1
|
Li M, Song J, Tang X, Bi J, Li Y, Chen C, Feng N, Song Y, Wang L. Critical roles of PAI-1 in lipopolysaccharide-induced acute lung injury. Adv Med Sci 2024; 69:90-102. [PMID: 38387409 DOI: 10.1016/j.advms.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/08/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of fibrinolytic systems. The effect of PAI-1 on inflammatory response is still inconsistent. Our study was conducted to investigate its effects on inflammation to clarify the role of PAI-1 in acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIAL AND METHODS ALI models were established in wild-type (WT) and PAI-1 knockout (KO) mice by LPS intervention for 48 h. Lung histopathology, wet-dry ratio, total cell count and TNF-α concentration in bronchoalveolar lavage fluid (BALF), and inflammation related proteins were detected. Flow cytometry was used to sort neutrophils, macrophages, regulatory T cells (Treg) and T helper cell 17 (Th17). RNA sequencing was performed to find differentially expressed genes. Masson staining and immunohistochemistry were used to analyze pulmonary fiber deposition and proliferation. RESULTS Compared with ALI (WT) group, the wet-dry ratio, the total number of BALF cells, the concentration of TNF-α in BALF, and the expression of pp65 in the lung tissue was increased in ALI (PAI-1 KO) group, with increased proportion of neutrophils, decreased proportion of macrophages and decreased proportion of Treg/Th17 in the lung tissue. Collagen fiber deposition and PCNA expression were lighter in ALI (PAI-1 KO) group than ALI (WT) group. PPI analysis showed that PAI-1 was closely related to TNF, IL-6, IL-1β, Smad2/3 and mainly concentrated in the complement and coagulation system, TNF-α and IL-17 signaling pathways. CONCLUSIONS PAI-1 KO could aggravate ALI induced by LPS at 48 h. PAI-1 may be an important target to improve the prognosis of ALI.
Collapse
Affiliation(s)
- Miao Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosafety, Shanghai, China
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Bi
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufan Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nana Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosafety, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Centre of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China.
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Lebas H, Guérit S, Picot A, Boulay AC, Fournier A, Vivien D, Cohen Salmon M, Docagne F, Bardou I. PAI-1 production by reactive astrocytes drives tissue dysfibrinolysis in multiple sclerosis models. Cell Mol Life Sci 2022; 79:323. [PMID: 35633384 PMCID: PMC11072877 DOI: 10.1007/s00018-022-04340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND In multiple sclerosis (MS), disturbance of the plasminogen activation system (PAS) and blood brain barrier (BBB) disruption are physiopathological processes that might lead to an abnormal fibrin(ogen) extravasation into the parenchyma. Fibrin(ogen) deposits, usually degraded by the PAS, promote an autoimmune response and subsequent demyelination. However, the PAS disruption is not well understood and not fully characterized in this disorder. METHODS Here, we characterized the expression of PAS actors during different stages of two mouse models of MS (experimental autoimmune encephalomyelitis-EAE), in the central nervous system (CNS) by quantitative RT-PCR, immunohistofluorescence and fluorescent in situ hybridization (FISH). Thanks to constitutive PAI-1 knockout mice (PAI-1 KO) and an immunotherapy using a blocking PAI-1 antibody, we evaluated the role of PAI-1 in EAE models and its impact on physiopathological processes such as fibrin(ogen) deposits, lymphocyte infiltration and demyelination. RESULTS We report a striking overexpression of PAI-1 in reactive astrocytes during symptomatic phases, in two EAE mouse models of MS. This increase is concomitant with lymphocyte infiltration and fibrin(ogen) deposits in CNS parenchyma. By genetic invalidation of PAI-1 in mice and immunotherapy using a blocking PAI-1 antibody, we demonstrate that abolition of PAI-1 reduces the severity of EAE and occurrence of relapses in two EAE models. These benefits are correlated with a decrease in fibrin(ogen) deposits, infiltration of T4 lymphocytes, reactive astrogliosis, demyelination and axonal damage. CONCLUSION These results demonstrate that a deleterious overexpression of PAI-1 by reactive astrocytes leads to intra-parenchymal dysfibrinolysis in MS models and anti-PAI-1 strategies could be a new therapeutic perspective for MS.
Collapse
Affiliation(s)
- Héloïse Lebas
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Sylvaine Guérit
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Audrey Picot
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Anne Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/75231, Paris CEDEX 05, France
| | - Antoine Fournier
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| | - Martine Cohen Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/75231, Paris CEDEX 05, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Département de l'information scientifique et de la communication (DISC), INSERM, 75654, Paris cedex 13, France
| | - Isabelle Bardou
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France.
| |
Collapse
|
3
|
Curci C, Picerno A, Chaoul N, Stasi A, De Palma G, Franzin R, Pontrelli P, Castellano G, Pertosa GB, Macchia L, Di Lorenzo VF, Sabbà C, Gallone A, Gesualdo L, Sallustio F. Adult Renal Stem/Progenitor Cells Can Modulate T Regulatory Cells and Double Negative T Cells. Int J Mol Sci 2020; 22:ijms22010274. [PMID: 33383950 PMCID: PMC7795073 DOI: 10.3390/ijms22010274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 01/22/2023] Open
Abstract
Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.
Collapse
Affiliation(s)
- Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Nada Chaoul
- Allergology Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (L.M.)
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni B. Pertosa
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Luigi Macchia
- Allergology Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.C.); (L.M.)
| | | | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.P.); (A.S.); (R.F.); (P.P.); (G.B.P.); (L.G.)
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence:
| |
Collapse
|
4
|
Elkhidir HS, Richards JB, Cromar KR, Bell CS, Price RE, Atkins CL, Spencer CY, Malik F, Alexander AL, Cockerill KJ, Haque IU, Johnston RA. Plasminogen activator inhibitor-1 does not contribute to the pulmonary pathology induced by acute exposure to ozone. Physiol Rep 2016; 4:4/18/e12983. [PMID: 27670409 PMCID: PMC5037925 DOI: 10.14814/phy2.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Expression of plasminogen activator inhibitor (PAI)-1, the major physiological inhibitor of fibrinolysis, is increased in the lung following inhalation of ozone (O3), a gaseous air pollutant. PAI-1 regulates expression of interleukin (IL)-6, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-2, which are cytokines that promote lung injury, pulmonary inflammation, and/or airway hyperresponsiveness following acute exposure to O3 Given these observations, we hypothesized that PAI-1 contributes to the severity of the aforementioned sequelae by regulating expression of IL-6, KC, and MIP-2 following acute exposure to O3 To test our hypothesis, wild-type mice and mice genetically deficient in PAI-1 (PAI-1-deficient mice) were acutely exposed to either filtered room air or O3 (2 ppm) for 3 h. Four and/or twenty-four hours following cessation of exposure, indices of lung injury [bronchoalveolar lavage fluid (BALF) protein and epithelial cells], pulmonary inflammation (BALF IL-6, KC, MIP-2, macrophages, and neutrophils), and airway responsiveness to aerosolized acetyl-β-methylcholine chloride (respiratory system resistance) were measured in wild-type and PAI-1-deficient mice. O3 significantly increased indices of lung injury, pulmonary inflammation, and airway responsiveness in wild-type and PAI-1-deficient mice. With the exception of MIP-2, which was significantly lower in PAI-1-deficient as compared to wild-type mice 24 h following cessation of exposure to O3, no other genotype-related differences occurred subsequent to O3 exposure. Thus, following acute exposure to O3, PAI-1 neither regulates pulmonary expression of IL-6 and KC nor functionally contributes to any of the pulmonary pathological sequelae that arise from the noxious effects of inhaled O3.
Collapse
Affiliation(s)
- Hamza S Elkhidir
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
5
|
Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6:82. [PMID: 25767472 PMCID: PMC4341565 DOI: 10.3389/fimmu.2015.00082] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet-bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis, or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of neutrophil extracellular traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet–bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the aggregation response.
Collapse
Affiliation(s)
| | - Pauline Damien
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Adrien Chabert
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Bruno Pozzetto
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon , Saint-Etienne , France ; Institut National de la Transfusion Sanguine , Paris , France
| |
Collapse
|
6
|
Bhandary YP, Shetty SK, Marudamuthu AS, Fu J, Pinson BM, Levin J, Shetty S. Role of p53-fibrinolytic system cross-talk in the regulation of quartz-induced lung injury. Toxicol Appl Pharmacol 2015; 283:92-8. [PMID: 25596429 DOI: 10.1016/j.taap.2015.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 11/16/2022]
Abstract
Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53-uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway.
Collapse
Affiliation(s)
- Yashodhar P Bhandary
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Shwetha K Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Amarnath S Marudamuthu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Jian Fu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA; Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara M Pinson
- Occupational Medicine, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA; Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jeffrey Levin
- Occupational Medicine, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA
| | - Sreerama Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA.
| |
Collapse
|
7
|
Huang WT, Akhter H, Jiang C, MacEwen M, Ding Q, Antony V, Thannickal VJ, Liu RM. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis. Exp Gerontol 2014; 61:62-75. [PMID: 25451236 DOI: 10.1016/j.exger.2014.11.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/31/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disorder with unknown cause and no effective treatment. The incidence of and mortality from IPF increase with age, suggesting that advanced age is a major risk factor for IPF. The mechanism underlying the increased susceptibility of the elderly to IPF, however, is unknown. In this study, we show for the first time that the protein level of plasminogen activator inhibitor 1 (PAI-1), a protease inhibitor which plays an essential role in the control of fibrinolysis, was significantly increased with age in mouse lung homogenate and lung fibroblasts. Upon bleomycin challenge, old mice experienced augmented PAI-1 induction and lung fibrosis as compared to young mice. Most interestingly, we show that fewer (myo)fibroblasts underwent apoptosis and more (myo)fibroblasts with increased level of PAI-1 accumulated in the lung of old than in young mice after bleomycin challenge. In vitro studies further demonstrate that fibroblasts isolated from lungs of old mice were resistant to H2O2 and tumor necrosis factor alpha-induced apoptosis and had augmented fibrotic responses to TGF-β1, compared to fibroblasts isolated from young mice. Inhibition of PAI-1 activity with a PAI-1 inhibitor, on the other hand, eliminated the aging-related apoptosis resistance and TGF-β1 sensitivity in isolated fibroblasts. Moreover, we show that knocking down PAI-1 in human lung fibroblasts with PAI-1 siRNA significantly increased their sensitivity to apoptosis and inhibited their responses to TGF-β1. Together, the results suggest that increased PAI-1 expression may underlie the aging-related sensitivity to lung fibrosis in part by protecting fibroblasts from apoptosis.
Collapse
Affiliation(s)
- Wen-Tan Huang
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, USA
| | - Hasina Akhter
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, USA
| | - Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Mark MacEwen
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, USA
| | - Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Veena Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Victor John Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
8
|
Raeven P, Drechsler S, Weixelbaumer KM, Bastelica D, Peiretti F, Klotz A, Jafarmadar M, Redl H, Bahrami S, Alessi MC, Declerck PJ, Osuchowski MF. Systemic inhibition and liver-specific over-expression of PAI-1 failed to improve survival in all-inclusive populations or homogenous cohorts of CLP mice. J Thromb Haemost 2014; 12:958-69. [PMID: 24655755 DOI: 10.1111/jth.12565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of plasminogen activator inhibitor type-1 (PAI-1) in abdominal sepsis remains elusive. OBJECTIVES To study the influence of inhibition and over-expression of PAI-1 upon survival in cecal ligation and puncture (CLP) sepsis. METHODS (i) Mice underwent moderate CLP and received 10 mg kg(-1) of either monoclonal anti-PAI-1 (MA-MP6H6) or control (MA-Control) antibody intravenously at 0, 18 or 30 h post-CLP. The 30-h treatment group was additionally stratified into mice predicted to survive (P-SUR) or die (P-DIE) based on IL 6 measured at 24 h post-CLP. (ii) PAI-1 expression was induced with pLIVE.PAI-1 plasmid administered 72 h pre-CLP. Blood was sampled for 5 days and survival was monitored for 28 days. RESULTS MA-MP6H6 effectively neutralized active PAI-1 and fully restored fibrinolysis while PAI-1 over-expression was liver-specific and correlated with PAI-1 increase in the blood. Without stratification, MA-MP6H6 co-/post-treatment conferred no survival benefit. Prospective stratification (IL-6 cut-off: 14 ng mL(-1) ) suggested increased mortality by MA-MP6H6 treatment in P-SUR that reached 30% difference (vs. MA-Control; P < 0.05) after a retrospective cut-off readjustment to 3.3 ng mL(-1) for better P-SUR homogeneity. Subsequent prospective anti-PAI-1 treatment in P-SUR mice with 3.3 ng mL(-1) cut-off demonstrated a negative but statistically insignificant effect: mortality was higher by 17% after MA-MP6H6 vs. MA-Control. Over-expression of PAI 1 did not alter post-CLP survival. Neither PAI-1 inhibition nor over-expression meaningfully modified inflammatory response and/or organ function. CONCLUSIONS Restoration of fibrinolysis in early abdominal sepsis was not beneficial and it may prove detrimental in subjects with the lowest risk of death, while preemptive PAI-1 up-regulation at the current magnitude was not protective.
Collapse
Affiliation(s)
- P Raeven
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Trauma Research Center of the AUVA, Vienna, Austria; Department of Anesthesiology, University Medical Center, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kager LM, van der Windt GJW, Wieland CW, Florquin S, van 't Veer C, van der Poll T. Plasminogen activator inhibitor type I may contribute to transient, non-specific changes in immunity in the subacute phase of murine tuberculosis. Microbes Infect 2012; 14:748-55. [PMID: 22484384 DOI: 10.1016/j.micinf.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium (M.) tuberculosis, is a devastating infectious disease causing many deaths worldwide. Non-specific host defense mechanisms such as the coagulation and fibrinolytic system may give insight in possible new therapeutic targets. Plasminogen activator inhibitor type-1 (PAI-1), an important regulator of inflammation and fibrinolysis, might be of interest as tuberculosis patients have elevated plasma levels of PAI-1. In this study we set out to investigate the role of PAI-1 during tuberculosis in vivo. Wildtype (WT) and PAI-1 deficient (PAI-1⁻/⁻) mice were intranasally infected with M. tuberculosis H37rv and sacrificed after 2, 5 and 29 weeks. Five weeks post-infection, bacterial loads in lungs of PAI-1⁻/⁻ mice were significantly higher compared to WT mice, while no differences were seen 2 and 29 weeks post-infection. At two weeks post-infection increased influx of macrophages and lymphocytes was observed. PAI-1 deficiency was associated with a reduced cytokine response in the lungs; however, upon stimulation with tuberculin purified protein derivative (PPD), PAI-1⁻/⁻ splenocytes released increased levels of IFN-γ compared to WT. No clear differences were found between PAI-1⁻/⁻ and WT mice at 29 weeks after infection. In conclusion, these data suggest that PAI-1 contributes to transient, non-specific changes in immunity during the early phase of murine tuberculosis.
Collapse
Affiliation(s)
- Liesbeth M Kager
- Center for Infection and Immunity Amsterdam-CINIMA, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
10
|
Yang D, Tong L, Wang D, Wang Y, Wang X, Bai C. Roles of CC chemokine receptors (CCRs) on lipopolysaccharide-induced acute lung injury. Respir Physiol Neurobiol 2010; 170:253-9. [PMID: 20152938 DOI: 10.1016/j.resp.2010.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to evaluate the effects of the CC chemokine receptor (CCR) 2b and CCR1 antagonist RS504393 as well as the roles of CCRs on lipopolysaccharide (LPS)-induced acute lung injury (ALI). In A549 cell line, treatment with RS504393 significantly inhibited the expression of CCR1, CCR2 and interleukin (IL)-8 after either LPS or tumor necrosis factor-alpha stimulation. An ALI model with intranasal LPS administration was used on C57BL/6J, CCR1, CCR2 and CCR3 knockout mice. Treatment with RS504393 had a noteworthy preventative effect on LPS-induced over-expression of IL-1beta, plasminogen activator inhibitor and CCR2. In CCR1 and CCR2-deficient animals, LPS-induced less increase of lung weight, bronchoalveolar lavage (BAL) leukocytes and IL-6 compared to the C57BL/6J and CCR3 knockout mice. This was most prominent in the CCR2 knockout mice where no LPS-induced lung edema and no increase of IL-6 in BAL fluid occurred. Our results indicate that CCR2, and to some extent CCR1, play pivotal roles in the development of ALI.
Collapse
Affiliation(s)
- Dong Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
11
|
Aggarwal NR, D'Alessio FR, Tsushima K, Sidhaye VK, Cheadle C, Grigoryev DN, Barnes KC, King LS. Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling. Physiol Genomics 2009; 41:109-19. [PMID: 20028937 DOI: 10.1152/physiolgenomics.00131.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In animal models of acute lung injury (ALI), gene expression studies have focused on the acute phase of illness, with little emphasis on resolution. In this study, the acute phase of intratracheal lipopolysaccharide (IT LPS)-induced lung injury was similar in wild-type (WT) and recombinase-activating gene-1-deficient (Rag-1(-/-)) lymphocyte-deficient mice, but resolution was impaired and resolution-phase lung gene expression remained different from baseline only in Rag-1(-/-) mice. By focusing on groups of genes involved in similar biological processes (gene ontologies) pertinent to inflammation and the immune response, we identified 102 genes at days 4 and 10 after IT LPS with significantly different expression between WT and Rag-1(-/-) mice. After adoptive transfer of isolated CD4+CD25+Foxp3+ regulatory T cells (Tregs) to Rag-1(-/-) mice at the time of IT LPS, resolution was similar to that in WT mice. Of the 102 genes distinctly changed in either WT or Rag-1(-/-) mice from our 7 gene ontologies, 19 genes reverted from the Rag-1(-/-) to the WT pattern of expression after adoptive transfer of Tregs, implicating those 19 genes in Treg-mediated resolution of ALI.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kang JH, Cho HJ, Lee IS, Kim M, Lee IK, Chang YC. Comparative proteome analysis of TGF-β1-induced fibrosis processes in normal rat kidney interstitial fibroblast cells in response to ascofuranone. Proteomics 2009; 9:4445-56. [DOI: 10.1002/pmic.200800941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Ma Z, Paek D, Oh CK. Plasminogen activator inhibitor-1 and asthma: role in the pathogenesis and molecular regulation. Clin Exp Allergy 2009; 39:1136-44. [PMID: 19438580 DOI: 10.1111/j.1365-2222.2009.03272.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasminogen activator inhibitor (PAI)-1 is a major inhibitor of the fibrinolytic system. PAI-1 levels are markedly increased in asthmatic airways, and mast cells (MCs), a pivotal cell type in the pathogenesis of asthma, are one of the main sources of PAI-1 production. Recent studies suggest that PAI-1 may promote the development of asthma by regulating airway remodelling, airway hyperresponsiveness (AHR), and allergic inflammation. The single guanosine nucleotide deletion/insertion polymorphism (4G/5G) at -675 bp of the PAI-1 gene is the major genetic determinant of PAI-1 expression. Plasma PAI-1 level is higher in people with the 4G/4G genotype than in those with the 5G/5G genotype. A strong association between the 4G/5G polymorphism and the risk and the severity of asthma has been suggested. Levels of plasma IgE and PAI-1 and severity of AHR are greater in asthmatic patients with the 4G/4G genotype than in those with the 5G/5G genotype. The PAI-1 promoter with the 4G allele renders higher transcription activity than the PAI-1 promoter with the 5G allele in stimulated MCs. The molecular mechanism for the 4G allele-mediated higher PAI-1 expression is associated with greater binding of upstream stimulatory factor-1 to the E-box adjacent to the 4G site (E-4G) than to the E-5G. In summary, PAI-1 may play an important role in the pathogenesis of asthma. Further studies evaluating the mechanisms of PAI-1 action and regulation may lead to the development of a novel prognostic factor and therapeutic target for the treatment and prevention of asthma and other PAI-1-associated diseases.
Collapse
Affiliation(s)
- Z Ma
- Department of Pediatrics, Harbor-UCLA Medical Center, Division of Allergy and Immunology, Torrance, CA, USA
| | | | | |
Collapse
|
14
|
Kotsianidis I, Nakou E, Bouchliou I, Tzouvelekis A, Spanoudakis E, Steiropoulos P, Sotiriou I, Aidinis V, Margaritis D, Tsatalas C, Bouros D. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179:1121-30. [PMID: 19342412 DOI: 10.1164/rccm.200812-1936oc] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE The implication of T cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF) is controversial. CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) are pivotal in maintaining immune homeostasis, but their role in IPF pathophysiology has not yet been studied. OBJECTIVES To explore Treg dynamics and function in IPF. METHODS Treg levels and dynamics were analyzed by flow cytometry in the peripheral blood (PB) and bronchoalveolar lavage (BAL) of 21 patients with IPF, 35 patients with lung diseases other than IPF (patients without IPF), 20 patients with collagen vascular diseases with pulmonary parenchymal involvement (CVD-IP), and 28 healthy volunteers. The suppression of autologous CD4(+)CD25(-) cell-proliferative responses and cytokine release by magnetic bead-isolated Tregs was evaluated by proliferation assays and cytometric bead array. Correlations of Treg function and levels with lung function parameters were also performed. MEASUREMENTS AND MAIN RESULTS In patients with IPF, both BAL and PB Tregs were reduced compared with those of healthy volunteers and patients without IPF, although not always significantly. Treg levels were not affected by the administration of low-dose prednisone in four nonresponding patients. The suppressor potential of BAL and PB Tregs was compromised in patients with IPF and patients with CVD-IP, compared with healthy volunteers and patients without IPF. Similarly, the Treg-induced suppression of helper T-cell type 1 and 2 cytokine secretion was impaired in the BAL of patients with IPF and patients with CVD-IP. Moreover, the defective function of BAL Tregs correlated highly with parameters of disease severity. CONCLUSIONS This study provides the first evidence of global Treg impairment in IPF that strongly correlates with disease severity, suggesting a role for Tregs in the fibrotic process.
Collapse
Affiliation(s)
- Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace, Medical School Dragana, Alexandroupolis, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|