1
|
Maneta E, Aivalioti E, Tual-Chalot S, Emini Veseli B, Gatsiou A, Stamatelopoulos K, Stellos K. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol 2023; 14:1144229. [PMID: 37081895 PMCID: PMC10110956 DOI: 10.3389/fimmu.2023.1144229] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis is a life-threatening clinical syndrome characterized by multiorgan dysfunction caused by a dysregulated or over-reactive host response to infection. During sepsis, the coagulation cascade is triggered by activated cells of the innate immune system, such as neutrophils and monocytes, resulting in clot formation mainly in the microcirculation, a process known as immunothrombosis. Although this process aims to protect the host through inhibition of the pathogen’s dissemination and survival, endothelial dysfunction and microthrombotic complications can rapidly lead to multiple organ dysfunction. The development of treatments targeting endothelial innate immune responses and immunothrombosis could be of great significance for reducing morbidity and mortality in patients with sepsis. Medications modifying cell-specific immune responses or inhibiting platelet–endothelial interaction or platelet activation have been proposed. Herein, we discuss the underlying mechanisms of organ-specific endothelial dysfunction and immunothrombosis in sepsis and its complications, while highlighting the recent advances in the development of new therapeutic approaches aiming at improving the short- or long-term prognosis in sepsis.
Collapse
Affiliation(s)
- Eleni Maneta
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Besa Emini Veseli
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| |
Collapse
|
2
|
Galeeva NV, Valeeva IK. [Activity an enzyme 5`-nucleotidase in patients with chronic hepatitis C]. TERAPEVT ARKH 2019; 91:45-48. [PMID: 32598609 DOI: 10.26442/00403660.2019.11.000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
AIM OF THE STUDY To determine the activity of enzyme 5`-nucleotidase depending on the of disseminated intravascular coagulation syndrome phases and duration of infection period in patients with chronic hepatitis C. MATERIALS AND METHODS 166 patients (92 men, 74 women) with chronic hepatitis C were under observation. Conditionally, all patients were devided into 3 groups, based on the number of Tr, according to the phases of hemostasis: I group - hypercoagulation with number Tr>350×109/l; II - transient phase - Tr from 350 to 200×109/l and III - hypocoagulation - Tr.
Collapse
|
3
|
Antonova OA, Yakushkin VV, Mazurov AV. Coagulation Activity of Membrane Microparticles. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Cointe S, Harti Souab K, Bouriche T, Vallier L, Bonifay A, Judicone C, Robert S, Armand R, Poncelet P, Albanese J, Dignat-George F, Lacroix R. A new assay to evaluate microvesicle plasmin generation capacity: validation in disease with fibrinolysis imbalance. J Extracell Vesicles 2018; 7:1494482. [PMID: 30034644 PMCID: PMC6052415 DOI: 10.1080/20013078.2018.1494482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/24/2018] [Indexed: 11/03/2022] Open
Abstract
Among extracellular vesicles, leukocyte-derived microvesicles (LMVs) have emerged as complex vesicular structures. Primarily identified as procoagulant entities, they were more recently ascribed to plasmin generation capacity (MV-PGC). The objectives of this work were (1) to develop a new hybrid bio-assay combining the specific isolation of LMVs and measurement of their PGC, and compare its performance to the original method based on centrifugation, (2) to validate MV-PGC in septic shock, combining increased levels of LMVs and fibrinolytic imbalance. Using plasma sample spiked with LMVs featuring different levels of PGC, we demonstrated that CD15-beads specifically extracted LMVs. The MV dependency of the test was demonstrated using electron microscopy, high speed centrifugation, nanofiltration and detergent-mediated solubilization and the MV-PGC specificity using plasmin-specific inhibitors, or antibodies blocking elastase or uPA. Thanks to a reaction booster (ε-ACA), we showed that the assay was more sensitive and reproducible than the original method. Moreover, it exhibited a good repeatability, inter-operator and inter-experiment reproducibility. The new immunomagnetic bio-assay was further validated in patients with septic shock. As a result, we showed that MV-PGC values were significantly lower in septic shock patients who died compared to patients who survived, both at inclusion and 24 h later (1.4 [0.8-3.0] vs 3.1 [1.7-18] A405 × 10-3/min, p = 0.02; 1.4 [1-1.6] vs 5.2 [2.2-16] A405 × 10-3/min, p = 0.004). Interestingly, combining both MV-PGC and PAI-1 in a ratio significantly improved the predictive value of PAI-1. This strategy, a hybrid capture bioassay to specifically measure LMV-PGC using for the first time, opens new perspectives for measuring subcellular fibrinolytic potential in clinical settings with fibrinolytic imbalance.
Collapse
Affiliation(s)
- Sylvie Cointe
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France.,Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | | | - Tarik Bouriche
- Research and Technology Department, BioCytex, Marseille, France
| | - Loris Vallier
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | - Amandine Bonifay
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | | | - Stéphane Robert
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | - Romain Armand
- Intensive Care Unit, CHU La Timone, APHM, Marseille, France
| | | | | | - Françoise Dignat-George
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France.,Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France.,Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| |
Collapse
|
5
|
M2 Monocyte Microparticles Are Increased in Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2017; 26:2369-2375. [PMID: 28606659 DOI: 10.1016/j.jstrokecerebrovasdis.2017.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe neurologic condition with no proven treatment. Recent evidence suggests that monocytes, a heterogenous group of cells with M1 and M2 phenotypes, contribute to secondary damage following ICH. Microparticles are vesicles .1-1 µm in size that are released from cells. We hypothesized that M1 and M2 monocyte microparticles (mMP) would be differentially expressed in ICH cases and controls. METHODS In a single-center, prospective, observational study, consecutive ICH cases were enrolled within 12 hours of symptom onset. Age (±5 years)-, race-, and sex-matched controls were recruited. M1 and M2 mMP numbers were determined in plasma samples using flow cytometry and protein biomarkers using standardized assays. The Mann-Whitney U test compared M1 and M2 mMP counts between cases and controls. Standardized regression coefficients compared M1 and M2 mMP with C-reactive protein (CRP) and serum amyloid A (SAA). RESULTS Nineteen ICH case-control pairs were enrolled. The median number of M1 mMP was not significantly different between ICH cases (8.63 × 107/milliliter (mL)) compared with controls (8.64 × 107/mL), (P = .525). The median number of M2 mMP was significantly higher in ICH cases (1.61 × 106/mL) compared with controls (4.46 × 105/mL) (P = .027). There were no significant associations for M1 or M2 mMP with CRP or SAA. CONCLUSION Higher numbers of M2 mMP in ICH cases compared with controls is hypothesis generating. It may represent differences in the chronic inflammatory status in patients susceptible to ICH, such as cellular activation or apoptosis. Further research is needed, including serial plasma samples, to elucidate the pathophysiology of monocytes and mMP following ICH.
Collapse
|
6
|
Dennis J, Medina-Rivera A, Truong V, Antounians L, Zwingerman N, Carrasco G, Strug L, Wells P, Trégouët DA, Morange PE, Wilson MD, Gagnon F. Leveraging cell type specific regulatory regions to detect SNPs associated with tissue factor pathway inhibitor plasma levels. Genet Epidemiol 2017; 41:455-466. [PMID: 28421636 DOI: 10.1002/gepi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 11/10/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) regulates the formation of intravascular blood clots, which manifest clinically as ischemic heart disease, ischemic stroke, and venous thromboembolism (VTE). TFPI plasma levels are heritable, but the genetics underlying TFPI plasma level variability are poorly understood. Herein we report the first genome-wide association scan (GWAS) of TFPI plasma levels, conducted in 251 individuals from five extended French-Canadian Families ascertained on VTE. To improve discovery, we also applied a hypothesis-driven (HD) GWAS approach that prioritized single nucleotide polymorphisms (SNPs) in (1) hemostasis pathway genes, and (2) vascular endothelial cell (EC) regulatory regions, which are among the highest expressers of TFPI. Our GWAS identified 131 SNPs with suggestive evidence of association (P-value < 5 × 10-8 ), but no SNPs reached the genome-wide threshold for statistical significance. Hemostasis pathway genes were not enriched for TFPI plasma level associated SNPs (global hypothesis test P-value = 0.147), but EC regulatory regions contained more TFPI plasma level associated SNPs than expected by chance (global hypothesis test P-value = 0.046). We therefore stratified our genome-wide SNPs, prioritizing those in EC regulatory regions via stratified false discovery rate (sFDR) control, and reranked the SNPs by q-value. The minimum q-value was 0.27, and the top-ranked SNPs did not show association evidence in the MARTHA replication sample of 1,033 unrelated VTE cases. Although this study did not result in new loci for TFPI, our work lays out a strategy to utilize epigenomic data in prioritization schemes for future GWAS studies.
Collapse
Affiliation(s)
- Jessica Dennis
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Alejandra Medina-Rivera
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Vinh Truong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Lina Antounians
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nora Zwingerman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Giovana Carrasco
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Lisa Strug
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Phil Wells
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM, UMR_S 1166, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Pierre-Emmanuel Morange
- INSERM, UMR_S 1062, Marseille, France.,Inra, UMR_INRA 1260, Marseille, France.,Aix Marseille Université, Marseille, France
| | - Michael D Wilson
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | - France Gagnon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Abstract
Monocytic microparticles (mMP) are microparticles derived from human monocytes either under in vivo or in vitro conditions. The size of mMP is between 0.1 and 1.0 μm. Apart from the size range, mMPs are also identified based on phosphatidylserine and CD14 expression on their surface, though this is not always the case. Monocytic MP are critical players in inflammation, endothelial cell function, and blood coagulation. They exhibit dual function by either helping the progression of such conditions or limiting it, depending on certain factors. Furthermore, the numbers of mMP are elevated in some autoimmune diseases, infectious diseases, and metabolic disorders. However, it is unknown whether mMP play an active role in these diseases or are simply biomarkers. The mechanism of mMP modulation is yet to be identified. In this review, we highlight the mechanism of mMP formation and the roles that they play in inflammation, blood coagulation, and different disease settings.
Collapse
Affiliation(s)
- Ahmad Tarmizi Abdul Halim
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Maryam Azlan
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Khan E, Ambrose NL, Ahnström J, Kiprianos AP, Stanford MR, Eleftheriou D, Brogan PA, Mason JC, Johns M, Laffan MA, Haskard DO. A low balance between microparticles expressing tissue factor pathway inhibitor and tissue factor is associated with thrombosis in Behçet's Syndrome. Sci Rep 2016; 6:38104. [PMID: 27924945 PMCID: PMC5141484 DOI: 10.1038/srep38104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
Thrombosis is common in Behçet's Syndrome (BS), and there is a need for better biomarkers for risk assessment. As microparticles expressing Tissue Factor (TF) can contribute to thrombosis in preclinical models, we investigated whether plasma microparticles expressing Tissue Factor (TF) are increased in BS. We compared blood plasma from 72 healthy controls with that from 88 BS patients (21 with a history of thrombosis (Th+) and 67 without (Th-). Using flow cytometry, we found that the total plasma MP numbers were increased in BS compared to HC, as were MPs expressing TF and Tissue Factor Pathway Inhibitor (TFPI) (all p < 0.0001). Amongst BS patients, the Th+ group had increased total and TF positive MP numbers (both p ≤ 0.0002) compared to the Th- group, but had a lower proportion of TFPI positive MPs (p < 0.05). Consequently, the ratio of TFPI positive to TF positive MP counts (TFPI/TF) was significantly lower in Th+ versus Th- BS patients (p = 0.0002), and no patient with a TFPI/TF MP ratio >0.7 had a history of clinical thrombosis. We conclude that TF-expressing MP are increased in BS and that an imbalance between microparticulate TF and TFPI may predispose to thrombosis.
Collapse
Affiliation(s)
- E Khan
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, London, UK
| | - N L Ambrose
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, London, UK
| | - J Ahnström
- Centre for Haematology, Department of Medicine, Imperial College, London, UK
| | - A P Kiprianos
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, London, UK
| | - M R Stanford
- Department of Ophthalmology, King's College, London, UK
| | - D Eleftheriou
- Institute of Child Heath, University College, London, UK
| | - P A Brogan
- Institute of Child Heath, University College, London, UK
| | - J C Mason
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, London, UK
| | - M Johns
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, London, UK
| | - M A Laffan
- Centre for Haematology, Department of Medicine, Imperial College, London, UK
| | - D O Haskard
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
9
|
Battiston K, Ouyang B, Labow R, Simmons C, Santerre J. Monocyte/macrophage cytokine activity regulates vascular smooth muscle cell function within a degradable polyurethane scaffold. Acta Biomater 2014; 10:1146-55. [PMID: 24361424 DOI: 10.1016/j.actbio.2013.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/20/2013] [Accepted: 12/12/2013] [Indexed: 01/22/2023]
Abstract
Tissue engineering strategies rely on the ability to promote cell proliferation and migration into porous biomaterial constructs, as well as to support specific phenotypic states of the cells in vitro. The present study investigated the use of released factors from monocytes and their derived macrophages (MDM) and the mechanism by which they regulate vascular smooth muscle cell (VSMC) response in a VSMC-monocyte co-culture system within a porous degradable polyurethane (D-PHI) scaffold. VSMCs cultured in monocyte/MDM-conditioned medium (MCM), generated from the culture of monocytes/MDM on D-PHI scaffolds for up to 28 days, similarly affected VSMC contractile marker expression, growth and three-dimensional migration when compared to direct VSMC-monocyte co-culture. Monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) were identified as two cytokines present in MCM, at concentrations that have previously been shown to influence VSMC phenotype. VSMCs cultured alone on D-PHI scaffolds and exposed to MCP-1 (5 ng ml(-1)) or IL-6 (1 ng ml(-1)) for 7 days experienced a suppression in contractile marker expression (with MCP-1 or IL-6) and increased growth (with MCP-1) compared to no cytokine medium supplementation. These effects were also observed in VSMC-monocyte co-culture on D-PHI. Neutralization of IL-6, but not MCP-1, was subsequently shown to decrease VSMC growth and enhance calponin expression for VSMC-monocyte co-cultures on D-PHI scaffolds for 7 days, implying that IL-6 mediates VSMC response in monocyte-VSMC co-cultures. This study highlights the use of monocytes and their derived macrophages in conjunction with immunomodulatory biomaterials, such as D-PHI, as agents for regulating VSMC response, and demonstrates the importance of monocyte/MDM-released factors, such as IL-6 in particular, in this process.
Collapse
|
10
|
|
11
|
Vadivel K, Agah S, Messer AS, Cascio D, Bajaj MS, Krishnaswamy S, Esmon CT, Padmanabhan K, Bajaj SP. Structural and functional studies of γ-carboxyglutamic acid domains of factor VIIa and activated Protein C: role of magnesium at physiological calcium. J Mol Biol 2013; 425:1961-1981. [PMID: 23454357 PMCID: PMC4017951 DOI: 10.1016/j.jmb.2013.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 11/28/2022]
Abstract
Crystal structures of factor (F) VIIa/soluble tissue factor (TF), obtained under high Mg(2+) (50mM Mg(2+)/5mM Ca(2+)), have three of seven Ca(2+) sites in the γ-carboxyglutamic acid (Gla) domain replaced by Mg(2+) at positions 1, 4, and 7. We now report structures under low Mg(2+) (2.5mM Mg(2+)/5mM Ca(2+)) as well as under high Ca(2+) (5mM Mg(2+)/45 mM Ca(2+)). Under low Mg(2+), four Ca(2+) and three Mg(2+) occupy the same positions as in high-Mg(2+) structures. Conversely, under low Mg(2+), reexamination of the structure of Gla domain of activated Protein C (APC) complexed with soluble endothelial Protein C receptor (sEPCR) has position 4 occupied by Ca(2+) and positions 1 and 7 by Mg(2+). Nonetheless, in direct binding experiments, Mg(2+) replaced three Ca(2+) sites in the unliganded Protein C or APC. Further, the high-Ca(2+) condition was necessary to replace Mg4 in the FVIIa/soluble TF structure. In biological studies, Mg(2+) enhanced phospholipid binding to FVIIa and APC at physiological Ca(2+). Additionally, Mg(2+) potentiated phospholipid-dependent activations of FIX and FX by FVIIa/TF and inactivation of activated factor V by APC. Since APC and FVIIa bind to sEPCR involving similar interactions, we conclude that under the low-Mg(2+) condition, sEPCR binding to APC-Gla (or FVIIa-Gla) replaces Mg4 by Ca4 with an attendant conformational change in the Gla domain ω-loop. Moreover, since phospholipid and sEPCR bind to FVIIa or APC via the ω-loop, we predict that phospholipid binding also induces the functional Ca4 conformation in this loop. Cumulatively, the data illustrate that Mg(2+) and Ca(2+) act in concert to promote coagulation and anticoagulation.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Sayeh Agah
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Amanda S Messer
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Madhu S Bajaj
- Division of Pulmonology and Critical Care, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sriram Krishnaswamy
- Department of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, OK 73104, USA
| | - Kaillathe Padmanabhan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - S Paul Bajaj
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Association of microparticles and preeclampsia. Mol Biol Rep 2013; 40:4553-9. [PMID: 23645085 DOI: 10.1007/s11033-013-2536-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a syndrome characterized by poor placentation and endothelial dysfunction. The diagnosis for this syndrome is based in hypertension and proteinuria presented after the 20th week of pregnancy. Despite intensive research, PE is still one of the leading causes of maternal mortality, although reliable screening tests or effective treatments of this disease have yet to be proposed. Microparticles (MPs) are small vesicles released after cell activation or apoptosis, which contain membrane proteins that are characteristic of the original parent cell. MPs have been proven to play key role in thrombosis, inflammation, and angiogenesis, as well as to mediate cell-cell communication by transferring mRNAs and microRNA from the cell of origin to target cells. Placenta-derived syncytiotrophoblast MPs are one of the most increased MPs during PE and may play an important role in the pathogenesis of this syndrome. Therefore, a better overall understanding of the role of MPs in PE may be useful for new clinical diagnoses and therapeutic approaches.
Collapse
|
13
|
|
14
|
Abstract
Leukocyte-derived microparticles (LMPs) may originate from neutrophils, monocytes/macrophages, and lymphocytes. They express markers from their parental cells and harbor membrane and cytoplasmic proteins as well as bioactive lipids implicated in a variety of mechanisms, maintaining or disrupting vascular homeostasis. When they carry tissue factor or coagulation inhibitors, they participate in hemostasis and pathological thrombosis. Both proinflammatory and anti-inflammatory processes can be affected by LMPs, thus ensuring an appropriate inflammatory response. LMPs also play a dual role in the endothelium by either improving the endothelial function or inducing an endothelial dysfunction. LMPs are implicated in all stages of atherosclerosis. They circulate at a high level in the bloodstream of patients with high atherothrombotic risk, such as smokers, diabetics, and subjects with obstructive sleep apnea, where their prolonged contact with the vessel wall may contribute to its overall deterioration. Numbering microparticles, including LMPs, might be useful in predicting cardiovascular events. LMPs modify the endothelial function and promote the recruitment of inflammatory cells in the vascular wall, necessary processes for the progression of the atherosclerotic lesion. In addition, LMPs favor the neovascularization within the vulnerable plaque and, in the ruptured plaque, they take part in coagulation and platelet activation. Finally, LMPs participate in angiogenesis. They might represent a novel therapeutic tool to reset the angiogenic switch in pathologies with altered angiogenesis. Additional studies are needed to further investigate the role of LMPs in cardiovascular diseases. However, large-scale studies are currently difficult to set up because microparticle measurement still requires elaborate techniques which lack standardization.
Collapse
Affiliation(s)
- Anne Angelillo-Scherrer
- Service and Central Laboratory of Hematology, Lausanne University Hospital, rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
15
|
Abstract
It is generally believed that only a small fraction of the tissue factor (TF) found on cell surfaces is active whereas the vast majority is cryptic in coagulation. It is unclear how cryptic TF differs from the coagulant active TF or potential mechanisms involved in transformation of cryptic TF to the coagulant active form. Exposure of phosphatidylserine (PS) in response to various chemical or pathophysiological stimuli has been considered as the most potent inducer of TF decryption. In addition to PS, TF self-association and association with specialized membrane domains may also play a role in TF decryption. It has been suggested recently that protein disulfide isomerase regulates TF decryption through its oxidoreductase activity by targeting Cys186-Cys209 disulfide bond in TF extracellular domain or regulating the PS equilibrium at the plasma membrane. However, this hypothesis requires further validation to become an accepted mechanism. In this article, we critically review literature on TF encryption/decryption with specific emphasis on recently published data and provide our perspective on this subject.
Collapse
Affiliation(s)
- L Vijaya Mohan Rao
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA.
| | | | | |
Collapse
|
16
|
Heying R, Wolf C, Beekhuizen H, Moelleken ML, Jockenhoevel S, Hoylaerts MF, Schmidt KG, Schroten H. Fibrin- and Collagen-Based Matrices Attenuate Inflammatory and Procoagulant Responses in Human Endothelial Cell Cultures Exposed toStaphylococcus aureus. Tissue Eng Part A 2012; 18:147-56. [DOI: 10.1089/ten.tea.2011.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Ruth Heying
- Department of Pediatric Cardiology and Pneumology, University Children's Hospital, Duesseldorf, Germany
- Department of Pediatric Cardiology, UZ Leuven, Leuven, Belgium
| | - Carolin Wolf
- Pediatric Infectious Diseases, Department of Pediatrics, University Children's Hospital, Duesseldorf, Germany
| | - Henry Beekhuizen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Luise Moelleken
- Pediatric Infectious Diseases, Department of Pediatrics, University Children's Hospital, Duesseldorf, Germany
| | | | - Marc F. Hoylaerts
- Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Klaus G. Schmidt
- Department of Pediatric Cardiology and Pneumology, University Children's Hospital, Duesseldorf, Germany
| | - Horst Schroten
- Department of Pediatric Cardiology, UZ Leuven, Leuven, Belgium
- Pediatric Infectious Diseases, Department of Pediatrics, University Hospital Mannheim, Heidelberg University, Germany
| |
Collapse
|
17
|
Osterud B. Tissue factor/TFPI and blood cells. Thromb Res 2011; 129:274-8. [PMID: 22197177 DOI: 10.1016/j.thromres.2011.11.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Vascular injury-induced access of blood to tissue factor (TF) leads to the formation of a TF-FVII/FVIIa complex and the triggering of blood coagulation. The activated TF-dependent pathway is regulated by Tissue Factor Pathway Inhibitor (TFPI), which binds and inhibits FXa, but more importantly forms an inactive quaternary complex with TF-FVIIa-FXa, effectively shutting off the TF activity. The old view of TF residing in extravascular sites exclusively has recently been challenged by several reports on TF expression in various blood cells. The latter arena has unfortunately been marred by many contradictions, apparently related to inferior tools and/or study design, notably the widespread use of antibodies with inferior and misleading specificity and TF activity assays of low sensitivity/specificity. Our own studies along with many other reports, compels the conclusion that in blood of healthy individuals TF is exclusively associated with and expressed in circulating monocytes. In this short review the distribution of TF and TFPI in blood is discussed.
Collapse
Affiliation(s)
- Bjarne Osterud
- HERG, Department of Medical Biology, Faculty of Health Sciences and MabCent SFI, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|
18
|
Srinivasan R, Ozhegov E, van den Berg YW, Aronow BJ, Franco RS, Palascak MB, Fallon JT, Ruf W, Versteeg HH, Bogdanov VY. Splice variants of tissue factor promote monocyte-endothelial interactions by triggering the expression of cell adhesion molecules via integrin-mediated signaling. J Thromb Haemost 2011; 9:2087-96. [PMID: 21812913 PMCID: PMC3292430 DOI: 10.1111/j.1538-7836.2011.04454.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND TF is highly expressed in cancerous and atherosclerotic lesions. Monocyte recruitment is a hallmark of disease progression in these pathological states. OBJECTIVE To examine the role of integrin signaling in TF-dependent recruitment of monocytes by endothelial cells. METHODS The expression of flTF and asTF in cervical cancer and atherosclerotic lesions was examined. Biologic effects of the exposure of primary microvascular endothelial cells (MVEC) to truncated flTF ectodomain (LZ-TF) and recombinant asTF were assessed. RESULTS flTF and asTF exhibited nearly identical expression patterns in cancer lesions and lipid-rich plaques. Tumor lesions, as well as stromal CD68(+) monocytes/macrophages, expressed both TF forms. Primary MVEC rapidly adhered to asTF and LZ-TF, and this was completely blocked by anti-β1 integrin antibody. asTF- and LZ-TF-treatment of MVEC promoted adhesion of peripheral blood mononuclear cells (PBMCs) under orbital shear conditions and under laminar flow; asTF-elicited adhesion was more pronounced than that elicited by LZ-TF. Expression profiling and western blotting revealed a broad activation of cell adhesion molecules (CAMs) in MVEC following asTF treatment including E-selectin, ICAM-1 and VCAM-1. In transwell assays, asTF potentiated PMBC migration through MVEC monolayers by ∼3-fold under MCP-1 gradient. CONCLUSIONS TF splice variants ligate β1 integrins on MVEC, which induces the expression of CAMs in MVEC and leads to monocyte adhesion and transendothelial migration. asTF appears more potent than flTF in eliciting these effects. Our findings underscore the pathophysiologic significance of non-proteolytic, integrin-mediated signaling by the two naturally occurring TF variants in cancer and atherosclerosis.
Collapse
Affiliation(s)
- R Srinivasan
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Anticoagulant effects of an antidiabetic drug on monocytes in vitro. Thromb Res 2011; 128:e100-6. [PMID: 21862110 DOI: 10.1016/j.thromres.2011.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Monocyte- and microparticle (MP)-associated tissue factor (TF) is upregulated in diabetes. Lipopolysaccharide (LPS) induces expression of TF and alternatively spliced TF (asTF) and increases MP release from monocytes. Using LPS-stimulated TF-bearing human monocytes, we examined whether glibenclamide, a sulfonylurea used to treat diabetes type 2, might possess anticoagulant properties. METHODS We studied the effects of glibenclamide on cell- and supernatant-associated procoagulant activity (Factor Xa-generating assay and clot formation assay), on expression of TF and asTF (flow cytometry, RT-qPCR, western blot) and on cell viability and MP release (flow cytometry). RESULTS Glibenclamide dose-dependently decreased procoagulant activity of cells and supernatants. The reduction in cellular procoagulant activity coincided with reduced expression of TF and asTF in cells, whereas cell viability remained almost unchanged. The glibenclamide-induced reduction in procoagulant activity of supernatants appeared to be associated with a decreased number of released MPs. CONCLUSIONS Reduction of monocyte- and supernatant-associated procoagulant activity by glibenclamide is associated with decreased expression of TF and asTF and possibly with a reduced MP number. Our data indicate that glibenclamide reduces the prothrombotic state in LPS-stimulated monocytes in vitro. Glibenclamide might therefore also have an anticoagulant effect in vivo, but this needs to be further evaluated.
Collapse
|
20
|
Abstract
Blood contains microparticles (MPs) derived from a variety of cell types, including platelets, monocytes, and endothelial cells. In addition, tumors release MPs into the circulation. MPs are formed from membrane blebs that are released from the cell surface by proteolytic cleavage of the cytoskeleton. All MPs are procoagulant because they provide a membrane surface for the assembly of components of the coagulation protease cascade. Importantly, procoagulant activity is increased by the presence of anionic phospholipids, particularly phosphatidylserine (PS), and the procoagulant protein tissue factor (TF), which is the major cellular activator of the clotting cascade. High levels of platelet-derived PS(+) MPs are present in healthy individuals, whereas the number of TF(+), PS(+) MPs is undetectable or very low. However, levels of PS(+), TF(+) MPs are readily detected in a variety of diseases, and monocytes appear to be the primary cellular source. In cancer, PS(+), TF(+) MPs are derived from tumors and may serve as a useful biomarker to identify patients at risk for venous thrombosis. This review will summarize our current knowledge of the role of procoagulant MPs in hemostasis and thrombosis.
Collapse
Affiliation(s)
- A Phillip Owens
- Division of Hematology/Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina at Chapel Hill, North Carolina, USA
| | | |
Collapse
|
21
|
Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JWN. Increased tissue factor expression in diabetes mellitus type 2 monocytes caused by insulin resistance. J Thromb Haemost 2011; 9:873-5. [PMID: 21251203 DOI: 10.1111/j.1538-7836.2011.04201.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Atherosclerotic-like process in aortic stenosis: Activation of the tissue factor–thrombin pathway and potential role through osteopontin alteration. Atherosclerosis 2010; 213:369-76. [DOI: 10.1016/j.atherosclerosis.2010.07.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/15/2010] [Accepted: 07/22/2010] [Indexed: 11/20/2022]
|
23
|
Basavaraj MG, Gruber FX, Sovershaev M, Appelbom HI, Østerud B, Petersen LC, Hansen JB. The role of TFPI in regulation of TF-induced thrombogenicity on the surface of human monocytes. Thromb Res 2010; 126:418-25. [DOI: 10.1016/j.thromres.2010.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/04/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
24
|
Chandradas S, Deikus G, Tardos JG, Bogdanov VY. Antagonistic roles of four SR proteins in the biosynthesis of alternatively spliced tissue factor transcripts in monocytic cells. J Leukoc Biol 2009; 87:147-52. [PMID: 19843576 DOI: 10.1189/jlb.0409252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following recruitment to solid tissues, peripheral blood monocytes express a number of proinflammatory molecules including TF, a trigger of coagulation that also promotes cell-cell interactions and tissue remodeling. Monocytes express two forms of TF: flTF, a highly coagulant transmembrane form, and asTF, a highly proangiogenic, soluble TF form. Biosynthesis of the two TF forms occurs via alternative processing of exon 5 during pre-mRNA splicing. Its inclusion results in flTF mRNA and its exclusion, asTF mRNA. We developed a splicing reporter system recently and determined that two spliceosomal constituents, SR proteins ASF/SF2 and SRp55, play a pivotal role in exon 5 inclusion. In this report, we show for the first time that two other SR proteins expressed in human monocytes, SRp40 and SC35, antagonize ASF/SF2 and SRp55 by competing for binding to certain sites in exon 5, thereby promoting TF exon 5 exclusion, an event unique to asTF biosynthesis. We also show that the intron preceding TF exon 5 possesses characteristics rarely found in U2 introns. Our findings indicate that modulation of TF pre-mRNA splicing can be accomplished via modification of SR proteins' activity, facilitating development of novel therapeutic strategies to modulate the "TF profile" of monocytes/macrophages.
Collapse
Affiliation(s)
- Sajiv Chandradas
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
25
|
Bogdanov VY, Osterud B. Cardiovascular complications of diabetes mellitus: The Tissue Factor perspective. Thromb Res 2009; 125:112-8. [PMID: 19647294 DOI: 10.1016/j.thromres.2009.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/25/2009] [Accepted: 06/28/2009] [Indexed: 12/31/2022]
Abstract
Heightened activity of circulating Tissue Factor (TF) has been linked to a variety of macro- and microvascular cardiovascular complications commonly observed in diabetes mellitus. Systemic and localized vascular abnormalities comprise the most debilitating feature of diabetic pathophysiology. Blood monocytes are chronically activated in diabetes, and serve as the major source of bioactive intravascular TF. This review examines recent literature on this subject, with a special emphasis on the abnormal monocyte physiology in diabetes and the structural and functional diversity of circulating TF.
Collapse
Affiliation(s)
- Vladimir Y Bogdanov
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
26
|
Poitevin S, Garnotel R, Antonicelli F, Gillery P, Nguyen P. Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway. J Thromb Haemost 2008; 6:1586-94. [PMID: 18541003 DOI: 10.1111/j.1538-7836.2008.03051.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue factor (TF), the main trigger of coagulation cascade, is a major component of the atherosclerotic plaque. Matrix metalloproteinases (MMPs) are recognized as key mediators of extracellular matrix remodeling during inflammation. It was recently emphasized that both TF and MMP-9 were overexpressed in atherosclerotic plaques, suggesting a role of both molecules in plaque instability and thrombogenicity. OBJECTIVE The present study was designed to determine whether human monocytes could co-express TF and MMP-9 when the cells interact with type I collagen, a major component of the extracellular matrix and atherosclerotic plaque. METHODS Human monocytes were isolated by elutriation and incubated in collagen I-coated plates. Tissue factor and MMP-9 expression were examined using real-time reverse transcription-polymerase chain reaction, flow cytometry, western blot and zymography. The activation of nuclear factor-kappa B (NF-kappaB) and the role of reactive oxygen species (ROS) in TF and MMP-9 production was studied using gel shift experiments, antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetyl-cysteine (NAC), and apocynin (a specific inhibitor of the NADPH oxidase). RESULTS Type I collagen induced TF expression and increased MMP-9 production. In addition, the pro-inflammatory tumor necrosis factor-alpha (TNF-alpha), produced in response to collagen I, increased MMP-9 production. PDTC and NAC inhibited NF-kappaB activation during monocyte interaction with collagen I. Finally, both antioxidants and apocynin decreased the expression of TF, TNF-alpha, and MMP-9. CONCLUSIONS These results indicate a new mechanism in the monocyte expression of TF and MMP-9 in response to collagen I involving a ROS-dependent pathway linked to the activation of the NADPH oxidase.
Collapse
Affiliation(s)
- S Poitevin
- EA3801, URCA and Laboratory of Haematology, CHU Robert Debré, Reims, France
| | | | | | | | | |
Collapse
|
27
|
Bluff JE, Brown NJ, Reed MWR, Staton CA. Tissue factor, angiogenesis and tumour progression. Breast Cancer Res 2008; 10:204. [PMID: 18373885 PMCID: PMC2397518 DOI: 10.1186/bcr1871] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue factor, the primary initiator of the coagulation cascade, maintains vascular integrity in response to injury. It is now recognised that, in addition to the role as a procoagulant activator, tissue factor participates in many tumour-related processes that contribute to malignant disease progression. The present review details the recent evidence supporting a role for tissue factor in tumour haemostasis, angiogenesis, metastasis and malignant cell survival. Furthermore, future research directions are discussed that may enhance our understanding of the role and regulation of this protein, which could ultimately lead to the innovative design and development of new anticancer therapies.
Collapse
Affiliation(s)
- Joanne E Bluff
- Microcirculation Research Group, Academic Unit of Surgical Oncology, School of Medicine and Biomedical Sciences, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | | | | |
Collapse
|