1
|
Al-Essa MK, Al-Qudah T, Al Hadidi AKA, Alshubbak NH. Proteolysis Assays With Conserved or Aminofluorescein-Labeled Red Blood Cells. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7919329. [PMID: 39371248 PMCID: PMC11452246 DOI: 10.1155/2024/7919329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Backgrounds: Various physiological functions and reaction cascades, as well as disease progression in the living systems, are controlled by the activity of specific proteolytic enzymes. We conducted the study to evaluate protease activity by assessing peptide fragments from either conserved or labeled red blood cells (RBCs) with aminofluorescein (AF) in the reaction media. Methods: RBCs were incubated in media containing trypsin. Subsequently, the concentration of peptide fragments in the reaction media, resulted by the digestion with trypsin from conserved cells, was estimated by 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) as an amine-reactive fluorogenic reagent. In a second approach, we conjugated AF to the conserved RBCs and then exposed AF-labeled RBCs to trypsin. This was followed by directly measuring the fluorescence intensity (FI) in the reaction media to estimate the concentration of AF-labeled peptide fragments resulting from the enzyme's activity. Results: Show a concentration- and time-dependent increase in FIs, reflecting the activity of trypsin as a proteolytic enzyme. The FIs increased significantly by 4 to 5 folds in samples treated with different enzyme concentrations, and by over 11 folds after 2 h incubation in media containing a 50 μL trypsin, as evidenced by CBQCA assays. Conclusion: These fast and affordable approaches could be applied with high reliability for the general estimation of protease activity in samples and customized for diagnostic purposes and prognostic evaluation in various diseases.
Collapse
Affiliation(s)
- Mohamed K. Al-Essa
- Department of Physiology and BiochemistryFaculty of MedicineThe University of Jordan, Amman, Jordan
| | - Tamara Al-Qudah
- Department of Physiology and BiochemistryFaculty of MedicineThe University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
2
|
Severin S, Gratacap MP, Bouvet L, Borret M, Kpotor AO, Chicanne G, Xuereb JM, Viaud J, Payrastre B. Phosphoinositides take a central stage in regulating blood platelet production and function. Adv Biol Regul 2024; 91:100992. [PMID: 37793962 DOI: 10.1016/j.jbior.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.
Collapse
Affiliation(s)
- Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Laura Bouvet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Maxime Borret
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Afi Oportune Kpotor
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Jean-Marie Xuereb
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France; Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432, Toulouse, France.
| |
Collapse
|
3
|
Xie B, Tang W, Wen S, Chen F, Yang C, Wang M, Yang Y, Liang W. GDF-15 Inhibits ADP-Induced Human Platelet Aggregation through the GFRAL/RET Signaling Complex. Biomolecules 2023; 14:38. [PMID: 38254638 PMCID: PMC10813690 DOI: 10.3390/biom14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Growth differentiation factor-15 (GDF-15) is proposed to be strongly associated with several cardiovascular diseases, such as heart failure and atherosclerosis. Moreover, some recent studies have reported an association between GDF-15 and platelet activation. In this study, we isolated peripheral blood platelets from healthy volunteers and evaluated the effect of GDF-15 on adenosine diphosphate (ADP)-induced platelet activation using the platelet aggregation assay. Subsequently, we detected the expression of GDF-15-related receptors on platelets, including the epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), transforming growth factor-beta receptor I (TGF-βRI), transforming growth factor-beta receptor II (TGF-βRII), glial-cell-line-derived neurotrophic factor family receptor α-like (GFRAL), and those rearranged during transfection (RET). Then, we screened for GDF-15 receptors using the GDF-15-related receptor microarray comprising these recombinant proteins. We also performed the immunoprecipitation assay to investigate the interaction between GDF-15 and the receptors on platelets. For the further exploration of signaling pathways, we investigated the effects of GDF-15 on the extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and Janus kinase 2 (JAK2) pathways. We also investigated the effects of GDF-15 on the ERK and AKT pathways and platelet aggregation in the presence or absence of RET agonists or inhibition. Our study revealed that GDF-15 can dose-independently inhibit ADP-induced human platelet aggregation and that the binding partner of GDF-15 on platelets is GFRAL. We also found that GDF-15 inhibits ADP-induced AKT and ERK activation in platelets. Meanwhile, our results revealed that the inhibitory effects of GDF-15 can be mediated by the GFRAL/RET complex. These findings reveal the novel inhibitory mechanism of ADP-induced platelet activation by GDF-15.
Collapse
Affiliation(s)
- Baikang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuang Wen
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Barrett TJ. Targeting PAR4 to Reduce Atherosclerosis. Arterioscler Thromb Vasc Biol 2023; 43:2179-2182. [PMID: 37767705 PMCID: PMC10772896 DOI: 10.1161/atvbaha.123.320046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Affiliation(s)
- Tessa J Barrett
- New York University Grossman School of Medicine, Department of Medicine, Department of Pathology, New York
| |
Collapse
|
5
|
Shrimali NM, Agarwal S, Kaur S, Bhattacharya S, Bhattacharyya S, Prchal JT, Guchhait P. α-Ketoglutarate Inhibits Thrombosis and Inflammation by Prolyl Hydroxylase-2 Mediated Inactivation of Phospho-Akt. EBioMedicine 2021; 73:103672. [PMID: 34740102 PMCID: PMC8579134 DOI: 10.1016/j.ebiom.2021.103672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Background Phospho-Akt1 (pAkt1) undergoes prolyl hydroxylation at Pro125 and Pro313 by the prolyl hydroxylase-2 (PHD2) in a reaction decarboxylating α-ketoglutarate (αKG). We investigated whether the αKG supplementation could inhibit Akt-mediated activation of platelets and monocytes, in vitro as well as in vivo, by augmenting PHD2 activity. Methods We treated platelets or monocytes isolated from healthy individuals with αKG in presence of agonists in vitro and assessed the signalling molecules including pAkt1. We supplemented mice with dietary αKG and estimated the functional responses of platelets and monocytes ex vivo. Further, we investigated the impact of dietary αKG on inflammation and thrombosis in lungs of mice either treated with thrombosis-inducing agent carrageenan or infected with SARS-CoV-2. Findings Octyl αKG supplementation to platelets promoted PHD2 activity through elevated intracellular αKG to succinate ratio, and reduced aggregation in vitro by suppressing pAkt1(Thr308). Augmented PHD2 activity was confirmed by increased hydroxylated-proline and enhanced binding of PHD2 to pAkt in αKG-treated platelets. Contrastingly, inhibitors of PHD2 significantly increased pAkt1 in platelets. Octyl-αKG followed similar mechanism in monocytes to inhibit cytokine secretion in vitro. Our data also describe a suppressed pAkt1 and reduced activation of platelets and leukocytes ex vivo from mice supplemented with dietary αKG, unaccompanied by alteration in their number. Dietary αKG significantly reduced clot formation and leukocyte accumulation in various organs including lungs of mice treated with thrombosis-inducing agent carrageenan. Importantly, in SARS-CoV-2 infected hamsters, we observed a significant rescue effect of dietary αKG on inflamed lungs with significantly reduced leukocyte accumulation, clot formation and viral load alongside down-modulation of pAkt in the lung of the infected animals. Interpretation Our study suggests that dietary αKG supplementation prevents Akt-driven maladies such as thrombosis and inflammation and rescues pathology of COVID19-infected lungs. Funding Study was funded by the Department of Biotechnology (DBT), Govt. of India (grants: BT/PR22881 and BT/PR22985); and the Science and Engineering Research Board, Govt. of India (CRG/000092).
Collapse
Affiliation(s)
- Nishith M Shrimali
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Simrandeep Kaur
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sulagna Bhattacharya
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sankar Bhattacharyya
- Translational Health Science Technology Institute; National Capital Region Biotech Science Cluster, Faridabad, India
| | - Josef T Prchal
- Department of Medicine, University of Utah School of Medicine & Huntsman Cancer Center and George E. Whalen Veteran's Administration Medical Center, Salt Lake City, UT, USA
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology; National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
6
|
Yurista SR, Silljé HHW, Nijholt KT, Dokter MM, van Veldhuisen DJ, de Boer RA, Westenbrink BD. Factor Xa Inhibition with Apixaban Does Not Influence Cardiac Remodelling in Rats with Heart Failure After Myocardial Infarction. Cardiovasc Drugs Ther 2021; 35:953-963. [PMID: 32458320 PMCID: PMC8452585 DOI: 10.1007/s10557-020-06999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heart failure (HF) is considered to be a prothrombotic condition and it has been suggested that coagulation factors contribute to maladaptive cardiac remodelling via activation of the protease-activated receptor 1 (PAR1). We tested the hypothesis that anticoagulation with the factor Xa (FXa) inhibitor apixaban would ameliorate cardiac remodelling in rats with HF after myocardial infarction (MI). METHODS AND RESULTS Male Sprague-Dawley rats were either subjected to permanent ligation of the left ascending coronary artery (MI) or sham surgery. The MI and sham animals were randomly allocated to treatment with placebo or apixaban in the chow (150 mg/kg/day), starting 2 weeks after surgery. Cardiac function was assessed using echocardiography and histological and molecular markers of cardiac hypertrophy were assessed in the left ventricle (LV). Apixaban resulted in a fivefold increase in anti-FXa activity compared with vehicle, but no overt bleeding was observed and haematocrit levels remained similar in apixaban- and vehicle-treated groups. After 10 weeks of treatment, LV ejection fraction was 42 ± 3% in the MI group treated with apixaban and 37 ± 2 in the vehicle-treated MI group (p > 0.05). Both vehicle- and apixaban-treated MI groups also displayed similar degrees of LV dilatation, LV hypertrophy and interstitial fibrosis. Histological and molecular markers for pathological remodelling were also comparable between groups, as was the activity of signalling pathways downstream of the PAR1 receptor. CONCLUSION FXa inhibition with apixaban does not influence pathological cardiac remodelling after MI. These data do not support the use of FXa inhibitor in HF patients with the aim to amend the severity of HF. Graphical Abstract.
Collapse
Affiliation(s)
- Salva R Yurista
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Kirsten T Nijholt
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
7
|
Dangelmaier C, Kunapuli SP. Protease-activated receptor 4 causes Akt phosphorylation independently of PI3 kinase pathways. Platelets 2021; 32:832-837. [PMID: 32811251 PMCID: PMC7889752 DOI: 10.1080/09537104.2020.1802415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
PI-3 Kinase plays an important role in platelet activation mainly through regulation of RASA3. Akt phosphorylation is an indicator for the activity of PI3 kinase. The aim of this study is to characterize the pathways leading to Akt phosphorylation in platelets. We performed concentration response curves of LY294002, a pan-PI3 kinase inhibitor, on platelet aggregation and Akt phosphorylation, in washed human and mouse platelets. At concentrations as low as 3.12 µM, LY294002 abolished Akt phosphorylation induced by 2MeSADP and SFLLRN, but not by AYPGKF. It required much higher concentrations of LY294002 (12.5-25 µM) to abolish AYPGKF-induced Akt phosphorylation, both in wild type and P2Y12 null mouse platelets. We propose that 3.12 µM LY294002 is sufficient to inhibit PI3 kinase isoforms in platelets and higher concentrations might inhibit other pathways regulating Akt phosphorylation by AYPGKF. We conclude that Protease-activated receptor 4 (PAR4) might cause Akt phosphorylation through pathways distinctly different from those of Protease-activated receptor 1 (PAR1).
Collapse
Affiliation(s)
- Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
The role of Sphingomyelin synthase 2 (SMS2) in platelet activation and its clinical significance. Thromb J 2021; 19:27. [PMID: 33910580 PMCID: PMC8082820 DOI: 10.1186/s12959-021-00282-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Sphingomyelin (SM) is an essential component of biological lipid rafts, and it plays an indispensable role in maintaining plasma membrane stability and in mediating signal transduction. The ultimate biosynthesis of SM is catalyzed by two sphingomyelin synthases (SMSs) namely SMS1 and SMS2, which are selectively distributed in the trans-Golgi apparatus and the plasma membrane. It has been demonstrated that SMS2 acts as an irreplaceable molecule in the regulation of transmembrane signaling, and loss of SMS2 has been reported to worsen atherosclerosis and liver steatosis. However, the function of SMS2 in platelet activation and its association with the pathological process of thrombosis in acute coronary syndrome (ACS) and portal hypertension (PH) remain unclear. Methods In this study, we tested the role of SMS2 in platelet activation and thrombosis using SMS2 knockout (SMS2 –/–) mice and SMS2-specific inhibitor, D609. Furthermore, we detected SMS2 expression in patients with ACS and PH. Results SMS2 –/– platelets showed significant reduction in platelet aggregation, spreading, clot retraction and in vivo thrombosis. Similar inhibitory effects on platelet activation were detected in D609-treated wild-type platelets. PLCγ/PI3K/Akt signaling pathway was inhibited in SMS2 –/– platelets and D609-treated wild-type platelets. In addition, we discovered that platelet SMS2 expression was remarkably increased in patients with ACS and PH, compared with healthy subjects. Conclusions Our study indicates that SMS2 acts as a positive regulator of platelet activation and thrombosis, and provides a theoretical basis for the potential use of D609 in anti-thrombosis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-021-00282-x.
Collapse
|
9
|
The involvement of toll-like receptors 2 and 4 in human platelet signalling pathways. Cell Signal 2020; 76:109817. [PMID: 33132157 DOI: 10.1016/j.cellsig.2020.109817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
In addition to haemostasis, platelets play an essential role in mechanisms of inflammation and in immunological reactions. Platelets express various toll-like receptors (TLR) on their surface, among them TLR2 and TLR4, which are important for the recognition of bacterial patterns. This study compared TLR2- and TLR4-dependent platelet signalling and their effect on platelet function. Platelet-rich-plasma and washed platelets were prepared from peripheral blood samples of healthy donors. Pam3CSK4 or LPS (lipopolysaccharides from Escherichia coli) were used for stimulation of TLR2 and TLR4. Intracellular signalling pathways were investigated by Western blot. TLR2- and TLR4-mediated specific transcription factor DNA binding activity was measured by the nuclear factor kappa B (NFκB) transcription factor assay kit. Platelet adhesion and glycoprotein Ib function were assessed by immunofluorescence staining and analysis of ristocetin-induced agglutination. Both, Pam3CSK4 and LPS were able to induce NFκB-mediated and classical activating platelet signalling with a higher stimulatory capacity of TLR2. In addition, TLR2 and TLR4 activation led to a similar activation of inhibitory pathways. In contrast to TLR2, stimulation of TLR4 resulted in decreased Akt/protein kinase B phosphorylation conditioned by enhanced protein phosphatase 2A activity. TLR4-mediated signalling induced platelet adhesion and facilitated ristocetin-induced platelet agglutination. In conclusion, Pam3CSK4 directly induces aggregation via classical activation cascades, whereas LPS enhances platelet adhesion and glycoprotein receptor Ib-dependent platelet agglutination.
Collapse
|
10
|
Cholesterol-Rich Microdomains Contribute to PAR1 Signaling in Platelets Despite a Weak Localization of the Receptor in These Microdomains. Int J Mol Sci 2020; 21:ijms21218065. [PMID: 33138025 PMCID: PMC7663584 DOI: 10.3390/ijms21218065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
Platelet protease-activated receptor 1 (PAR1) is a cell surface G-protein-coupled receptor (GPCR) that acts as a thrombin receptor promoting platelet aggregation. Targeting the PAR1 pathway by vorapaxar, a PAR1 antagonist, leads to a reduction in ischemic events in cardiovascular patients with a history of myocardial infarction or with peripheral arterial disease. In platelets, specialized microdomains highly enriched in cholesterol act as modulators of the activity of several GPCRs and play a pivotal role in the signaling pathway. However, their involvement in platelet PAR1 function remains incompletely characterized. In this context, we aimed to investigate whether activation of PAR1 in human platelets requires its localization in the membrane cholesterol-rich microdomains. Using confocal microscopy, biochemical isolation, and proteomics approaches, we found that PAR1 was not localized in cholesterol-rich microdomains in resting platelets, and only a small fraction of the receptor relocated to the microdomains following its activation. Vorapaxar treatment increased the level of PAR1 at the platelet surface, possibly by reducing its endocytosis, while its colocalization with cholesterol-rich microdomains remained weak. Consistent with a cholesterol-dependent activation of Akt and p38 MAP kinase in thrombin receptor-activating peptide (TRAP)-activated platelets, the proteomic data of cholesterol-rich microdomains isolated from TRAP-activated platelets showed the recruitment of proteins contributing to these signaling pathways. In conclusion, contrary to endothelial cells, we found that PAR1 was only weakly present in cholesterol-rich microdomains in human platelets but used these microdomains for efficient activation of downstream signaling pathways following TRAP activation.
Collapse
|
11
|
Chen S, Qi Y, Wang S, Xu Y, Shen M, Hu M, Du C, Chen F, Chen M, Lu Y, Zhang Z, Quan Y, Wang C, Wang F, Wang J. Melatonin enhances thrombopoiesis through ERK1/2 and Akt activation orchestrated by dual adaptor for phosphotyrosine and 3-phosphoinositides. J Pineal Res 2020; 68:e12637. [PMID: 32052470 DOI: 10.1111/jpi.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
Melatonin (MT), endogenously secreted by the pineal gland, is closely related to multiple biological processes; however, its effect on thrombopoiesis is still not well illustrated. Here, we demonstrate that MT administration can elevate peripheral platelet levels. Analysis of different stages in thrombopoiesis reveals that MT has the capacity to promote the expansion of CD34+ and CD41+ cells, and accelerate proplatelet formation (PPF) and platelet production. Furthermore, in vivo experiments show that MT has a potential therapeutic effect on radiation-induced thrombocytopenia. The underlying mechanism suggests that both extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt signaling are involved in the processes of thrombopoiesis facilitated by MT. Interestingly, in addition to the direct regulation of Akt signaling by its upstream phosphoinositide 3-kinase (PI3K), ERK1/2 signaling is also regulated by PI3K via its effector, dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1), in megakaryocytes after MT treatment. Moreover, the expression level of DAPP1 during megakaryocyte differentiation is closely related to the activation of ERK1/2 and Akt at different stages of thrombopoiesis. In conclusion, our data suggest that MT treatment can promote thrombopoiesis, which is modulated by the DAPP1-orchestrated activation of ERK1/2 and Akt signaling.
Collapse
Affiliation(s)
- Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yan Qi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yong Quan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Li S, Tarlac V, Hamilton JR. Using PAR4 Inhibition as an Anti-Thrombotic Approach: Why, How, and When? Int J Mol Sci 2019; 20:ijms20225629. [PMID: 31717963 PMCID: PMC6888008 DOI: 10.3390/ijms20225629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/28/2022] Open
Abstract
Protease-activated receptors (PARs) are a family of four GPCRs with a variety of cellular functions, yet the only advanced clinical endeavours to target these receptors for therapeutic gain to date relates to the impairment of platelet function for anti-thrombotic therapy. The only approved PAR antagonist is the PAR1 inhibitor, vorapaxar—the sole anti-platelet drug against a new target approved in the past 20 years. However, there are two PARs on human platelets, PAR1 and PAR4, and more recent efforts have focused on the development of the first PAR4 antagonists, with first-in-class agents recently beginning clinical trial. Here, we review the rationale for this approach, outline the various modes of PAR4 inhibition, and speculate on the specific therapeutic potential of targeting PAR4 for the prevention of thrombotic conditions.
Collapse
|
13
|
Baicalin Protects against Thrombin-Induced Cell Injury in Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2187306. [PMID: 31467874 PMCID: PMC6699368 DOI: 10.1155/2019/2187306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023]
Abstract
Thrombin plays a pivotal role in the pathogenesis of atherosclerosis. Baicalin, an active flavonoid compound, was shown to attenuate the development of atherosclerosis, but the mechanism remains elusive. In the present study, the role and mechanism of baicalin in thrombin-induced cell injury was investigated in human umbilical vein endothelial cells (HUVECs). Our results showed that baicalin significantly reduced thrombin-induced apoptosis of HUVECs. Additional experiments showed that baicalin inhibited thrombin-induced NF-κB activation and PAR-1 expression. In addition, baicalin decreased thrombin-induced PAR-1 expression by inhibiting ERK pathway. These results indicated that baicalin has protective effects on thrombin-induced cell injury in HUVECs possibly through inhibition of PAR-1 expression and its downstream NF-κB activation, which was mediated by ERK1/2 activation.
Collapse
|
14
|
Koessler J, Schuepferling A, Klingler P, Koessler A, Weber K, Boeck M, Kobsar A. The role of proteasome activity for activating and inhibitory signalling in human platelets. Cell Signal 2019; 62:109351. [PMID: 31260799 DOI: 10.1016/j.cellsig.2019.109351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
Platelets express key proteins of the proteasome system, but its functional role in the regulation of platelet integrity, however, is not fully understood yet. Therefore, this study evaluated activating and inhibitory platelet signalling pathways using the potent and selective proteasome inhibitor bortezomib. In washed platelets, the effect of bortezomib on viability and on aggregation was assessed. In addition, fibrinogen binding and CD62P expression were determined. The influence on activating and inhibitory signalling was detected by phosphorylation levels of essential messenger molecules. Platelet viability was maintained after incubation with 0.01 μM to 1 μM bortezomib, but tampered with 100 μM bortezomib. Agonist-induced aggregation was only reduced under 100 μM bortezomib and with weak induction by 10 μM adenosine diphosphate. Similarly, phosphorylated kinase levels of the activating signalling pathways were not affected by 0.01 μM to 1 μM bortezomib. In contrast, proteasome inhibition resulted in the reduction of inhibitor-induced vasodilator-stimulated phosphoprotein phosphorylation, accompanied with the partial decrease of induced inhibition of fibrinogen binding and CD62P expression. In conclusion, platelet activation and aggregation are not dependent on proteasome activity. Instead, inhibitory signalling is partially attenuated under proteasome inhibition. Supramaximal inhibitory concentrations of bortezomib (above 1 μM) lead to heterogeneous effects on activating or inhibitory systems, probably caused by decreasing platelet viability.
Collapse
Affiliation(s)
- Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Anne Schuepferling
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany
| | - Philipp Klingler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Katja Weber
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Markus Boeck
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| |
Collapse
|
15
|
Li L, Chen H, Shen A, Li Q, Chen Y, Chu J, Liu L, Peng J, Chen K. Ligustrazine inhibits platelet activation via suppression of the Akt pathway. Int J Mol Med 2018; 43:575-582. [PMID: 30387814 DOI: 10.3892/ijmm.2018.3970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/19/2018] [Indexed: 11/05/2022] Open
Abstract
Aberrant activation of platelets has a critical role in thrombotic vascular events, including atherosclerosis, arterial thrombosis and myocardial infarction. The process of platelet activation is associated with multiple intracellular signaling pathways, including the phosphoinositide 3‑kinase/AKT serine/threonine kinase (Akt) pathway. The well‑known medicinal herb Rhizoma Ligusticum Wallichii (RLW) has long been used in China to clinically treat various cardiovascular disorders. As the most pharmacologically active component of RLW, ligustrazine has been demonstrated to possess a potent antiplatelet activity. However, the precise mechanisms mediating the bioactivities of ligustrazine have not been thoroughly elucidated. The present study evaluated the effects of ligustrazine hydrochloride (LH; the clinical‑grade form of ligustrazine) on platelet activation and investigated the underlying molecular mechanisms. In vitro and ex vivo platelet activation models were used, established by stimulating rat platelet‑rich plasma either with the platelet activator adenosine diphosphate (ADP) or with the specific Akt pathway activator insulin‑like growth factor‑1 (IGF‑1). The results demonstrated that treatment with LH significantly and dose‑dependently inhibited ADP‑induced platelet aggregation, in addition to thromboxane A2 (TXA2) secretion and intracellular Ca2+ mobilization in platelets, in vitro and ex vivo. In addition, LH markedly suppressed ADP‑induced Akt phosphorylation in vitro and ex vivo. Furthermore, LH markedly inhibited IGF‑1‑induced Akt phosphorylation, platelet aggregation, TXA2 formation and Ca2+ mobilization in vitro. Finally, LH was able to reverse adrenaline‑induced shortening of bleeding time. Taken together, these results suggested that ligustrazine possesses a broad range of antiplatelet activities without apparent hemorrhagic side-effects, and suppression of Akt signaling may be one of the mechanisms by which ligustrazine exerts its antiplatelet activities.
Collapse
Affiliation(s)
- Li Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Department of Pediatric Gastroenterology, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Keji Chen
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
16
|
Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Harden D, Guay J, Callejo M, Miller MM, Lawrence RM, Banville J, Guy J, Maxwell BD, Priestley ES, Marinier A, Wexler RR, Bouvier M, Gordon DA, Schumacher WA, Yang J. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med 2018; 9:9/371/eaaf5294. [PMID: 28053157 DOI: 10.1126/scitranslmed.aaf5294] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care.
Collapse
Affiliation(s)
- Pancras C Wong
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Dietmar Seiffert
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - J Eileen Bird
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Carol A Watson
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jeffrey S Bostwick
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Mary Giancarli
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Nick Allegretto
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ji Hua
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - David Harden
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jocelyne Guay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Mario Callejo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Michael M Miller
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | | | - Jacques Banville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Julia Guy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Brad D Maxwell
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - E Scott Priestley
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Ruth R Wexler
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - David A Gordon
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - William A Schumacher
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jing Yang
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| |
Collapse
|
17
|
Antoniak S, Tatsumi K, Bode M, Vanja S, Williams JC, Mackman N. Protease-Activated Receptor 1 Enhances Poly I:C Induction of the Antiviral Response in Macrophages and Mice. J Innate Immun 2016; 9:181-192. [PMID: 27820939 DOI: 10.1159/000450853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
The coagulation cascade is activated during viral infections as part of the host defense system. Coagulation proteases activate cells by cleavage of protease-activated receptors (PARs). Recently, we reported that the activation of PAR-1 enhanced interferon (IFN)β and CXCL10 expression in cardiac fibroblasts and in the hearts of mice infected with Coxsackievirus B3. In this study, we used the double-stranded RNA mimetic polyinosinic:polycytidylic acid (poly I:C) to induce an antiviral response in macrophages and mice. Activation of PAR-1 enhanced poly I:C induction of IFNβ and CXCL10 expression in the murine macrophage cell line RAW264.7, bone-marrow derived mouse macrophages (BMM) and mouse splenocytes. Next, poly I:C was used to induce a type I IFN innate immune response in the spleen and plasma of wild-type (WT) and PAR-1-/- mice. We found that poly I:C treated PAR-1-/- mice and WT mice given the thrombin inhibitor dabigatran etexilate exhibited significantly less IFNβ and CXCL10 expression in the spleen and plasma than WT mice. These studies suggest that thrombin activation of PAR-1 contributes to the antiviral response in mice.
Collapse
Affiliation(s)
- Silvio Antoniak
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, Chapel Hill, N.C., USA
| | | | | | | | | | | |
Collapse
|
18
|
French SL, Arthur JF, Lee H, Nesbitt WS, Andrews RK, Gardiner EE, Hamilton JR. Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. J Thromb Haemost 2016; 14:1642-54. [PMID: 26878340 DOI: 10.1111/jth.13293] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/26/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Essentials The platelet thrombin receptor, PAR4, is an emerging anti-thrombotic drug target. We examined the anti-platelet & anti-thrombotic effects of PAR4 inhibition in human blood. PAR4 inhibition impaired platelet procoagulant activity in isolated cells and during thrombosis. Our study shows PAR4 is required for platelet procoagulant function & thrombosis in human blood. SUMMARY Background Thrombin-induced platelet activation is important for arterial thrombosis. Thrombin activates human platelets predominantly via protease-activated receptor (PAR)1 and PAR4. PAR1 has higher affinity for thrombin, and the first PAR1 antagonist, vorapaxar, was recently approved for use as an antiplatelet agent. However, vorapaxar is contraindicated in a significant number of patients, owing to adverse bleeding events. Consequently, there is renewed interest in the role of platelet PAR4 in the setting of thrombus formation. Objectives To determine the specific antiplatelet effects of inhibiting PAR4 function during thrombus formation in human whole blood. Methods and Results We developed a rabbit polyclonal antibody against the thrombin cleavage site of PAR4, and showed it to be a highly specific inhibitor of PAR4-mediated platelet function. This function-blocking anti-PAR4 antibody was used to probe for PAR4-dependent platelet functions in human isolated platelets in the absence and presence of concomitant PAR1 inhibition. The anti-PAR4 antibody alone was sufficient to abolish the sustained elevation of cytosolic calcium level and consequent phosphatidylserine exposure induced by thrombin, but did not significantly inhibit integrin αII b β3 activation, α-granule secretion, or aggregation. In accord with these in vitro experiments on isolated platelets, selective inhibition of PAR4, but not of PAR1, impaired thrombin activity (fluorescence resonance energy transfer-based thrombin sensor) and fibrin formation (anti-fibrin antibody) in an ex vivo whole blood flow thrombosis assay. Conclusions These findings demonstrate that PAR4 is required for platelet procoagulant function during thrombus formation in human blood, and suggest PAR4 inhibition as a potential target for the prevention of arterial thrombosis.
Collapse
Affiliation(s)
- S L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - H Lee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - W S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, Australia
| | - R K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - E E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul 2015; 59:36-52. [PMID: 26159296 DOI: 10.1016/j.jbior.2015.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Blood platelets are anucleated circulating cells that play a critical role in hemostasis and are also implicated in arterial thrombosis, a major cause of death worldwide. The biological function of platelets strongly relies in their reactiveness to a variety of extracellular agonists that regulate their adhesion to extracellular matrix at the site of vascular injury and their ability to form rapidly growing cell aggregates. Among the membrane receptors expressed on the cell surface, integrins are crucial for both platelet activation, adhesion and aggregation. Integrin affinity for specific ligands is regulated by intracellular signaling pathways activated in stimulated platelets, and, once engaged, integrins themselves generate and propagate signals inside the cells to reinforce and consolidate platelet response and thrombus formation. Phosphatidylinositol 3-Kinases (PI3Ks) have emerged as crucial players in platelet activation, and they are directly implicated in the regulation of integrin function. This review will discuss the contribution of PI3Ks in platelet integrin signaling, focusing on the role of specific members of class I PI3Ks and their downstream effector Akt on both integrin inside-out and outside-in signaling. The contribution of the PI3K/Akt pathways stimulated by integrin engagement and platelet activation in thrombus formation and stabilization will also be discussed in order to highlight the possibility to target these enzymes in effective anti-thrombotic therapeutic strategies.
Collapse
Affiliation(s)
- Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
20
|
Moroi AJ, Watson SP. Akt and mitogen-activated protein kinase enhance C-type lectin-like receptor 2-mediated platelet activation by inhibition of glycogen synthase kinase 3α/β. J Thromb Haemost 2015; 13:1139-50. [PMID: 25858425 PMCID: PMC4737230 DOI: 10.1111/jth.12954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND The C-type lectin-like receptor 2 (CLEC-2) and the collagen receptor glycoprotein (GP)VI activate platelets through Src and Syk tyrosine kinases, and phospholipase Cγ2. The initial events in the two signaling cascades, however, are distinct, and there are quantitative differences in the roles of proteins downstream of Syk activation. The activation of Akt and mitogen-activated protein kinases (MAPKs) has been shown to enhance platelet activation by GPVI, but their role in CLEC-2 signaling is not known. OBJECTIVES We sought to investigate the role of the Akt and MAPK pathways in platelet activation by CLEC-2. RESULTS The CLEC-2 agonist rhodocytin stimulated phosphorylation of Akt and p38 and extracellular signal-related kinase (ERK) MAPKs, but with a delay relative to Syk. Phosphorylation of these proteins was markedly inhibited in the combined presence of apyrase and indomethacin, consistent with the reported feedback action of ADP and thromboxane A2 in CLEC-2 signaling. Phosphorylation of Akt and phosphorylation of ERK were blocked by the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and the protein kinase C (PKC) inhibitor Ro31-8220, respectively, whereas Syk phosphorylation was not altered. On the other hand, both inhibitors reduced phosphorylation of the Akt substrate glycogen synthase kinase 3α/β (GSK3α/β). Phosphorylation of GSK3α/β was also blocked by the Akt inhibitor MK2206, and reduced at late, but not early, times by the MEK inhibitor PD0325901. MK2206 and PD0325901 inhibited aggregation and secretion in response to a low concentration of rhodocytin, which was restored by GSK3α/β inhibitors. CONCLUSIONS These results demonstrate that CLEC-2 regulates Akt and MAPK downstream of PI3K and PKC, leading to phosphorylation and inhibition of GSK3α/β, and enhanced platelet aggregation and secretion.
Collapse
Affiliation(s)
- A J Moroi
- Centre for Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - S P Watson
- Centre for Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Moroi AJ, Watson SP. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol 2015; 94:186-94. [PMID: 25698506 DOI: 10.1016/j.bcp.2015.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 01/16/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated in response to various stimulants, and they regulate many processes including inflammation; the stress response; gene transcription; and cell proliferation, differentiation, and death. Increasing reports have shown that the PI3Ks and their downstream effector Akt are activated by several platelet receptors that regulate platelet activation and haemostasis. Platelets express two immunoreceptor tyrosine based activation motif (ITAM) receptors, collagen receptor glycoprotein VI (GPVI) and Fcγ receptor IIA (FcγRIIA), which are characterized by two YxxL sequences separated by 6-12 amino acids. Activation of an ITAM receptor initiates a reaction cascade via its YxxL sequence in which signaling molecules such as spleen tyrosine kinase (Syk), linker for activation of T cells (LAT) and phospholipase C γ2 (PLCγ2) become activated, leading to platelet activation. Platelets also express another receptor, C-type lectin 2 (CLEC-2), which has a single YxxL sequence, so it is appropriately called a hemITAM receptor. ITAM receptors and the hemITAM receptor share many signaling features. Here we will summarize our current knowledge about how the PI3K/Akt pathway regulates (hem)ITAM receptor-mediated platelet activation and haemostasis and discuss the possible benefits of targeting PI3K/Akt as an antithrombotic therapy.
Collapse
Affiliation(s)
- Alyssa J Moroi
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Steve P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
22
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
23
|
Sun H, Li G, Zhang W, Zhou Q, Yu Y, Shi Y, Offermanns S, Lu J, Zhou N. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2. PLoS One 2014; 9:e112310. [PMID: 25375133 PMCID: PMC4223033 DOI: 10.1371/journal.pone.0112310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/04/2014] [Indexed: 01/27/2023] Open
Abstract
Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.
Collapse
Affiliation(s)
- Huawang Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo Li
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yena Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Shi
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (NZ); (JL)
| | - Naiming Zhou
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (NZ); (JL)
| |
Collapse
|
24
|
Shaturnyĭ VI, Shakhidzhanov SS, Sveshnikova AN, Panteleev MA. [Activators, receptors and signal transduction pathways of blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:182-200. [PMID: 24837309 DOI: 10.18097/pbmc20146002182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.
Collapse
|
25
|
Abstract
Akt is a Ser-Thr kinase with pleiotropic effects on cell survival, growth and metabolism. Recent evidence from gene-deletion studies in mice, and analysis of human platelets treated with Akt inhibitors, suggest that Akt regulates platelet activation, with potential consequences for thrombosis. Akt activation is regulated by the level of phosphoinositide 3-phosphates, and proteins that regulate concentrations of this lipid also regulate Akt activation and platelet function. Although the effectors through which Akt contributes to platelet activation are not definitively known, several candidates are discussed, including endothelial nitric oxide synthase, glycogen synthase kinase 3β, phosphodiesterase 3A and the integrin β(3) tail. Selective inhibitors of Akt isoforms or of proteins that contribute to its activation, such as individual PI3K isoforms, may make attractive targets for antithrombotic therapy. This review summarizes the current literature describing Akt activity and its regulation in platelets, including speculation regarding the future of Akt or its regulatory pathways as targets for the development of antithrombotic therapies.
Collapse
Affiliation(s)
- Donna S Woulfe
- Thomas Jefferson University, Philadelphia, PA 19107, USA Tel.: +1 215 503 5152
| |
Collapse
|
26
|
Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, Yue M, Liu Y, Hu X, Hu H. Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 2013; 133:57-65. [PMID: 24196231 DOI: 10.1016/j.thromres.2013.10.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/19/2013] [Accepted: 10/20/2013] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Derived from the root of Panax ginseng C.A.Mey, Panax notoginsenosides (PNS) is a widely used herbal medicine to treat atherothrombotic diseases in Asian medicine. Ginsenoside Rg1 is one of the main compounds responsible for the pharmaceutical actions of PNS. As platelets play pivotal roles in atherothrombogenesis, we therefore studied the effect of Rg1 on platelet activation and its underlying mechanisms. MATERIALS AND METHODS Human platelets are obtained from healthy subjects. Platelet activation and the inhibition of Rg1 were assessed by Born aggregometer, flow cytmetry, flow chamber and western blot. The in vivo thrombosis model was induced by 10% FeCl3 on mesenteric arterioles of wild type B57/b6 mice. RESULTS Rg1 significantly inhibited platelet aggregation induced by thrombin, ADP, collagen and U46619, e.g., aggregation rate stimulated by 0.1UmL(-1) thrombin was decreased 46% by Rg1. Rg1 also reduced thrombin (0.1UmL(-1))-enhanced fibrinogen binding and P-selectin expression of single platelet by 81% and 66%, respectively. Rg1 affected αIIbβ3-mediated outside-in signaling as demonstrated by diminished platelet spreading on immobilized fibrinogen. Rg1 also decreased the rate of clot retraction in platelet rich plasma. Furthermore, Rg1 decreased platelet adhesion on collagen surface under a shear rate correlated to the arterial flow (1000s(-1)) by approximately 70%. Western blot showed that Rg1 potently inhibited ERK phosphrylation. The in vitro findings were further evaluated in the mouse model of in vivo arterial thrombosis, and Rg1 was found to prolong the mesenteric arterial occlusion time (34.9±4.1min without and 64.3±4.9min with Rg1; p<0.01). CONCLUSIONS Rg1 inhibits platelet activation via the inhibition of ERK pathway, and attenuates arterial thrombus formation in vivo.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Jiang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongjiao Luo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Central Hospital, Lishui, China
| | - Pu Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Yue
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Arachiche A, de la Fuente M, Nieman MT. Calcium mobilization and protein kinase C activation downstream of protease activated receptor 4 (PAR4) is negatively regulated by PAR3 in mouse platelets. PLoS One 2013; 8:e55740. [PMID: 23405206 PMCID: PMC3566007 DOI: 10.1371/journal.pone.0055740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/29/2012] [Indexed: 12/17/2022] Open
Abstract
Thrombin activates platelets through protease activated receptors (PARs). Mouse platelets express PAR3 and PAR4. PAR3 does not signal in platelets. However, PAR4 is a relatively poor thrombin substrate and requires PAR3 as a cofactor at low thrombin concentrations. In this study we show that PAR3 also regulates PAR4 signaling. In response to thrombin (30–100 nM) or PAR4 activating peptide (AYPGKF), platelets from PAR3−/− mice had increased Gq signaling compared to wild type mice as demonstrated by a 1.6-fold increase in the maximum intracellular calcium (Ca2+) mobilization, an increase in phosphorylation level of protein kinase C (PKC) substrates, and a 2-fold increase of Ca2+ release from intracellular stores. Moreover, platelets from heterozygous mice (PAR3+/−) had an intermediate increase in maximum Ca2+ mobilization. Treatment of PAR3−/− mice platelets with P2Y12 antagonist (2MeSAMP) did not affect Ca2+ mobilization from PAR4 in response to thrombin or AYPGKF. The activation of RhoA-GTP downstream G12/13 signaling in response to thrombin was not significantly different between wild type and PAR3−/− mice. Since PAR3 influenced PAR4 signaling independent of agonist, we examined the direct interaction between PAR3 and PAR4 with bioluminescence resonance energy transfer (BRET). PAR3 and PAR4 form constitutive homodimers and heterodimers. In summary, our results demonstrate that in addition to enhancing PAR4 activation at low thrombin concentrations, PAR3 negatively regulates PAR4-mediated maximum Ca2+ mobilization and PKC activation in mouse platelets by physical interaction.
Collapse
Affiliation(s)
- Amal Arachiche
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - María de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Niu H, Chen X, Gruppo RA, Li D, Wang Y, Zhang L, Wang K, Chai W, Sun Y, Ding Z, Gartner TK, Liu J. Integrin αIIb-mediated PI3K/Akt activation in platelets. PLoS One 2012; 7:e47356. [PMID: 23082158 PMCID: PMC3474815 DOI: 10.1371/journal.pone.0047356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Integrin αIIbβ3 mediated bidirectional signaling plays a critical role in thrombosis and haemostasis. Signaling mediated by the β3 subunit has been extensively studied, but αIIb mediated signaling has not been characterized. Previously, we reported that platelet granule secretion and TxA2 production induced by αIIb mediated outside-in signaling is negatively regulated by the β3 cytoplasmic domain residues R(724)KEFAKFEEER(734). In this study, we identified part of the signaling pathway utilized by αIIb mediated outside-in signaling. Platelets from humans and gene deficient mice, and genetically modified CHO cells as well as a variety of kinase inhibitors were used for this work. We found that aggregation of TxA2 production and granule secretion by β3Δ724 human platelets initiated by αIIb mediated outside-in signaling was inhibited by the Src family kinase inhibitor PP2 and the PI3K inhibitor wortmannin, respectively, but not by the MAPK inhibitor U0126. Also, PP2 and wortmannin, and the palmitoylated β3 peptide R(724)KEFAKFEEER(734), each inhibited the phosphorylation of Akt residue Ser473 and prevented TxA2 production and storage granule secretion. Similarly, Akt phosphorylation in mouse platelets stimulated by the PAR4 agonist peptide AYPGKF was αIIbβ3-dependent, and blocked by PP2, wortmannin and the palmitoylated peptide p-RKEFAKFEEER. Akt was also phosphorylated in response to mAb D3 plus Fg treatment of CHO cells in suspension expressing αIIbβ3-Δ724 or αIIbβ3E(724)AERKFERKFE(734), but not in cells expressing wild type αIIbβ3. In summary, SFK(s) and PI3K/Akt signaling is utilized by αIIb-mediated outside-in signaling to activate platelets even in the absence of all but 8 membrane proximal residues of the β3 cytoplasmic domain. Our results provide new insight into the signaling pathway used by αIIb-mediated outside-in signaling in platelets.
Collapse
Affiliation(s)
- Haixia Niu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ralph A. Gruppo
- Hematology-Oncology Department, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Ding Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kemin Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueping Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongren Ding
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - T. Kent Gartner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
29
|
Xiong J, Bai L, Fang W, Fu J, Fang W, Cen J, Kong Y, Li Y. New peptide pENW (pGlu-Asn-Trp) inhibits platelet activation by attenuating Akt phosphorylation. Eur J Pharm Sci 2012; 45:552-8. [PMID: 22285483 DOI: 10.1016/j.ejps.2011.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/27/2011] [Accepted: 12/01/2011] [Indexed: 01/22/2023]
Abstract
Platelets play a key role in hemostasis and in the initiation and propagation of thrombus formation. New peptide pGlu-Asn-Trp (pENW), initially extracted from snake venom, shows a concentration-dependent antithrombotic activity, significantly attenuated thrombus formation in the arterial and venous vessel systems. This study was designed to further reveal the mechanisms underlying its antithrombotic effect by focusing on its in vitro antiplatelet effect after precluding its influence on coagulation factors. It showed that pENW concentration-dependently inhibited ADP-, collagen- and platelet activating factor (PAF)-induced platelet aggregation, inversely depending upon the intensity of stimulation induced by agonists. Furthermore, data obtained by ELISA and flow cytometry presented that pENW also suppressed ADP-mediated serotonin secretion and P-selectin expression in a concentration-dependent manner. As shown by Western blot assay, ADP-induced platelet Akt phosphorylation was attenuated by the priming incubation with pENW, demonstrating the influence on platelet intracellular signaling. It provided the explaining information for its activity of inhibiting platelet activation in vitro. These results suggested pENW attenuated thrombus formation in part by inhibiting platelet activation instead of coagulation factors, presented evidence of pENW interfering intracellular signaling system in the process of platelet activation and indicated the possibility that pENW could potentially be developed as a novel therapeutic agent in the prevention and treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology, Nanjing Medical University, 140 Han Zhong Rd., Nanjing, Jiangsu 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lewis DA, Stashenko GJ, Akay OM, Price LI, Owzar K, Ginsburg GS, Chi JT, Ortel TL. Whole blood gene expression analyses in patients with single versus recurrent venous thromboembolism. Thromb Res 2011; 128:536-40. [PMID: 21737128 PMCID: PMC3726737 DOI: 10.1016/j.thromres.2011.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/28/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Venous thromboembolism may recur in up to 30% of patients with a spontaneous venous thromboembolism after a standard course of anticoagulation. Identification of patients at risk for recurrent venous thromboembolism would facilitate decisions concerning the duration of anticoagulant therapy. OBJECTIVES In this exploratory study, we investigated whether whole blood gene expression data could distinguish subjects with single venous thromboembolism from subjects with recurrent venous thromboembolism. METHODS 40 adults with venous thromboembolism (23 with single event and 17 with recurrent events) on warfarin were recruited. Individuals with antiphospholipid syndrome or cancer were excluded. Plasma and serum samples were collected for biomarker testing, and PAXgene tubes were used to collect whole blood RNA samples. RESULTS D-dimer levels were significantly higher in patients with recurrent venous thromboembolism, but P-selectin and thrombin-antithrombin complex levels were similar in the two groups. Comparison of gene expression data from the two groups provided us with a 50 gene probe model that distinguished these two groups with good receiver operating curve characteristics (AUC 0.75). This model includes genes involved in mRNA splicing and platelet aggregation. Pathway analysis between subjects with single and recurrent venous thromboembolism revealed that the Akt pathway was up-regulated in the recurrent venous thromboembolism group compared to the single venous thromboembolism group. CONCLUSIONS In this exploratory study, gene expression profiles of whole blood appear to be a useful strategy to distinguish subjects with single venous thromboembolism from those with recurrent venous thromboembolism. Prospective studies with additional patients are needed to validate these results.
Collapse
Affiliation(s)
- Deborah A Lewis
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Luu W, Sharpe LJ, Stevenson J, Brown AJ. Akt acutely activates the cholesterogenic transcription factor SREBP-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:458-64. [PMID: 22005015 DOI: 10.1016/j.bbamcr.2011.09.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/15/2011] [Accepted: 09/09/2011] [Indexed: 01/23/2023]
Abstract
Akt is an essential protein kinase for cell growth, proliferation, and survival. Perturbed Akt regulation is associated with a number of human diseases, such as cancer and diabetes. Recently, evidence has emerged that Akt is involved in the regulation of the sterol-regulatory element binding proteins, which are master transcriptional regulators of lipid metabolism. This offers a means by which synthesis of new membrane can be coordinated with cell growth and proliferation. However, the link between Akt and sterol-regulatory element binding protein-2, the major isoform participating in cholesterol regulation, is relatively unexplored. In the present study, we employed insulin-like growth factor-1 as an inducer of Akt signalling, and showed that it increased sterol-regulatory element binding protein-2 activation acutely (within 1h). This insulin-like growth factor-1-induced sterol-regulatory element binding protein-2 activation was blunted when Akt was inhibited pharmacologically or molecularly with small interfering RNA. Furthermore, we employed a rapalog heterodimerisation system to specifically and rapidly activate Akt, and found that sterol-regulatory element binding protein-2 activation was increased in response to Akt activation. Together, this study provides compelling evidence that Akt contributes to the acute regulation of cholesterol metabolism through activating sterol-regulatory element binding protein-2.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
32
|
Parrales A, López E, López-Colomé A. Thrombin activation of PI3K/PDK1/Akt signaling promotes cyclin D1 upregulation and RPE cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1758-66. [DOI: 10.1016/j.bbamcr.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/31/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
33
|
Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: A systematic review. Oncol Lett 2011; 2:599-608. [PMID: 22848234 DOI: 10.3892/ol.2011.291] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022] Open
Abstract
The traditional view of the role of proteases in tumor growth, progression and metastasis has significantly changed. Apart from their contribution to cancer progression, it is evident that a subclass of proteases, such as thrombin, serves as signal molecules controlling cell functions through the protease-activated receptors (PARs). Among the four types of PAR (PAR1-4; cloned and named in order of their discovery), PAR1, PAR3 and PAR4 are activated by thrombin, unlike PAR2, which is activated by trypsin-like serine proteases. Thrombin has been proven to be a significant factor in both the behavior of cancer in its involvement in hemostasis and blood coagulation. Thrombin is a key supporter of various cellular effects relevant to tumor growth and metastasis, as well as a potent activator of angiogenesis, which is essential for the growth and development of all solid tumor types. This review presents an overview of the role of PAR-mediated thrombin in angiogenesis and cancer, focusing on the ability of PAR1- and PAR4-mediated thrombin to affect tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Na Han
- Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University: Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310016
| | | | | | | | | |
Collapse
|
34
|
Assinger A, Laky M, Schabbauer G, Hirschl AM, Buchberger E, Binder BR, Volf I. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J Thromb Haemost 2011; 9:799-809. [PMID: 21251195 DOI: 10.1111/j.1538-7836.2011.04193.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Periodontitis represents a chronic infection of supportive dental tissues by distinct gram-negative bacteria. It is characterized by chronic and local inflammation as well as transient bacteremia with frequently occurring infections at distant sites. OBJECTIVES The present work aimed to clarify the role of platelets and plasma factors in neutrophil interactions with the periodontopathogens A. actinomycetemcomitans and P. gingivalis. METHODS Phagocytosis, cell-cell interactions and activation of platelets and neutrophils in response to periodontopathogens were analyzed by flow cytometry, confocal microscopy and bacteria survival assay. Plasma factors, platelet signaling pathways and receptors involved in platelet-neutrophil-bacteria interactions were determined. The role of platelet and neutrophil TLR2 in phagocytosis was further evaluated in a murine TLR2 knockout model. RESULTS In the presence of plasma neutrophil-mediated clearance of periodontopathogens is doubled due to opsonisation of bacteria. Platelets, which become activated by periodontopathogens, further enhance clearance of bacteria by 20%, via direct interaction with neutrophils. Plasma factors (e.g. CD14) are required for platelet activation, which is mainly TLR2 dependent and results in PI3K/Akt activation. In a murine TLR2 knockout model we prove that platelet TLR2 is important for formation of platelet-neutrophil aggregates and enhanced phagocytosis of periodontopathogens. In contrast, neutrophil TLR2 is not involved in platelet-neutrophil aggregate formation but is required for efficient phagocytosis. CONCLUSIONS These data indicate that efficient elimination of periodontopathogens by neutrophils involves a complex interplay of plasma factors as well as platelets and requires functional TLR2. By enhancing neutrophil activation platelets contribute to immune defense but may also foster inflammation.
Collapse
Affiliation(s)
- A Assinger
- Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
35
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Lin CH, Cheng HW, Ma HP, Wu CH, Hong CY, Chen BC. Thrombin induces NF-kappaB activation and IL-8/CXCL8 expression in lung epithelial cells by a Rac1-dependent PI3K/Akt pathway. J Biol Chem 2011; 286:10483-94. [PMID: 21266580 DOI: 10.1074/jbc.m110.112433] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Wu CC, Wu SY, Liao CY, Teng CM, Wu YC, Kuo SC. The roles and mechanisms of PAR4 and P2Y12/phosphatidylinositol 3-kinase pathway in maintaining thrombin-induced platelet aggregation. Br J Pharmacol 2011; 161:643-58. [PMID: 20880402 DOI: 10.1111/j.1476-5381.2010.00921.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of human platelets by thrombin is mediated predominately through two proteinase-activated receptors (PARs), PAR1 and PAR4. Phosphatidylinositol 3-kinase (PI3K) inhibition leads to reversible PAR1-mediated platelet aggregation, but has no effect on the stability of platelet aggregation induced by thrombin. In the present study, the molecular mechanisms underlying this difference were investigated. EXPERIMENTAL APPROACH The functions of PI3K and PAR4 were assessed using specific inhibitors and aggregometry. The duration of platelet glycoprotein (GP) IIb/IIIa exposure was determined by flow cytometry with the antibody PAC-1. Western blotting and fluo-3 was used to evaluate the activation of Akt and protein kinase C (PKC) and intracellular Ca(2+) mobilization respectively. KEY RESULTS When PAR4 function was inhibited either by the PAR4 antagonist YD-3 [1-benzyl-3-(ethoxycarbonylphenyl)-indazole] or by receptor desensitization, the PI3K inhibitor wortmannin turned thrombin-elicited platelet aggregation from an irreversible event to a reversible event. Moreover, wortmannin plus YD-3 markedly accelerated the inactivation of GPIIb/IIIa in thrombin-stimulated platelets. The aggregation-reversing activity mainly resulted from inhibition of both PI3K-dependent PKC activation and PAR4-mediated sustained intracellular Ca(2+) rises. Blockade of ADP P2Y(12) receptor with 2-methylthioadenosine 5'-monophosphate triethylammonium salt mimicked the inhibitory effect of wortmannin on PI3K-dependent PKC activation and its ability to reverse PAR1-activating peptide-induced platelet aggregation. Co-administration of 2-methylthioadenosine 5'-monophosphate triethylammonium salt with YD-3 also decreased the stability of thrombin-induced platelet aggregation. CONCLUSIONS AND IMPLICATIONS These results suggest that PAR4 acts in parallel with the P2Y(12)/PI3K pathway to stabilize platelet aggregates, and provide new insights into the mechanisms of thrombus stabilization and potential applications for antithrombotic therapy.
Collapse
Affiliation(s)
- Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Li D, D'Angelo L, Chavez M, Woulfe DS. Arrestin-2 differentially regulates PAR4 and ADP receptor signaling in platelets. J Biol Chem 2010; 286:3805-14. [PMID: 21106537 DOI: 10.1074/jbc.m110.118018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arrestins can facilitate desensitization or signaling by G protein-coupled receptors (GPCR) in many cells, but their roles in platelets remain uncharacterized. Because of recent reports that arrestins can serve as scaffolds to recruit phosphatidylinositol-3 kinases (PI3K)s to GPCRs, we sought to determine whether arrestins regulate PI3K-dependent Akt signaling in platelets, with consequences for thrombosis. Co-immunoprecipitation experiments demonstrate that arrestin-2 associates with p85 PI3Kα/β subunits in thrombin-stimulated platelets, but not resting cells. The association is inhibited by inhibitors of P2Y12 and Src family kinases (SFKs). The function of arrestin-2 in platelets is agonist-specific, as PAR4-dependent Akt phosphorylation and fibrinogen binding were reduced in arrestin-2 knock-out platelets compared with WT controls, but ADP-stimulated signaling to Akt and fibrinogen binding were unaffected. ADP receptors regulate arrestin recruitment to PAR4, because co-immunoprecipitates of arrestin-2 with PAR4 are disrupted by inhibitors of P2Y1 or P2Y12. P2Y1 may regulate arrestin-2 recruitment to PAR4 through protein kinase C (PKC) activation, whereas P2Y12 directly interacts with PAR4 and therefore, may help to recruit arrestin-2 to PAR4. Finally, arrestin2(-/-) mice are less sensitive to ferric chloride-induced thrombosis than WT mice, suggesting that arrestin-2 can regulate thrombus formation in vivo. In conclusion, arrestin-2 regulates PAR4-dependent signaling pathways, but not responses to ADP alone, and contributes to thrombus formation in vivo.
Collapse
Affiliation(s)
- Dongjun Li
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
39
|
Xiang B, Zhang G, Liu J, Morris AJ, Smyth SS, Gartner TK, Li Z. A G(i) -independent mechanism mediating Akt phosphorylation in platelets. J Thromb Haemost 2010; 8:2032-41. [PMID: 20586915 PMCID: PMC2965800 DOI: 10.1111/j.1538-7836.2010.03969.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The serine-threonine kinase Akt plays an important role in regulating platelet activation. Stimulation of platelets with various agonists results in Akt activation as indicated by Akt phosphorylation. However, the mechanisms of Akt phosphorylation in platelets are not completely understood. OBJECTIVES AND METHODS We used P2Y₁ knockout mice to address the role of P2Y₁₂ in Akt phosphorylation in response to thrombin receptors in platelets. RESULTS Thrombin or the PAR4 thrombin receptor peptide AYPGKF at high concentrations stimulated substantial phosphorylation of Akt residues Thr³⁰⁸ and Ser⁴⁷³ in P2Y₁₂-deficient platelets. AYPGKF-induced Akt phosphorylation is enhanced by expression of recombinant human PAR4 cDNA in Chinese hamster ovary (CHO) cells. P2Y₁₂ -independent Akt phosphorylation was not inhibited by integrin inhibitor peptide RGDS or integrin β₃ deficiency. Akt phosphorylation induced by thrombin or AYPGKF in P2Y₁₂-deficient platelets was inhibited by the calcium chelator dimethyl-BAPTA, the Src family kinase inhibitor PP2, and PI3K inhibitors, respectively. CONCLUSIONS Our results reveal a novel P2Y₁₂-independent signaling pathway mediating Akt phosphorylation in response to thrombin receptors.
Collapse
Affiliation(s)
- Binggang Xiang
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200
| | - Guoying Zhang
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200
| | - Junling Liu
- The Department of Molecular and Cell Biology, Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200
| | - Susan S. Smyth
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200
| | - T. Kent Gartner
- Department of Biology, University of Memphis, Memphis, TN 38152
| | - Zhenyu Li
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200
| |
Collapse
|
40
|
Huang ZS, Zeng CL, Zhu LJ, Jiang L, Li N, Hu H. Salvianolic acid A inhibits platelet activation and arterial thrombosis via inhibition of phosphoinositide 3-kinase. J Thromb Haemost 2010; 8:1383-93. [PMID: 20345719 DOI: 10.1111/j.1538-7836.2010.03859.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia miltiorrhiza Bunge, a herb that is widely used for atherothrombotic disease treatment in Asian medicine. As platelets play pivotal roles in atherothrombogenesis, we studied the effect of SAA on platelet activation and its underlying mechanisms. METHODS AND RESULTS SAA dose-dependently inhibited platelet aggregation induced by ADP, thrombin, collagen and U46619. It reduced ADP-enhanced platelet P-selectin expression and fibrinogen binding, which consequently hampered ADP-induced platelet-leukocyte aggregation. SAA also inhibited platelet spreading on fibrinogen, a process mediated by outside-in signaling. Under an arterial shear rate of 1000 s(-1), SAA decreased platelet adhesion on collagen surfaces by approximately 40%. Western blot analysis showed that SAA, like the phosphoinositide 3-kinase (PI3K) inhibitors LY294002 and TGX-221, potently inhibited PI3K, as shown by reduced Akt phosphorylation. The in vitro findings were further evaluated in the mouse model of arterial thrombosis, in which SAA prolonged the mesenteric arterial occlusion time in wild-type mice (35 + or - 2 min without SAA and 56 + or - 4 min with SAA; P < 0.01). Interestingly, SAA could even counteract the shortened arterial occlusion time in Ldlr(tm1Her) mutant mice (21 + or - 2 min without SAA and 45 + or - 4 min with SAA; P < 0.01). CONCLUSIONS SAA inhibits platelet activation via the inhibition of PI3K, and attenuates arterial thrombus formation in vivo. Our data suggest that SAA may be developed as a novel therapeutic agent for the prevention of thrombotic disorders.
Collapse
Affiliation(s)
- Z S Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
41
|
Parrales A, Palma-Nicolás JP, López E, López-Colomé AM. Thrombin stimulates RPE cell proliferation by promoting c-Fos-mediated cyclin D1 expression. J Cell Physiol 2010; 222:302-12. [DOI: 10.1002/jcp.21951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Jackson SP, Schoenwaelder SM. PI 3-Kinase p110β regulation of platelet integrin α(IIb)β3. Curr Top Microbiol Immunol 2010; 346:203-24. [PMID: 20517720 DOI: 10.1007/82_2010_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hemopoietic cells express relatively high levels of the type I phosphoinositide (PI) 3-kinase isoforms, with p110δ and γ exhibiting specialized signaling functions in neutrophils, monocytes, mast cells, and lymphocytes. In platelets, p110β appears to be the dominant PI 3-kinase isoform regulating platelet activation, irrespective of the nature of the primary platelet activating stimulus. Based on findings with isoform-selective p110β pharmacological inhibitors and more recently with p110β-deficient platelets, p110β appears to primarily signal downstream of G(i)- and tyrosine kinase-coupled receptors. Functionally, inhibition of p110β kinase function leads to a marked defect in integrin α(IIb)β₃ adhesion and reduced platelet thrombus formation in vivo. This defect in platelet adhesive function is not associated with increased bleeding, suggesting that therapeutic targeting of p110β may represent a safe approach to reduce thrombotic complications in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Shaun P Jackson
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
43
|
Yang E, Boire A, Agarwal A, Nguyen N, O'Callaghan K, Tu P, Kuliopulos A, Covic L. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 2009; 69:6223-31. [PMID: 19622769 DOI: 10.1158/0008-5472.can-09-0187] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor that is not expressed in normal breast epithelia but is up-regulated in invasive breast carcinomas. In the present study, we found that matrix metalloprotease-1 (MMP-1) robustly activates the PAR1-Akt survival pathway in breast carcinoma cells. This process is blocked by a cell-penetrating lipopeptide "pepducin," P1pal-7, which is a potent inhibitor of cell viability in breast carcinoma cells expressing PAR1. Both a MMP-1 inhibitor and P1pal-7 significantly promote apoptosis in breast tumor xenografts and inhibit metastasis to the lungs by up to 88%. Dual therapy with P1pal-7 and Taxotere inhibits the growth of MDA-MB-231 xenografts by 95%. Consistently, biochemical analysis of xenograft tumors treated with P1pal-7 or MMP-1 inhibitor showed attenuated Akt activity. Ectopic expression of constitutively active Akt rescues breast cancer cells from the synergistic cytotoxicity of P1pal-7 and Taxotere, suggesting that Akt is a critical component of PAR1-dependent cancer cell viability. Together, these findings indicate that blockade of MMP1-PAR1 signaling may provide a benefit beyond treatment with Taxotere alone in advanced, metastatic breast cancer.
Collapse
Affiliation(s)
- Eric Yang
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Grenegård M, Vretenbrant-Oberg K, Nylander M, Désilets S, Lindström EG, Larsson A, Ramström I, Ramström S, Lindahl TL. The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine. J Biol Chem 2008; 283:18493-504. [PMID: 18480058 DOI: 10.1074/jbc.m800358200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human platelets express protease-activated receptor 1 (PAR1) and PAR4 but limited data indicate for differences in signal transduction. We studied the involvement of PAR1 and PAR4 in the cross-talk between thrombin and epinephrine. The results show that epinephrine acted via alpha(2A)-adrenergic receptors to provoke aggregation, secretion, and Ca(2+) mobilization in aspirin-treated platelets pre-stimulated with subthreshold concentrations of thrombin. Incubating platelets with antibodies against PAR4 or the PAR4-specific inhibitor pepducin P4pal-i1 abolished the aggregation. Furthermore, platelets pre-exposed to the PAR4-activating peptide AYPGKF, but not to the PAR1-activating peptide SFLLRN, were aggregated by epinephrine, whereas both AYPGKF and SFLLRN synergized with epinephrine in the absence of aspirin. The roles of released ATP and ADP were elucidated by using antagonists of the purinergic receptors P2X(1), P2Y(1), and P2Y(12) (i.e. NF449, MRS2159, MRS2179, and cangrelor). Intriguingly, ATP, but not ADP, was required for the epinephrine/thrombin-induced aggregation. In Western blot analysis, a low concentration of AYPGKF, but not SFLLRN, stimulated phosphorylation of Akt on serine 473. Moreover, the phosphatidyl inositide 3-kinase inhibitor LY294002 antagonized the effect of epinephrine combined with thrombin or AYPGKF. Thus, in aspirin-treated platelets, PAR4, but not PAR1, interacts synergistically with alpha(2A)-adrenergic receptors, and the PI3-kinase/Akt pathway is involved in this cross-talk. Furthermore, in PAR4-pretreated platelets, epinephrine caused dense granule secretion, and subsequent signaling from the ATP-gated P2X(1)-receptor and the alpha(2A)-adrenergic receptor induced aggregation. These results suggest a new mechanism that has ATP as a key element and circumvents the action of aspirin on epinephrine-facilitated PAR4-mediated platelet activation.
Collapse
Affiliation(s)
- Magnus Grenegård
- Department of Medicine and Health, Division of Drug Research, Division of Clinical Chemistry, Cardiovascular Inflammation Research Center, Linköping University, Linköping SE-581 85 Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|