem Cell Rev Rep 2014; 9:422-34. [PMID: 22684542 DOI: 10.1007/s12015-012-9388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any type of tissue when grown in a suitable culture environment and are considered valuable tools for regenerative medicine. In the field of hematology, generation of hematopoietic stem cells (HSCs) and mature hematopoietic cells (HCs) from ES and iPS cells through mesodermal cells, the ancestors of HCs, can facilitate transplantation and transfusion therapy. Several studies report generation of functional HCs from both mouse and human ES and iPS cells. This approach will likely be applied to individual patient-derived iPS cells for regenerative medicine approaches and drug screening in the future. Here, we summarize current studies of HC-generation from ES and iPS cells.
Collapse
Affiliation(s)
- Tomoko Inoue-Yokoo
- Division of Hematopoietic Stem Cells, Advanced Medical Initiatives, Department of Advanced Medical Initiatives, Kyushu University Faculty of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
48
|
Avanzi MP, Mitchell WB. Ex Vivoproduction of platelets from stem cells. Br J Haematol 2014; 165:237-47. [DOI: 10.1111/bjh.12764] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Mauro P. Avanzi
- Platelet Biology Laboratory; New York Blood Center; Lindsley F. Kimball Research Institute; New York NY USA
| | - William Beau Mitchell
- Platelet Biology Laboratory; New York Blood Center; Lindsley F. Kimball Research Institute; New York NY USA
| |
Collapse
|
49
|
High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood 2013; 123:753-7. [PMID: 24335497 DOI: 10.1182/blood-2013-10-530725] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Megakaryocyte-specific transgene expression in patient-derived induced pluripotent stem cells (iPSCs) offers a new approach to study and potentially treat disorders affecting megakaryocytes and platelets. By using a Gp1ba promoter, we developed a strategy for achieving a high level of protein expression in human megakaryocytes. The feasibility of this approach was demonstrated in iPSCs derived from two patients with Glanzmann thrombasthenia (GT), an inherited platelet disorder caused by mutations in integrin αIIbβ3. Hemizygous insertion of Gp1ba promoter-driven human αIIb complementary DNA into the AAVS1 locus of iPSCs led to high αIIb messenger RNA and protein expression and correction of surface αIIbβ3 in megakaryocytes. Agonist stimulation of these cells displayed recovery of integrin αIIbβ3 activation. Our findings demonstrate a novel approach to studying human megakaryocyte biology as well as functional correction of the GT defect, offering a potential therapeutic strategy for patients with diseases that affect platelet function.
Collapse
|
50
|
Nakajima-Takagi Y, Osawa M, Iwama A. Manipulation of Hematopoietic Stem Cells for Regenerative Medicine. Anat Rec (Hoboken) 2013; 297:111-20. [DOI: 10.1002/ar.22804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| | - Mitsujiro Osawa
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| |
Collapse
|