1
|
Wang Z, Gomchok D, Ye Y, Wen Y, Wuren T. Platelet Reduction in Rats Exposed to Chronic Hypoxia Is Associated with Interaction of Glycoprotein Ib Alpha von Willebrand Factor. Hamostaseologie 2025. [PMID: 40154511 DOI: 10.1055/a-2462-6667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Chronic high-altitude hypoxia is associated with reduced platelet count, but it is unclear whether the decrease in platelet count is due to impaired production or increased clearance. This study examines how hypoxia affects platelet production and apoptosis and elucidates the impact of glycoprotein Ibα-von Willebrand factor interaction on platelets in rats using a hypobaric hypoxia chamber. The results showed that the number of megakaryocytes increased under hypoxia; however, the levels of differentiation and polyploidy decreased, while those of apoptosis increased. Platelet production did not reduce according to the reticulated platelet percentage, while platelet apoptosis enhanced; these results suggest that increased platelet clearance was the main reason behind platelet reduction. Our previous microarray results indicated that glycoprotein Ibα (GPIbα) expression increased under hypoxia, which was a protein involved in platelet clearance; therefore, we examined the interaction of platelet GPIbα with the von Willebrand factor (vWF) both in vivo and in vitro to explore the effect of this process on platelets and whether it is related to platelet apoptosis. Under hypoxia, the stronger interaction between GPIbα and vWF promoted platelet apoptosis; inhibiting this interaction reduced platelet apoptosis and increased platelet counts. Platelet reduction is associated with apoptosis induced by the interaction between GPIbα and vWF.
Collapse
Affiliation(s)
- Zhuoya Wang
- School of Medicine, Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Geriatric department, Qinghai University Affiliated Hospital, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research, Qinghai Province, Xining, China
| | - Drolma Gomchok
- School of Medicine, Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research, Qinghai Province, Xining, China
| | - Yi Ye
- School of Medicine, Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research, Qinghai Province, Xining, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Tana Wuren
- School of Medicine, Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research, Qinghai Province, Xining, China
| |
Collapse
|
2
|
Zhang S, Sun C, Huang Q, Du J, Xia Y, Zhou K, Yang B, Dai K, Yan R. The role of protein kinase C and the glycoprotein Ibα cytoplasmic tail in anti-glycoprotein Ibα antibody-induced platelet apoptosis and thrombocytopenia. Thromb Res 2024; 244:109210. [PMID: 39541612 DOI: 10.1016/j.thromres.2024.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts. ITP patients with anti-platelet glycoprotein (GP) Ibα (a subunit of GPIb-IX-V complex) autoantibodies, which induce Fc-independent signaling and platelet clearance, are refractory to conventional treatment. Protein kinase C (PKC) is activated by the binding of the ligand von Willebrand factor (VWF) to GPIbα and regulates VWF-GPIbα-induced platelet activation. However, the role of PKC in anti-GPIbα antibody-induced thrombocytopenia remains unknown. MATERIALS AND METHODS The anti-GPIbα antibody-induced PKC activation and its underlying mechanisms were first detected by Western blot, and then the effects of PKC inhibitors, PKC knockout, or GPIbα C-terminal removal on anti-GPIbα antibody-induced platelet apoptosis, activation, aggregation, and clearance were investigated by flow cytometry, platelet aggregometry, and platelet posttransfusion, respectively. Meanwhile, platelet retention and co-localization with macrophages in the liver were detected by spinning disc intravital confocal microscopy. RESULTS Anti-GPIbα antibody-induced PKC activation depends on GPIbα clustering and phosphoinositide 3-kinase (PI3K) activation and results in Akt phosphorylation. Pharmacologic inhibition or genetic ablation of PKC suppresses anti-GPIbα antibody-induced platelet apoptosis and activation. Moreover, the GPIbα cytoplasmic tail is required for antibody-induced PKC activation, platelet apoptosis, and activation. Inhibition or ablation of PKC and deletion of the GPIbα cytoplasmic tail protect platelets from clearance in vivo. CONCLUSIONS Our study indicates the important role of PKC and the GPIbα cytoplasmic tail in anti-GPIbα antibody-mediated platelet signaling and clearance and suggests a novel therapeutic target for ITP and other thrombocytopenic diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Qiuxia Huang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Jiahao Du
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yue Xia
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Biao Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China.
| | - Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China.
| |
Collapse
|
3
|
Zheng SS, Perdomo JS. Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment. Curr Issues Mol Biol 2024; 46:11942-11956. [PMID: 39590303 PMCID: PMC11592706 DOI: 10.3390/cimb46110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease in which platelet autoantibodies play a significant role in its pathogenesis. Regulatory T cell dysfunction and T cell-mediated cytotoxicity also contribute to thrombocytopenia. Current therapies are directed towards immune suppression and modulation as well as stimulation of platelet production with thrombopoietin receptor agonists. Additional mechanisms of the pathogenesis of ITP have been suggested by recent experimental data. One of these processes, known as desialylation, involves antibody-induced removal of terminal sialic acid residues on platelet surface glycoproteins, leading to hepatic platelet uptake and thrombocytopenia. Apoptosis, or programmed platelet death, may also contribute to the pathogenesis of ITP. The extent of the impact of desialylation and apoptosis on ITP, the relative proportion of patients affected, and the role of antibody specificity are still the subject of investigation. This review will discuss both historical and new evidence of the influence of desialylation and apoptosis in the pathogenesis of ITP, with an emphasis on the clinical implications of these developments. Further understanding of both platelet desialylation and apoptosis might change current clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Shiying Silvia Zheng
- Haematology Research Unit, St. George and Sutherland Clinical Campuses, School of Medicine & Health, University of New South Wales, Kogarah, NSW 2217, Australia;
- Department of Haematology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - José Sail Perdomo
- Haematology Research Group, Central Clinical School, Faculty Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Yan R, Xia Y, Zhou K, Liu J, Sun Y, He C, Ge X, Yang M, Sun C, Yuan L, Li S, Yang B, Meng F, Cao L, Ruan C, Dai K. Essential role of glycoprotein Ibα in platelet activation. Blood Adv 2024; 8:3388-3401. [PMID: 38701351 PMCID: PMC11255362 DOI: 10.1182/bloodadvances.2023012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα), the ligand-binding subunit of platelet GPIb-IX complex, interacts with von Willebrand factor (VWF) exposed at the injured vessel wall, initiating platelet adhesion, activation, hemostasis, and thrombus formation. The cytoplasmic tail of GPIbα interacts with 14-3-3ζ, regulating the VWF-GPIbα-elicited signal transduction and VWF binding function of GPIbα. However, we unexpectedly found that the GPIbα-14-3-3ζ association, beyond VWF-dependent function, is essential for general platelet activation. We found that the myristoylated peptide of GPIbα C-terminus MPαC, a potential GPIbα inhibitor, by itself induced platelet aggregation, integrin αIIbβ3 activation, granule secretion, and phosphatidylserine (PS) exposure. Conversely, the deletion of the cytoplasmic tail of GPIbα in mouse platelets (10aa-/-) decreased platelet aggregation, integrin αIIbβ3 activation, granule secretion, and PS exposure induced by various physiological agonists. Phosphoproteome-based kinase activity profiling revealed significantly upregulated protein kinase C (PKC) activity in MPαC-treated platelets. MPαC-induced platelet activation was abolished by the pan-PKC inhibitor and PKCα deletion. Decreased PKC activity was observed in both resting and agonist-stimulated 10aa-/- platelets. GPIbα regulates PKCα activity by sequestering 14-3-3ζ from PKCα. In vivo, the deletion of the GPIbα cytoplasmic tail impaired mouse hemostasis and thrombus formation and protected against platelet-dependent pulmonary thromboembolism. Therefore, our findings demonstrate an essential role for the GPIbα cytoplasmic tail in regulating platelet general activation and thrombus formation beyond the VWF-GPIbα axis.
Collapse
Affiliation(s)
- Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yue Xia
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Jun Liu
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yueyue Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chunyan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinxin Ge
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Liuxia Yuan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Shujun Li
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Biao Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Fanbi Meng
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| |
Collapse
|
5
|
Ebrahimi R, Nasri F, Kalantari T. Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Ann Hematol 2024; 103:1819-1831. [PMID: 38349409 DOI: 10.1007/s00277-024-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 05/14/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nasri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Gao X, Zhang T, Huang X, Huan X, Li Y. Evaluating the impact of transient shear stress on platelet activation, adhesion, and aggregation with microfluidic chip technique. Artif Organs 2024; 48:28-36. [PMID: 37792630 DOI: 10.1111/aor.14653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND When nonphysiological stenosis occurs, the transient high shear stress formed in vessels increases the risk of thrombosis and is a potential factor for cardiovascular diseases. But the platelet adhesion and aggregation behavior at nonphysiological post-stenosis and its affecting factors are not fully understood yet. METHODS In this experiment, platelet aggregation on collagen and fibrinogen at different shear stresses and different hematocrits were observed by microfluidic technology. Platelet activation (P-selectin, glycoprotein IIb/IIIa) and monocyte-platelet aggregate (MPA) levels under different shear stresses were analyzed by flow cytometry. RESULTS On fibrinogen, platelets aggregate more at higher shear stress conditions. While on collagen, it becomes more difficult for platelets to form stable aggregation at higher shear stress conditions. If platelets adhere initially at low shear stress, stable platelet aggregation can be formed at subsequent high shear stress. Moreover, when the shear stress increases, platelet activity markers (P-selectin, glycoprotein IIb/IIIa and MPAs) increase significantly. Hematocrit affects the degree of platelet aggregation, and the influence of hematocrit is obvious at high shear stress. CONCLUSION Transient high shear stress (46 ms) can effectively activate platelets. Platelet aggregation behavior was different for coated fibrinogen and collagen protein. Stable platelet adhesion at post-stenosis is more dependent on fibrinogen and platelet aggregation is stable on both fibrinogen and collagen. Hematocrit can significantly affect the formation of platelet aggregation.
Collapse
Affiliation(s)
- Xuemei Gao
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Tiancong Zhang
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Huang
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xuanrong Huan
- Department of Clinical Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Li
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Wang Z, Tenzing N, Xu Q, Liu H, Ye Y, Wen Y, Wuren T, Cui S. Apoptosis is one cause of thrombocytopenia in patients with high-altitude polycythemia. Platelets 2023; 34:2157381. [PMID: 36597012 DOI: 10.1080/09537104.2022.2157381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-altitude polycythemia (HAPC) can occur in individuals who are intolerant to high-altitude hypoxia. In patients with HAPC, erythrocytosis is often accompanied by a decrease in platelet count. Chronic hypoxia can increase the incidence of arteriovenous thrombosis and the risk of bleeding during antithrombotic treatment due to thrombocytopenia; therefore, understanding the cause of thrombocytopenia can reduce the risk of treatment-related bleeding. In this study, we examined platelet production and apoptosis to understand the cause of thrombocytopenia in patients with HAPC. The classification of myeloid-derived megakaryocytes (MKs) in HAPC patients was mainly granular MKs rather than mature MKs, suggesting impaired differentiation and maturation. However, the total number of MKs and newly generated reticulated platelets in the peripheral blood increased, indicating sufficient platelet generation in HAPC thrombocytopenia. Increased platelet apoptosis may be one of the causes of thrombocytopenia. Platelet activation and GP1bα pathway activation induced by thrombin and von Willebrand factor can lead to platelet apoptosis. Platelet production was not reduced in patients with HAPC, whereas platelet apoptosis was associated with thrombocytopenia. These findings provide a rationale for considering the bleeding risk in HAPC patient while treating thrombotic diseases.
Collapse
Affiliation(s)
- Zhuoya Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of Qinghai University, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China.,Gerontology Department, Qinghai University Affiliated Hospital, Xining, China
| | - Noryung Tenzing
- Gerontology Department, Qinghai University Affiliated Hospital, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of Qinghai University, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China.,Gerontology Department, Qinghai University Affiliated Hospital, Xining, China
| | - Huifang Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of Qinghai University, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China.,Gerontology Department, Qinghai University Affiliated Hospital, Xining, China
| | - Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of Qinghai University, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of Qinghai University, Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
| | - Sen Cui
- Gerontology Department, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
8
|
Josefsson EC. Platelet intrinsic apoptosis. Thromb Res 2023; 231:206-213. [PMID: 36739256 DOI: 10.1016/j.thromres.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
In a healthy individual, the lifespan of most platelets is tightly regulated by intrinsic, or mitochondrial, apoptosis. This is a special form of programmed cell death governed by the BCL-2 family of proteins, where the prosurvival protein BCL-XL maintains platelet viability by restraining the prodeath proteins BAK and BAX. Restriction of platelet lifespan by activation of BAK and BAX mediated intrinsic apoptosis is essential to maintain a functional, haemostatically reactive platelet population. This review focuses on the molecular regulation of intrinsic apoptosis in platelets, reviews conditions linked to enhanced platelet death, discusses ex vivo storage of platelets and describes caveats associated with the assessment of platelet apoptosis.
Collapse
Affiliation(s)
- Emma C Josefsson
- Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden; The University of Gothenburg, Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg, Sweden; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, VIC 3052, Australia; The University of Melbourne, Department of Medical Biology, 1G Royal Parade, VIC 3052, Australia.
| |
Collapse
|
9
|
Zhuang X, Xu P, Ou Y, Shao X, Li Y, Ma Y, Qin S, Hua F, Zhan Y, Ji L, Qiao T, Chen H, Cheng Y. Decreased cyclooxygenase-2 associated with impaired megakaryopoiesis and thrombopoiesis in primary immune thrombocytopenia. J Transl Med 2023; 21:540. [PMID: 37573325 PMCID: PMC10423426 DOI: 10.1186/s12967-023-04389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Cyclooxygenase (COX)-2 is a rate-limiting enzyme in the biosynthesis of prostanoids, which is mostly inducible by inflammatory cytokines. The participation of COX-2 in the maturation of megakaryocytes has been reported but barely studied in primary immune thrombocytopenia (ITP). METHODS The expressions of COX-2 and Caspase-1, Caspase-3 and Caspase-3 p17 subunit in platelets from ITP patients and healthy controls (HC), and the expressions of COX-2 and CD41 in bone marrow (BM) of ITP patients were measured and analyzed for correlations. The effects of COX-2 inhibitor on megakaryopoiesis and thrombopoiesis were assessed by in vitro culture of Meg01 cells and murine BM-derived megakaryocytes and in vivo experiments of passive ITP mice. RESULTS The expression of COX-2 was decreased and Caspase-1 and Caspase-3 p17 were increased in platelets from ITP patients compared to HC. In platelets from ITP patients, the COX-2 expression was positively correlated with platelet count and negatively correlated to the expression of Caspase-1. In ITP patients BM, the expression of CD41 was positively correlated with the expression of COX-2. COX-2 inhibitor inhibited the count of megakaryocytes and impaired the maturation and platelet production in Meg01 cells and bone marrow-derived megakaryocytes. COX-2 inhibitor aggravated thrombocytopenia and damaged megakaryopoiesis in ITP murine model. CONCLUSION COX-2 plays a vital role in the physiologic and pathologic conditions of ITP by intervening the survival of platelets and impairing the megakaryopoiesis and thrombopoiesis of megakaryocytes.
Collapse
Affiliation(s)
- Xibing Zhuang
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Pengcheng Xu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yang Ou
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xia Shao
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ying Li
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yanna Ma
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Shanshan Qin
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Yanxia Zhan
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China
| | - Lili Ji
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, 200031, China
| | - Yunfeng Cheng
- Department of Hematology, Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 180 Fenglin Rd, Shanghai, 200032, China.
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Roka-Moiia Y, Ammann K, Miller-Gutierrez S, Sheriff J, Bluestein D, Italiano JE, Flaumenhaft RC, Slepian MJ. Shear-Mediated Platelet Microparticles Demonstrate Phenotypic Heterogeneity as to Morphology, Receptor Distribution, and Hemostatic Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527675. [PMID: 36798322 PMCID: PMC9934663 DOI: 10.1101/2023.02.08.527675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Objective Implantable cardiovascular therapeutic devices (CTD) including stents, percutaneous heart valves and ventricular assist devices, while lifesaving, impart supraphysiologic shear stress to platelets resulting in thrombotic and bleeding device-related coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbβ3 receptors via generation of platelet-derived microparticles (PDMPs). Here, we test the hypothesis that shear-generated PDMPs manifest phenotypical heterogeneity of their morphology and surface expression of platelet receptors, and modulate platelet hemostatic function. Approach and Results Human gel-filtered platelets were exposed to continuous shear stress and sonication. Alterations of platelet morphology were visualized using transmission electron microscopy. Surface expression of platelet receptors and PDMP generation were quantified by flow cytometry. Thrombin generation was quantified spectrophotometrically, and platelet aggregation in plasma was measured by optical aggregometry. We demonstrate that platelet exposure to shear stress promotes notable alterations in platelet morphology and ejection of several distinctive types of PDMPs. Shear-mediated microvesiculation is associated with the differential remodeling of platelet receptors with PDMPs expressing significantly higher levels of both adhesion (α IIb β 3 , GPIX, PECAM-1, P-selectin, and PSGL-1) and agonist-evoked receptors (P 2 Y 12 & PAR1). Shear-mediated PDMPs have a bidirectional effect on platelet hemostatic function, promoting thrombin generation and inhibiting platelet aggregation induced by collagen and ADP. Conclusions Shear-generated PDMPs demonstrate phenotypic heterogeneity as to morphologic features and defined patterns of surface receptor alteration, and impose a bidirectional effect on platelet hemostatic function. PDMP heterogeneity suggests that a range of mechanisms are operative in the microvesiculation process, contributing to CTD coagulopathy and posing opportunities for therapeutic manipulation.
Collapse
|
11
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
12
|
Quach ME, Chen W, Wang Y, Deckmyn H, Lanza F, Nieswandt B, Li R. Differential regulation of the platelet GPIb-IX complex by anti-GPIbβ antibodies. J Thromb Haemost 2021; 19:2044-2055. [PMID: 33915031 PMCID: PMC8324530 DOI: 10.1111/jth.15359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets' initial recognition of endothelial damage proceeds through the interaction between collagen, plasma von Willebrand factor (VWF), and the platelet glycoprotein (GP)Ib-IX complex (CD42). The GPIb-IX complex consists of one GPIbα, one GPIX, and two GPIbβ subunits. Once platelets are immobilized to the subendothelial matrix, shear generated by blood flow unfolds a membrane-proximal mechanosensory domain (MSD) in GPIbα, exposing a conserved trigger sequence and activating the receptor. Currently, GPIbα appears to solely facilitate ligand-induced activation because it contains both the MSD and the binding sites for all known ligands to GPIb-IX. Despite being positioned directly adjacent to the MSD, the roles of GPIbβ and GPIX in signal transduction remain murky. OBJECTIVES To characterize a novel rat monoclonal antibody 3G6 that binds GPIbβ. METHODS Effects of 3G6 on activation of GPIb-IX are characterized in platelets and Chinese hamster ovary cells expressing GPIb-IX (CHO-Ib-IX) and compared with those of an inhibitory anti-GPIbβ antibody, RAM.1. RESULTS Both RAM.1 and 3G6 bind to purified GPIbβ and GPIb-IX with high affinity. 3G6 potentiates GPIb-IX-associated filopodia formation in platelets or CHO-Ib-IX when they adhere VWF or antibodies against the ligand-binding domain (LBD) of GPIbα. Pretreatment with 3G6 also increased anti-LBD antibody-induced GPIb-IX activation. Conversely, RAM.1 inhibits nearly all GPIb-IX-related signaling in platelets and CHO-Ib-IX cells. CONCLUSIONS These data represent the first report of a positive modulator of GPIb-IX activation. The divergent modulatory effects of 3G6 and RAM.1, both targeting GPIbβ, strongly suggest that changes in the conformation of GPIbβ underlie outside-in activation via GPIb-IX.
Collapse
Affiliation(s)
- M. Edward Quach
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Julius Maximilian University of Wurzburg, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
13
|
Abstract
Platelet adhesion to the site of vascular damage is a critical early step in hemostasis. The platelet glycoprotein (GP) Ib-IX-V plays a key role in this step via its interaction with immobilized von Willebrand Factor (VWF). In addition to its well-known role in adhesion, GPIb-IX-V is critical for platelets' survival in circulation and plays an important role in the regulation of platelet clearance. Several mechanisms of platelet clearance work in concert to maintain a normal platelet count and ensure that circulating platelets are functionally viable via removal of senescent or activated platelets. Furthermore, dysregulation of platelet clearance underlies several bleeding disorders. GPIb-IX-V is central to many physiological mechanisms of platelet clearance including clearance via glycan receptors, clearance of VWF-platelet complexes, and fast clearance of transfused platelets. GPIb-IX-V dependent clearance also underlies thrombocytopenia in several bleeding disorders, including von Willebrand disease (VWD) and immune thrombocytopenia. This review will cover physiological and pathological mechanisms of platelet clearance, focusing on the role of GPIb-IX-V.
Collapse
Affiliation(s)
- M Edward Quach
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Moussa MD, Soquet J, Lamer A, Labreuche J, Gantois G, Dupont A, Abou-Arab O, Rousse N, Liu V, Brandt C, Foulon V, Leroy G, Schurtz G, Jeanpierre E, Duhamel A, Susen S, Vincentelli A, Robin E. Evaluation of Anti-Activated Factor X Activity and Activated Partial Thromboplastin Time Relations and Their Association with Bleeding and Thrombosis during Veno-Arterial ECMO Support: A Retrospective Study. J Clin Med 2021; 10:jcm10102158. [PMID: 34067573 PMCID: PMC8156165 DOI: 10.3390/jcm10102158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the relationship between anti-activated Factor X (anti-FXa) and activated Partial Thromboplastin Time (aPTT), and its modulation by other haemostasis co-variables during veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support. We further investigated their association with serious bleeding and thrombotic complications. METHODS This retrospective single-center study included 265 adults supported by VA-ECMO for refractory cardiogenic shock from January 2015 to June 2019. The concordance of anti-FXa and aPTT and their correlations were assessed in 1699 paired samples. Their independent associations with serious bleeding or thrombotic complications were also analysed in multivariate analysis. RESULTS The concordance rate of aPTT with anti-FXa values was 50.7%, with 39.3% subtherapeutic aPTT values. However, anti-FXa and aPTT remained associated (β = 0.43 (95% CI 0.4-0.45) 10-2 IU/mL, p < 0.001), with a significant modulation by several biological co-variables. There was no association between anti-FXa nor aPTT values with serious bleeding or with thrombotic complications. CONCLUSION During VA-ECMO, although anti-FXa and aPTT were significantly associated, their values were highly discordant with marked sub-therapeutic aPTT values. These results should favour the use of anti-FXa. The effect of biological co-variables and the failure of anti-FXa and aPTT to predict bleeding and thrombotic complications underline the complexity of VA-ECMO-related coagulopathy.
Collapse
Affiliation(s)
- Mouhamed Djahoum Moussa
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
- Correspondence: ; Tel.: +33-320-445-962
| | - Jérôme Soquet
- CHU Lille, Service de Chirurgie Cardiaque, 59000 Lille, France; (J.S.); (N.R.); (A.V.)
| | - Antoine Lamer
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
- Univ. Lille, INSERM, CHU Lille, CIC-IT 1403, 59000 Lille, France
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, 59000 Lille, France; (J.L.); (A.D.)
| | - Julien Labreuche
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, 59000 Lille, France; (J.L.); (A.D.)
- CHU Lille, Department of Biostatistics, 59000 Lille, France
| | - Guillaume Gantois
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
| | - Annabelle Dupont
- CHU Lille, Pôle d’Hématologie-Transfusion, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (A.D.); (E.J.); (S.S.)
| | - Osama Abou-Arab
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, 80054 Amiens, France;
- MP3CV, EA7517, CURS, Jules Verne University of Picardie, 80054 Amiens, France
| | - Natacha Rousse
- CHU Lille, Service de Chirurgie Cardiaque, 59000 Lille, France; (J.S.); (N.R.); (A.V.)
| | - Vincent Liu
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
| | - Caroline Brandt
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
| | - Valentin Foulon
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
| | - Guillaume Leroy
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
| | | | - Emmanuel Jeanpierre
- CHU Lille, Pôle d’Hématologie-Transfusion, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (A.D.); (E.J.); (S.S.)
| | - Alain Duhamel
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, 59000 Lille, France; (J.L.); (A.D.)
- CHU Lille, Department of Biostatistics, 59000 Lille, France
| | - Sophie Susen
- CHU Lille, Pôle d’Hématologie-Transfusion, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (A.D.); (E.J.); (S.S.)
| | - André Vincentelli
- CHU Lille, Service de Chirurgie Cardiaque, 59000 Lille, France; (J.S.); (N.R.); (A.V.)
| | - Emmanuel Robin
- CHU Lille, Pôle d’Anesthésie-Réanimation, 59000 Lille, France; (A.L.); (G.G.); (V.L.); (C.B.); (V.F.); (G.L.); (E.R.)
| |
Collapse
|
15
|
Lien TS, Chan H, Sun DS, Wu JC, Lin YY, Lin GL, Chang HH. Exposure of Platelets to Dengue Virus and Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent Platelet Cell Death and Thrombocytopenia in Mice. Front Immunol 2021; 12:616394. [PMID: 33995345 PMCID: PMC8118162 DOI: 10.3389/fimmu.2021.616394] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
In tropical and subtropical regions, mosquito-borne dengue virus (DENV) infections can lead to severe dengue, also known as dengue hemorrhage fever, which causes bleeding, thrombocytopenia, and blood plasma leakage and increases mortality. Although DENV-induced platelet cell death was linked to disease severity, the role of responsible viral factors and the elicitation mechanism of abnormal platelet activation and cell death remain unclear. DENV and virion-surface envelope protein domain III (EIII), a cellular binding moiety of the virus particle, highly increase during the viremia stage. Our previous report suggested that exposure to such viremia EIII levels can lead to cell death of endothelial cells, neutrophils, and megakaryocytes. Here we found that both DENV and EIII could induce abnormal platelet activation and predominantly necrotic cell death pyroptosis. Blockages of EIII-induced platelet signaling using the competitive inhibitor chondroitin sulfate B or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK markedly ameliorated DENV- and EIII-induced thrombocytopenia, platelet activation, and cell death. These results suggest that EIII could be considered as a virulence factor of DENV, and that Nlrp3 inflammasome is a feasible target for developing therapeutic approaches against dengue-induced platelet defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
16
|
Wang S, Griffith BP, Wu ZJ. Device-Induced Hemostatic Disorders in Mechanically Assisted Circulation. Clin Appl Thromb Hemost 2021; 27:1076029620982374. [PMID: 33571008 PMCID: PMC7883139 DOI: 10.1177/1076029620982374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanically assisted circulation (MAC) sustains the blood circulation in the body of a patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) or on ventricular assistance with a ventricular assist device (VAD) or on extracorporeal membrane oxygenation (ECMO) with a pump-oxygenator system. While MAC provides short-term (days to weeks) support and long-term (months to years) for the heart and/or lungs, the blood is inevitably exposed to non-physiological shear stress (NPSS) due to mechanical pumping action and in contact with artificial surfaces. NPSS is well known to cause blood damage and functional alterations of blood cells. In this review, we discussed shear-induced platelet adhesion, platelet aggregation, platelet receptor shedding, and platelet apoptosis, shear-induced acquired von Willebrand syndrome (AVWS), shear-induced hemolysis and microparticle formation during MAC. These alterations are associated with perioperative bleeding and thrombotic events, morbidity and mortality, and quality of life in MCS patients. Understanding the mechanism of shear-induce hemostatic disorders will help us develop low-shear-stress devices and select more effective treatments for better clinical outcomes.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
17
|
Roka-Moiia Y, Miller-Gutierrez S, Palomares DE, Italiano JE, Sheriff J, Bluestein D, Slepian MJ. Platelet Dysfunction During Mechanical Circulatory Support: Elevated Shear Stress Promotes Downregulation of α IIbβ 3 and GPIb via Microparticle Shedding Decreasing Platelet Aggregability. Arterioscler Thromb Vasc Biol 2021; 41:1319-1336. [PMID: 33567867 DOI: 10.1161/atvbaha.120.315583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Department of Medicine (Y.R.-M., S.M.-G.), Sarver Heart Center, University of Arizona, Tucson
| | - Samuel Miller-Gutierrez
- Department of Medicine (Y.R.-M., S.M.-G.), Sarver Heart Center, University of Arizona, Tucson
| | - Daniel E Palomares
- Department of Biomedical Engineering (D.E.P., M.J.S.), Sarver Heart Center, University of Arizona, Tucson
| | - Joseph E Italiano
- Brigham and Woman's Hospital, Harvard Medical School, Boston, MA (J.E.I.)
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (J.S., D.B., M.J.S.)
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (J.S., D.B., M.J.S.)
| | - Marvin J Slepian
- Department of Biomedical Engineering (D.E.P., M.J.S.), Sarver Heart Center, University of Arizona, Tucson.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (J.S., D.B., M.J.S.)
| |
Collapse
|
18
|
Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. J Thromb Haemost 2020; 18:3131-3141. [PMID: 32735697 PMCID: PMC7854888 DOI: 10.1111/jth.15035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix instigates platelet arrest at the site of vascular injury and is vital to primary hemostasis. Its reception to other ligands and counter-receptors in the bloodstream also contribute to various processes of platelet biology that are still being discovered. While its basic composition and its link to congenital bleeding disorders were well documented and firmly established more than 25 years ago, recent years have witnessed critical advances in the organization, dynamics, activation, regulation, and functions of the GPIb-IX complex. This review summarizes important findings and identifies questions that remain about this unique platelet mechanoreceptor complex.
Collapse
Affiliation(s)
- M Edward Quach
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Freixer G, Zekri-Nechar K, Zamorano-León JJ, Hugo-Martínez C, Butta NV, Monzón E, Recio MJ, Giner M, López-Farré A. Pro-apoptotic properties and mitochondrial functionality in platelet-like-particles generated from low Aspirin-incubated Meg-01 cells. Platelets 2020; 32:1063-1072. [PMID: 33111589 DOI: 10.1080/09537104.2020.1839637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Long-term therapy with low Aspirin (ASA) dose is basis to prevent thrombotic acute events. However, the anti-platelet mechanisms of ASA remain not completely known. The aim was to analyze if in vitro exposure of human megakaryocytes to low ASA concentration may alter the apoptotic features of the newly formed platelets. Cultured Meg-01 cells, a human megakaryoblastic cell line, were stimulated to form platelets with 10 nmol/L phorbol 12-myristate-13-acetate (PMA) in the presence and absence of ASA (0.33 mmol/L). Results revealed that platelet-like particles (PLPs) derived from ASA-exposed Meg-01 cells, showed higher content of pro-apoptotic proteins Bax and Bak than PLPs from non-ASA incubated Meg-01 cells. It was accompanied of reduced cytochrome C oxidase activity and higher mitochondrial content of PTEN-induced putative kinase-1 in PLPs from ASA-incubated Meg-01 cells. However, only after calcium ionophore A23187 stimulation, caspase-3 activity, the cytosolic cytochrome C content, and reduction of mitochondrial membrane potential were higher in PLPs from ASA-incubated megakaryocytes than in those from Meg-01 without ASA. Nitric oxide synthase 3 content was higher in PLPs from ASA-exposed Meg-01 cells than in PLPs from non-ASA incubated Meg-01 cells. The L-arginine antagonist, NG-Nitro-L-arginine Methyl Ester, reduced caspase-3 activity in A23187-stimulated PLPs generated from ASA-incubated Meg-01 cells. As conclusions exposure of megakaryocyte to ASA promotes that the newly generated PLPs have, under stimulating condition, higher sensitivity to go into apoptosis than those PLPs generated from Meg-01 cells without ASA. It could be associated with differences in mitochondrial functionality and NO formation.
Collapse
Affiliation(s)
| | | | | | | | - Nora V Butta
- Haematology Department, Hospital Universitario La Paz, idiPaz, Madrid, Spain
| | - Elena Monzón
- Haematology Department, Hospital Universitario La Paz, idiPaz, Madrid, Spain
| | | | - Manel Giner
- Surgery Departments, School of Medicine, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
20
|
Josefsson EC, Vainchenker W, James C. Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. Int J Mol Sci 2020; 21:ijms21207591. [PMID: 33066573 PMCID: PMC7589436 DOI: 10.3390/ijms21207591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/14/2023] Open
Abstract
Blood platelets have important roles in haemostasis, where they quickly stop bleeding in response to vascular damage. They have also recognised functions in thrombosis, immunity, antimicrobal defense, cancer growth and metastasis, tumour angiogenesis, lymphangiogenesis, inflammatory diseases, wound healing, liver regeneration and neurodegeneration. Their brief life span in circulation is strictly controlled by intrinsic apoptosis, where the prosurvival Bcl-2 family protein, Bcl-xL, has a major role. Blood platelets are produced by large polyploid precursor cells, megakaryocytes, residing mainly in the bone marrow. Together with Mcl-1, Bcl-xL regulates megakaryocyte survival. This review describes megakaryocyte maturation and survival, platelet production, platelet life span and diseases of abnormal platelet number with a focus on the role of Bcl-xL during these processes.
Collapse
Affiliation(s)
- Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - William Vainchenker
- University Paris-Saclay, INSERM UMR 1270, Gustave Roussy, 94800 Villejuif, France
| | - Chloe James
- University of Bordeaux, INSERM U1034, Biology of Cardiovascular Diseases, 33600 Pessac, France
- Laboratory of Hematology, Bordeaux University Hospital Center, Haut-Leveque Hospital, 33604 Pessac, France
| |
Collapse
|
21
|
Leytin V, Gyulkhandanyan AV, Freedman J. Platelet Apoptosis Can Be Triggered Bypassing the Death Receptors. Clin Appl Thromb Hemost 2019; 25:1076029619853641. [PMID: 31167567 PMCID: PMC6715000 DOI: 10.1177/1076029619853641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In nucleated cells, the extrinsic pathway of the programmed cell death (apoptosis) is triggered by interaction of death ligands of the tumor necrosis factor superfamily with the death receptors on external cell surface membrane. In this review, we present evidence that, in contrast to nucleated cells, apoptosis in anucleate platelets can be induced through bypassing the death receptors, using instead specific receptors on the platelet surface mediating platelet activation, aggregation, and blood coagulation. These platelet surface receptors include the protease-activated receptor 1 of thrombin and glycoproteins IIbIIIa and Ibα, receptors of fibrinogen, and von Willebrand factor. The pro-apoptotic BH3 mimetic ABT-737 and calcium ionophore A23187 also trigger platelet apoptosis without using death receptors. These agents induce the intrinsic pathway of platelet apoptosis by direct targeting mitochondrial and extra-mitochondrial apoptotic responses.
Collapse
Affiliation(s)
- Valery Leytin
- 1 Toronto Platelet Immunobiology Group, St Michael's Hospital, Toronto, Ontario, Canada
| | | | - John Freedman
- 1 Toronto Platelet Immunobiology Group, St Michael's Hospital, Toronto, Ontario, Canada.,2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,3 Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
van der Wal DE, Davis AM, Mach M, Marks DC. The role of neuraminidase 1 and 2 in glycoprotein Ibα-mediated integrin αIIbβ3 activation. Haematologica 2019; 105:1081-1094. [PMID: 31273092 PMCID: PMC7109719 DOI: 10.3324/haematol.2019.215830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Upon vascular injury, platelets adhere to von Willebrand Factor (VWF) via glycoprotein Ibα (GPIbα). GPIbα contains many glycans, capped by sialic acid. Sialic acid cleavage (desialylation) triggers clearance of platelets. Neuraminidases (NEU) are responsible for desialylation and so far, NEU1-4 have been identified. However, the role of NEU in healthy platelets is currently unknown. Aim of the study was to study the role of NEU1 and NEU2 in platelet signalling. Membrane association of platelet attached glycans, NEU1 and NEU2 was measured following activation with agonists using flow cytometry. Adhesion on fibrinogen, aggregation and fibrinogen-binding were assessed with/without the NEU-inhibitor, 2-deoxy-2-3-dide-hydro-N-acetylneuraminic acid. Cellular localisation of NEU1 and NEU2 was examined by fluorescence microscopy. Desialylation occurred following GPIbα-clustering by VWF. Basal levels of membrane NEU1 were low; glycoprotein Ibα-clustering induced a four-fold increase (n=3, P<0.05). Inhibition of αIIbβ3-integrin prevented the increase in NEU1 membrane-association by ~60%. Membrane associated NEU2 increased two-fold (n=3, P<0.05) upon VWF-binding, while inhibition/removal of GPIbα reduced the majority of membrane associated NEU1 and NEU2 (n=3, P<0.05). High shear and addition of fibrinogen increased membrane NEU1 and NEU2. NEU-inhibitior prevented VWF-induced αIIbβ3-integrin activation by 50% (n=3, P<0.05), however, promoted VWF-mediated agglutination, indicating a negative feedback mechanism for NEU activity. NEU1 or NEU2 were partially co-localised with mitochondria and α-granules respectively. Neither NEU1 nor NEU2 co-localised with lysosomal-associated membrane protein 1. These findings demonstrate a previously unrecognised role for NEU1 and NEU2 in GPIbα–mediated and αIIbβ3-integrin signalling.
Collapse
Affiliation(s)
| | - April M Davis
- Australian Red Cross Lifeblood (formerly known as Blood Service)
| | - Melanie Mach
- Australian Red Cross Lifeblood (formerly known as Blood Service)
| | - Denese C Marks
- Australian Red Cross Lifeblood (formerly known as Blood Service).,Sydney Medical School, Uinversity of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
The Glycoprotein Ib-IX-V Complex. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
24
|
Chen M, Yan R, Zhou K, Li X, Zhang Y, Liu C, Jiang M, Ye H, Meng X, Pang N, Zhao L, Liu J, Xiao W, Hu R, Cui Q, Zhong W, Zhao Y, Zhu M, Lin A, Ruan C, Dai K. Akt-mediated platelet apoptosis and its therapeutic implications in immune thrombocytopenia. Proc Natl Acad Sci U S A 2018; 115:E10682-E10691. [PMID: 30337485 PMCID: PMC6233141 DOI: 10.1073/pnas.1808217115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet count which can cause fatal hemorrhage. ITP patients with antiplatelet glycoprotein (GP) Ib-IX autoantibodies appear refractory to conventional treatments, and the mechanism remains elusive. Here we show that the platelets undergo apoptosis in ITP patients with anti-GPIbα autoantibodies. Consistent with these findings, the anti-GPIbα monoclonal antibodies AN51 and SZ2 induce platelet apoptosis in vitro. We demonstrate that anti-GPIbα antibody binding activates Akt, which elicits platelet apoptosis through activation of phosphodiesterase (PDE3A) and PDE3A-mediated PKA inhibition. Genetic ablation or chemical inhibition of Akt or blocking of Akt signaling abolishes anti-GPIbα antibody-induced platelet apoptosis. We further demonstrate that the antibody-bound platelets are removed in vivo through an apoptosis-dependent manner. Phosphatidylserine (PS) exposure on apoptotic platelets results in phagocytosis of platelets by macrophages in the liver. Notably, inhibition or genetic ablation of Akt or Akt-regulated apoptotic signaling or blockage of PS exposure protects the platelets from clearance. Therefore, our findings reveal pathogenic mechanisms of ITP with anti-GPIbα autoantibodies and, more importantly, suggest therapeutic strategies for thrombocytopenia caused by autoantibodies or other pathogenic factors.
Collapse
Affiliation(s)
- Mengxing Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China;
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Xiaodong Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Yang Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Chunliang Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Mengxiao Jiang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Honglei Ye
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Xingjun Meng
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Ningbo Pang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Lili Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Jun Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Weiling Xiao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Renping Hu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Qingya Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Wei Zhong
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Yunxiao Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Mingqing Zhu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Anning Lin
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboraotry of Radiation Medicine and Protection, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215006, China;
| |
Collapse
|
25
|
Mojiri A, Alavi P, Jahroudi N. Von Willebrand factor contribution to pathophysiology outside of von Willebrand disease. Microcirculation 2018; 26:e12510. [PMID: 30365187 DOI: 10.1111/micc.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
VWF is a procoagulant protein that plays a central role in the initiation of platelets aggregate formation and thrombosis. While von Willebrand disease has long been known to result from qualitative and quantitative deficiencies of VWF, it is recently that contribution of elevated levels of VWF to various pathological conditions including thrombosis, inflammation, angiogenesis, and cancer metastasis has been appreciated. Here, we discuss contribution of elevated levels of VWF to various thrombotic and nonthrombotic pathological conditions.
Collapse
Affiliation(s)
- Anahita Mojiri
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Parnian Alavi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018; 131:1512-1521. [PMID: 29475962 DOI: 10.1182/blood-2017-08-743229] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/28/2018] [Indexed: 02/01/2023] Open
Abstract
Hundreds of billions of platelets are cleared daily from circulation via efficient and highly regulated mechanisms. These mechanisms may be stimulated by exogenous reagents or environmental changes to accelerate platelet clearance, leading to thrombocytopenia. The interplay between antiapoptotic Bcl-xL and proapoptotic molecules Bax and Bak sets an internal clock for the platelet lifespan, and BH3-only proteins, mitochondrial permeabilization, and phosphatidylserine (PS) exposure may also contribute to apoptosis-induced platelet clearance. Binding of plasma von Willebrand factor or antibodies to the ligand-binding domain of glycoprotein Ibα (GPIbα) on platelets can activate GPIb-IX in a shear-dependent manner by inducing unfolding of the mechanosensory domain therein, and trigger downstream signaling in the platelet including desialylation and PS exposure. Deglycosylated platelets are recognized by the Ashwell-Morell receptor and potentially other scavenger receptors, and are rapidly cleared by hepatocytes and/or macrophages. Inhibitors of platelet clearance pathways, including inhibitors of GPIbα shedding, neuraminidases, and platelet signaling, are efficacious at preserving the viability of platelets during storage and improving their recovery and survival in vivo. Overall, common mechanisms of platelet clearance have begun to emerge, suggesting potential strategies to extend the shelf-life of platelets stored at room temperature or to enable refrigerated storage.
Collapse
|
27
|
Fc-independent immune thrombocytopenia via mechanomolecular signaling in platelets. Blood 2017; 131:787-796. [PMID: 29203584 DOI: 10.1182/blood-2017-05-784975] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023] Open
Abstract
Immune thrombocytopenia (ITP) is a prevalent autoimmune disease characterized by autoantibody-induced platelet clearance. Some ITP patients are refractory to standard immunosuppressive treatments such as intravenous immunoglobulin (IVIg). These patients often have autoantibodies that target the ligand-binding domain (LBD) of glycoprotein Ibα (GPIbα), a major subunit of the platelet mechanoreceptor complex GPIb-IX. However, the molecular mechanism of this Fc-independent platelet clearance is not clear. Here, we report that many anti-LBD monoclonal antibodies such as 6B4, but not AK2, activated GPIb-IX in a shear-dependent manner and induced IVIg-resistant platelet clearance in mice. Single-molecule optical tweezer measurements of antibodies pulling on full-length GPIb-IX demonstrated that the unbinding force needed to dissociate 6B4 from the LBD far exceeds the force required to unfold the juxtamembrane mechanosensory domain (MSD) in GPIbα, unlike the AK2-LBD unbinding force. Binding of 6B4, not AK2, induced shear-dependent unfolding of the MSD on the platelet, as evidenced by increased exposure of a linear sequence therein. Imaging flow cytometry and aggregometry measurements of platelets and LBD-coated platelet-mimetic beads revealed that 6B4 can sustain crosslinking of platelets under shear, whereas 6B4 Fab and AK2 cannot. These results suggest a novel mechanism by which anti-LBD antibodies can exert a pulling force on GPIb-IX via platelet crosslinking, activating GPIb-IX by unfolding its MSD and inducing Fc-independent platelet clearance.
Collapse
|
28
|
Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, Meng X, Li X, Zhang Y, Nie Y, Zhang Y, Hu R, Liu Y, Zhao L, Chen M, Xiao W, Tian J, Zhao Y, Cao L, Zhou L, Lin A, Ruan C, Dai K. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest 2017; 127:4338-4351. [PMID: 29083324 DOI: 10.1172/jci95109] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Apoptosis delimits platelet life span in the circulation and leads to storage lesion, which severely limits the shelf life of stored platelets. Moreover, accumulating evidence indicates that platelet apoptosis provoked by various pathological stimuli results in thrombocytopenia in many common diseases. However, little is known about how platelet apoptosis is initiated or regulated. Here, we show that PKA activity is markedly reduced in platelets aged in vitro, stored platelets, and platelets from patients with immune thrombocytopenia (ITP), diabetes, and bacterial infections. Inhibition or genetic ablation of PKA provoked intrinsic programmed platelet apoptosis in vitro and rapid platelet clearance in vivo. PKA inhibition resulted in dephosphorylation of the proapoptotic protein BAD at Ser155, resulting in sequestration of prosurvival protein BCL-XL in mitochondria and subsequent apoptosis. Notably, PKA activation protected platelets from apoptosis induced by storage or pathological stimuli and elevated peripheral platelet levels in normal mice and in a murine model of ITP. Therefore, these findings identify PKA as a homeostatic regulator of platelet apoptosis that determines platelet life span and survival. Furthermore, these results suggest that regulation of PKA activity represents a promising strategy for extending platelet shelf life and has profound implications for the treatment of platelet number-related diseases and disorders.
Collapse
Affiliation(s)
- Lili Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jun Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Chunyan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Qingya Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Xingjun Meng
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Xiaodong Li
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yang Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yumei Nie
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yang Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Renping Hu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yancai Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lian Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengxing Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Weiling Xiao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jingluan Tian
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yunxiao Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Ling Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Anning Lin
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| |
Collapse
|
29
|
Platelet mitochondrial dysfunction and the correlation with human diseases. Biochem Soc Trans 2017; 45:1213-1223. [PMID: 29054925 DOI: 10.1042/bst20170291] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
The platelet is considered as an accessible and valuable tool to study mitochondrial function, owing to its greater content of fully functional mitochondria compared with other metabolically active organelles. Different lines of studies have demonstrated that mitochondria in platelets have function far more than thrombogenesis regulation, and beyond hemostasis, platelet mitochondrial dysfunction has also been used for studying mitochondrial-related diseases. In this review, the interplay between platelet mitochondrial dysfunction and oxidative stress, mitochondrial DNA lesions, electron transfer chain impairments, mitochondrial apoptosis and mitophagy has been outlined. Meanwhile, considerable efforts have been made towards understanding the role of platelet mitochondrial dysfunction in human diseases, such as diabetes mellitus, sepsis and neurodegenerative disorders. Alongside this, we have also articulated our perspectives on the development of potential biomarkers of platelet mitochondrial dysfunction in mitochondrial-related diseases.
Collapse
|
30
|
Liu L, Chen M, Zhao L, Zhao Q, Hu R, Zhu J, Yan R, Dai K. Ethanol Induces Platelet Apoptosis. Alcohol Clin Exp Res 2017; 41:291-298. [PMID: 28081301 DOI: 10.1111/acer.13295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/14/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol abuse incurs severe medical conditions, such as thrombocytopenia and hemorrhage, but the pathogenesis is not totally understood. Alcohol has been reported to induce apoptosis in eukaryotic cells, such as hepatocyte, nerve cell, corneal fibroblasts. However, it is still unclear whether alcohol induces platelet apoptosis. METHODS Washed human platelets were pretreated with ethanol (EtOH), and apoptotic events and platelet function were detected. In in vivo experiments, C57BL/6J mice were given EtOH by gavage. Platelet counts, tail bleeding time, and the stomach were examined. RESULTS EtOH dose dependently induces depolarization of mitochondrial inner transmembrane potential, up-regulation of Bax, down-regulation of Bcl-2, and caspase-3 activation. EtOH does not induce surface expression of P-selectin or PAC-1 binding, whereas significantly reduces collagen-, thrombin-, and ADP-induced platelet aggregation. Moreover, EtOH induces c-Jun NH2-terminal kinase activation. In an in vivo mouse model of the acute alcoholism, EtOH significantly reduces the number of circulating platelets, prolongs the tail bleeding time, and causes gastric mucosa hemorrhage. CONCLUSIONS These data demonstrate that EtOH induces mitochondria-mediated intrinsic platelet apoptosis, results in the reduction of the number of circulating platelets, and impairs in vivo hemostasis. These findings reveal the possible pathogenesis of hemorrhagic symptoms in patients experiencing acute alcohol intoxication.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Mengxing Chen
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Lili Zhao
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Qing Zhao
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Renping Hu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jie Zhu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| |
Collapse
|
31
|
Brehm MA. Von Willebrand factor processing. Hamostaseologie 2016; 37:59-72. [PMID: 28139814 DOI: 10.5482/hamo-16-06-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein essential for primary haemostasis that is produced only in endothelial cells and megakaryocytes. Key to VWF's function in recruitment of platelets to the site of vascular injury is its multimeric structure. The individual steps of VWF multimer biosynthesis rely on distinct posttranslational modifications at specific pH conditions, which are realized by spatial separation of the involved processes to different cell organelles. Production of multimers starts with translocation and modification of the VWF prepropolypeptide in the endoplasmic reticulum to produce dimers primed for glycosylation. In the Golgi apparatus they are further processed to multimers that carry more than 300 complex glycan structures functionalized by sialylation, sulfation and blood group determinants. Of special importance is the sequential formation of disulfide bonds with different functions in structural support of VWF multimers, which are packaged, stored and further processed after secretion. Here, all these processes are being reviewed in detail including background information on the occurring biochemical reactions.
Collapse
Affiliation(s)
- Maria A Brehm
- PD Dr. Maria A. Brehm, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22399 Hamburg, Germany, Tel.: +49 40 7410 58523, Fax: +49 40 7410 54601, E-Mail:
| |
Collapse
|
32
|
Chen W, Liang X, Syed AK, Jessup P, Church WR, Ware J, Josephson CD, Li R. Inhibiting GPIbα Shedding Preserves Post-Transfusion Recovery and Hemostatic Function of Platelets After Prolonged Storage. Arterioscler Thromb Vasc Biol 2016; 36:1821-8. [PMID: 27417583 DOI: 10.1161/atvbaha.116.307639] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The platelet storage lesion accelerates platelet clearance after transfusion, but the underlying molecular mechanism remains elusive. Although inhibiting sheddase activity hampers clearance of platelets with storage lesion, the target platelet protein responsible for ectodomain shedding-induced clearance is not definitively identified. Monoclonal antibody 5G6 was developed recently to bind specifically human platelet receptor glycoprotein (GP)Ibα and inhibit its shedding but not shedding of other receptors. Here, the role of GPIbα shedding in platelet clearance after transfusion was addressed. APPROACH AND RESULTS Both human leukoreduced apheresis-derived platelets and transgenic mouse platelets expressing human GPIbα were stored at room temperature in the presence and absence of 5G6 Fab fragment. At various time points, aliquots of stored platelets were analyzed and compared. 5G6 Fab inhibited GPIbα shedding in both platelets during storage and preserved higher level of GPIbα on the platelet surface. Compared with age-matched control platelets, 5G6 Fab-stored platelets exhibited similar levels of platelet activation, degranulation, and agonist-induced aggregation. 5G6 Fab-stored human GPIbα platelets exhibited significantly higher post-transfusion recovery and in vivo hemostatic function in recipient mice than control platelets. Consistently, 5G6 Fab-stored, 8-day-old human platelets produced similar improvement in post-transfusion recovery in immunodeficient mice and in ex vivo thrombus formation over collagen under shear flow. CONCLUSIONS Specific inhibition of GPIbα shedding in the stored platelets improves post-transfusion platelet recovery and hemostatic function, providing clear evidence for GPIbα shedding as a cause of platelet clearance. These results suggest that specific inhibition of GPIbα shedding may be used to optimize platelet storage conditions.
Collapse
Affiliation(s)
- Wenchun Chen
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Xin Liang
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Anum K Syed
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Paula Jessup
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - William R Church
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Jerry Ware
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Cassandra D Josephson
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.)
| | - Renhao Li
- From the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics (W.C., X.L., A.K.S., C.D.J., R.L.) and Department of Pathology (P.J., C.D.J.), Emory University School of Medicine, GA; Green Mountain Antibodies, Burlington, VT (W.R.C.); and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR (J.W.).
| |
Collapse
|
33
|
A genetically-engineered von Willebrand disease type 2B mouse model displays defects in hemostasis and inflammation. Sci Rep 2016; 6:26306. [PMID: 27212476 PMCID: PMC4876317 DOI: 10.1038/srep26306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022] Open
Abstract
von Willebrand disease (VWD)-type 2B is characterized by gain-of-function mutations in the von Willebrand factor (VWF) A1-domain, leading to increased affinity for its platelet-receptor, glycoprotein Ibα. We engineered the first knock-in (KI) murine model for VWD-type 2B by introducing the p.V1316M mutation in murine VWF. Homozygous KI-mice replicated human VWD-type 2B with macrothrombocytopenia (platelet counts reduced by 55%, platelet volume increased by 44%), circulating platelet-aggregates and a severe bleeding tendency. Also, vessel occlusion was deficient in the FeCl3-induced thrombosis model. Platelet aggregation induced by thrombin or collagen was defective for KI-mice at all doses. KI-mice manifested a loss of high molecular weight multimers and increased multimer degradation. In a model of VWF-string formation, the number of platelets/string and string-lifetime were surprisingly enhanced in KI-mice, suggesting that proteolysis of VWF/p.V1316M is differentially regulated in the circulation versus the endothelial surface. Furthermore, we observed increased leukocyte recruitment during an inflammatory response induced by the reverse passive Arthus reaction. This points to an active role of VWF/p.V1316M in the exfiltration of leukocytes under inflammatory conditions. In conclusion, our genetically-engineered VWD-type 2B mice represent an original model to study the consequences of spontaneous VWF-platelet interactions and the physiopathology of this human disease.
Collapse
|
34
|
Abstract
Platelet numbers are intricately regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. The growth factor thrombopoietin (TPO) drives platelet biogenesis by inducing megakaryocyte production. A recent study in mice identified a feedback mechanism by which clearance of aged, desialylated platelets stimulates TPO synthesis by hepatocytes. This new finding generated renewed interest in platelet clearance mechanisms. Here, different established and emerging mechanisms of platelet senescence and clearance will be reviewed with specific emphasis on the role of posttranslational modifications.
Collapse
Affiliation(s)
- Renhao Li
- a Aflac Cancer and Blood Disorders Center, Department of Pediatrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Karin M Hoffmeister
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Hervé Falet
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
35
|
Abstract
The lifespan of platelets in circulation is brief, close to 10 days in humans and 5 days in mice. Bone marrow residing megakaryocytes produce around 100 billion platelets per day. In a healthy individual, the majority of platelets are not consumed by hemostatic processes, but rather their lifespan is controlled by programmed cell death, a canonical intrinsic apoptosis program. In the last decade, insights from genetically manipulated mouse models and pharmacological developments have helped to define the components of the intrinsic, or mitochondrial, apoptosis pathway that controls platelet lifespan. This review focuses on the molecular regulation of apoptosis in platelet survival, reviews thrombocytopenic conditions linked to enhanced platelet death, examines implications of chemotherapy-induced thrombocytopenia through apoptosis-inducing drugs in cancer therapy as well as discusses ex vivo aging of platelets.
Collapse
Affiliation(s)
- Marion Lebois
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
36
|
Apoptotic Platelet Events Are Not Observed in Severe von Willebrand Disease-Type 2B Mutation p.V1316M. PLoS One 2015; 10:e0143896. [PMID: 26645283 PMCID: PMC4672890 DOI: 10.1371/journal.pone.0143896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Thrombocytopenia and increased platelet clearance observed in von Willebrand disease-type 2B (VWD-2B) may be explained by platelet apoptosis triggered by the constitutive binding of VWF to its receptor, glycoprotein Ib (GPIb). Apoptosis was assessed in platelets from two patients with a severe VWD-2B mutation VWF/p.V1316M and from mice transiently expressing VWF/p.V1316M. We now report that the VWD-2B mutation VWF/p.V1316M which binds spontaneously to its receptor GPIbα does not induce apoptosis. In 2 unrelated patients (P1 and P2) exhibiting different VWF plasma levels (70% and 36%, respectively, compared with normal pooled human plasma given as 100%), inner transmembrane depolarization of mitochondria, characteristic of apoptotic events was undetectable in platelets, whether washed or in whole blood. No or a moderate phosphatidyl serine (PS) exposure as measured by annexin-V staining was observed for P1 and P2, respectively. Expression of pro-apoptotic proteins Bak and Bax, and caspase-3 activity were similar to control platelets. In the VWD-2B mouse model expressing high levels of mVWF/p.V1316M (423%), similar to what is found in inflammatory pathologies, no significant difference was observed between mice expressing mVWF/WT and mVWF/p.V1316M. These results strongly argue against apoptosis as a mechanism for the thrombocytopenia of severe VWD-2B exhibiting the VWF/p.V1316M mutation.
Collapse
|
37
|
Zhang XH, Wang QM, Zhang JM, Feng FE, Wang FR, Chen H, Zhang YY, Chen YH, Han W, Xu LP, Liu KY, Huang XJ. Desialylation is associated with apoptosis and phagocytosis of platelets in patients with prolonged isolated thrombocytopenia after allo-HSCT. J Hematol Oncol 2015; 8:116. [PMID: 26497387 PMCID: PMC4619537 DOI: 10.1186/s13045-015-0216-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolonged isolated thrombocytopenia (PT) is a frequent complication in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT), and it is associated with an adverse prognosis. In this study, we hypothesized that desialylation on platelet surfaces was associated with PT after allo-HSCT. The mechanisms participating in this process may include NEU1 translocation, platelet apoptosis, and phagocytosis by macrophages. METHODS PT was defined as a peripheral platelet count less than 100 × 10(9)/L without sustained anemia or leukopenia for more than 3 months after allo-HSCT. 34 patients were identified consecutively from a cohort of 255 patients who underwent allo-HSCT for hematologic malignancies between May and October 2014 at Peking University Institute of Hematology. Desialylation, enzyme expression, and phagocytosis were detected using flow cytometry, immunofluorescence, RT-PCR, Western blot, and so on. RESULTS Platelets from the PT patients had significantly fewer sialic acids (P = .001) and increased β-galactose exposure indicative of desialylation on the surface (P = .042), and serum from the PT patients showed a higher sialic acid concentration (8.400 ± 0.2209 μmol/L, P < .001). The sialidase NEU1 was over-expressed from mRNA to protein levels, and its catalytic activity was increased in platelets from the PT patients. Desialylation of GPIbα in the PT patients was correlated with changes in 14-3-3ζ distribution, which, relative to Bad activation, modulated the expression of Bcl-2 family proteins, depolarized the inner membrane of the mitochondria, and initiated the intrinsic mitochondria-dependent pathway of apoptosis. Macrophages derived from the THP-1 cell line preferred to phagocytize desialylated platelets from the PT patients in vitro. We also revealed that oseltamivir (400 μmol/L) could inhibit 50 % of the sialidase activity on platelets and could protect 20 % of platelets from phagocytosis in vitro. CONCLUSIONS Desialylation of platelets was associated with platelet apoptosis and phagocytosis, whereas oseltamivir could reduce platelet destruction in the periphery, indicating a potential novel treatment for PT after allo-HSCT.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Qian-Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Jia-Min Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Fei-Er Feng
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| |
Collapse
|
38
|
Ma Z, Su J, Zhang J, Ling J, Yin J, Bai X, Ruan C. The co-influence of VWD type 2B/2M mutations in the A1 domain and platelet GPIbα on the rate of cleavage to VWF by ADAMTS13. Thromb Res 2015; 136:987-95. [PMID: 26345337 DOI: 10.1016/j.thromres.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/16/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In plasma, the size of the von Willebrand factor (VWF) multimer is down-regulated by ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13). The binding of platelets or glycoprotein (GP) Ibα recombinant fragment to VWF domain A1 may increase the cleavage by ADAMTS13 to VWF. Both type 2B and type 2M von Willebrand disease (VWD) result in bleeding disorders with the diathesis of increased and decreased binding affinity between GPIbα and VWF, respectively. However, the influence of 2B/2M VWD mutations in the A1 domain and GPIbα on cleavage by ADAMTS13 to VWF needs further study. MATERIALS AND METHODS Different types of full-length human recombinant VWF (rVWF) were expressed, including three type 2B mutations (P1337L, H1268D, and R1308C), one type 2M mutation (D1302G), and wild type (WT). The three characterized types of rVWF were digested by ADAMTS13 under static conditions or high-shear stress. The interaction of rVWF and ADAMTS13 was also tested by plate-binding assays. RESULTS Under static (natured) conditions or high-shear stress, type 2B mutants exhibited a higher susceptibility to ADAMTS13 than rVWF-WT, whereas type 2M mutant was normal. While under static (denatured) conditions or high-shear stress (with GPIbα fragment) rVWF-WT showed an even higher susceptibility to ADAMTS13 than the two type 2B mutants studied. CONCLUSION Type 2B mutations localized in the A1 domain could enhance the sensitivity to ADAMTS13-mediated proteolysis. When GPIbα participated, there was a dramatically increased proteolytic cleavage of VWF by ADAMTS13 to rVWF-WT, excluding some type 2B mutants.
Collapse
Affiliation(s)
- Zhenni Ma
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Jian Su
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Jingyu Zhang
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China; Department of Hematology, Hebei Institute of Hematology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, China
| | - Jing Ling
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China; Department of Hematology and Oncology, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou 215003, China
| | - Jie Yin
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Xia Bai
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Changgeng Ruan
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Collaborative Innovation Center of Hematology, Soochow University, 1 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
39
|
Singhal R, Annarapu GK, Pandey A, Chawla S, Ojha A, Gupta A, Cruz MA, Seth T, Guchhait P. Hemoglobin interaction with GP1bα induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis. Haematologica 2015; 100:1526-33. [PMID: 26341739 DOI: 10.3324/haematol.2015.132183] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 01/15/2023] Open
Abstract
Intravascular hemolysis increases the risk of hypercoagulation and thrombosis in hemolytic disorders. Our study shows a novel mechanism by which extracellular hemoglobin directly affects platelet activation. The binding of Hb to glycoprotein1bα activates platelets. Lower concentrations of Hb (0.37-3 μM) significantly increase the phosphorylation of signaling adapter proteins, such as Lyn, PI3K, AKT, and ERK, and promote platelet aggregation in vitro. Higher concentrations of Hb (3-6 μM) activate the pro-apoptotic proteins Bak, Bax, cytochrome c, caspase-9 and caspase-3, and increase platelet clot formation. Increased plasma Hb activates platelets and promotes their apoptosis, and plays a crucial role in the pathogenesis of aggregation and development of the procoagulant state in hemolytic disorders. Furthermore, we show that in patients with paroxysmal nocturnal hemoglobinuria, a chronic hemolytic disease characterized by recurrent events of intravascular thrombosis and thromboembolism, it is the elevated plasma Hb or platelet surface bound Hb that positively correlates with platelet activation.
Collapse
Affiliation(s)
- Rashi Singhal
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India Biotechnology Department, Manipal University, Manipal, Karnataka, India
| | - Gowtham K Annarapu
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India Biotechnology Department, Manipal University, Manipal, Karnataka, India
| | - Ankita Pandey
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India
| | - Sheetal Chawla
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India
| | - Amrita Ojha
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India
| | - Avinash Gupta
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India
| | - Miguel A Cruz
- Thrombosis Research Division, Baylor College of Medicine, Houston, TX, USA
| | - Tulika Seth
- Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India
| |
Collapse
|
40
|
Rubak P, Nissen PH, Kristensen SD, Hvas AM. Investigation of platelet function and platelet disorders using flow cytometry. Platelets 2015; 27:66-74. [PMID: 25901600 DOI: 10.3109/09537104.2015.1032919] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients with thrombocytopenia or platelet disorders are at risk of severe bleeding. We report the development and validation of flow cytometry assays to diagnose platelet disorders and to assess platelet function independently of platelet count. The assays were developed to measure glycoprotein levels (panel 1) and platelet function (panel 2) in sodium citrated blood. Twenty healthy volunteers and five patients diagnosed with different platelet disorders were included. Glycoprotein expression levels of the receptors Ia, Ib, IIb, IIIa and IX were measured and normalised with forward scatter (FS) as a measurement of platelet size. Platelet function was assessed by CD63, P-selectin and bound fibrinogen in response to arachidonic acid, adenosine diphosphate (ADP), collagen-related peptide, ristocetin and thrombin receptor-activation peptide-6. All patients except one with suspected δ-granule defect showed aberrant levels of glycoproteins in panel 1. Glanzmann's thrombasthenia and genetically verified Bernard-Soulier syndrome could be diagnosed using panel 1. All patients showed reduced platelet function according to at least one agonist. Using panel 2 it was possible to diagnose Bernard-Soulier syndrome, δ-granule defect and GPVI disorder. By combining the two assays, we were able to diagnose different platelet disorders and investigate platelet function independent of platelet count.
Collapse
Affiliation(s)
- Peter Rubak
- a Department of Clinical Biochemistry , Centre for Haemophilia and Thrombosis, Aarhus University Hospital , Denmark and
| | - Peter H Nissen
- a Department of Clinical Biochemistry , Centre for Haemophilia and Thrombosis, Aarhus University Hospital , Denmark and
| | | | - Anne-Mette Hvas
- a Department of Clinical Biochemistry , Centre for Haemophilia and Thrombosis, Aarhus University Hospital , Denmark and
| |
Collapse
|
41
|
Bryckaert M, Rosa JP, Denis CV, Lenting PJ. Of von Willebrand factor and platelets. Cell Mol Life Sci 2014; 72:307-26. [PMID: 25297919 PMCID: PMC4284388 DOI: 10.1007/s00018-014-1743-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.
Collapse
Affiliation(s)
- Marijke Bryckaert
- INSERM U770, Hôpital Bicêtre, 80 rue du Général Leclerc, 94276, Le Kremlin Bicêtre Cedex, France,
| | | | | | | |
Collapse
|
42
|
Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, Straface E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014; 21:177-93. [PMID: 24597688 DOI: 10.1089/ars.2013.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE An imbalance between the production and the detoxification of reactive oxygen species and reactive nitrogen species (ROS/RNS) can be implicated in many pathological processes. Platelets are best known as primary mediators of hemostasis and can be either targets of ROS/RNS or generate radicals during cell activation. These conditions can dramatically affect platelet physiology, leading even, as an ultimate event, to the cell number modification. In this case, pathological conditions such as thrombocytosis (promoted by increased cell number) or thrombocytopenia and myelodysplasia (promoted by cell decrease mediated by accelerated apoptosis) can occur. RECENT ADVANCES Usually, in peripheral blood, ROS/RNS production is balanced by the rate of oxidant elimination. Under this condition, platelets are in a nonadherent "resting" state. During endothelial dysfunction or under pathological conditions, ROS/RNS production increases and the platelets respond with specific biochemical and morphologic changes. Mitochondria are at the center of these processes, being able to both generate ROS/RNS, that drive redox-sensitive events, and respond to ROS/RNS-mediated changes of the cellular redox state. Irregular function of platelets and enhanced interaction with leukocytes and endothelial cells can contribute to pathogenesis of atherosclerotic and thrombotic events. CRITICAL ISSUES The relationship between oxidative stress, platelet death, and the activation-dependent pathways that drive platelet pro-coagulant activity is unclear and deserves to be explored. FUTURE DIRECTIONS Expanding knowledge about how platelets can mediate hemostasis and modulate inflammation may lead to novel and effective therapeutic strategies for the long and growing list of pathological conditions that involve both thrombosis and inflammation.
Collapse
Affiliation(s)
- Donatella Pietraforte
- 1 Department of Cell Biology and Neurosciences, Section of Cell Aging and Gender Medicine, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Carmustine is one of the alkylating chemotherapeutic agents, which are used to treat various types of cancers, such as brain tumors, Hodgkins and non-Hodgkins lymphoma and multiple myeloma. However, carmustine has the side effect of thrombocytopenia, and the mechanism is not completely understood. In this study, we show that carmustine dose-dependently induced depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax, down-regulation of Bcl-2 and caspase-3 activation. Carmustine did not induce surface expression of P-selectin or PAC-1 binding, whereas, obviously reduced collagen and thrombin-induced platelet aggregation. Dicumarol, c-Jun NH2-terminal kinase-specific inhibitor, reduced carmustine-induced ΔΨm depolarization in platelets. The numbers of circulating platelets were reduced, and the tail bleeding time was significantly increased in mice that were injected with carmustine. Taken together, these data indicate that carmustine induced platelet apoptosis, suggesting the possible pathogenesis of thrombocytopenia in patients treated with carmustine.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health , Suzhou , China
| | | | | | | | | | | |
Collapse
|
44
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wu Y, Dai J, Zhang W, Yan R, Zhang Y, Ruan C, Dai K. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation. PLoS One 2014; 9:e86445. [PMID: 24466103 PMCID: PMC3899281 DOI: 10.1371/journal.pone.0086445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Arsenic trioxide (ATO), one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL). However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS) exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK) activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO.
Collapse
Affiliation(s)
- Yicun Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jin Dai
- School of Life Sciences, Peking University, Beijing, China
| | - Weilin Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yiwen Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
- * E-mail:
| |
Collapse
|
46
|
Gyulkhandanyan AV, Mutlu A, Allen DJ, Freedman J, Leytin V. BH3-mimetic ABT-737 induces strong mitochondrial membrane depolarization in platelets but only weakly stimulates apoptotic morphological changes, platelet shrinkage and microparticle formation. Thromb Res 2014; 133:73-9. [DOI: 10.1016/j.thromres.2013.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/29/2022]
|
47
|
Thushara RM, Hemshekhar M, Kemparaju K, Rangappa KS, Devaraja S, Girish KS. Therapeutic drug-induced platelet apoptosis: an overlooked issue in pharmacotoxicology. Arch Toxicol 2013; 88:185-98. [PMID: 24363025 DOI: 10.1007/s00204-013-1185-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022]
Abstract
The surfacing of the applied fields of biology such as, biotechnology, pharmacology and drug discovery was a boon to the modern man. However, it had its share of disadvantages too. The indiscriminate use of antibiotics and other biological drugs resulted in numerous adverse reactions including thrombocytopenia. One of the reasons for drug-induced thrombocytopenia could be attributed to an enhanced rate of platelet apoptosis, which is a less investigated aspect. The present essay sheds light on the adverse (pro-apoptotic) effects of some of the commonly used drugs and antibiotics on platelets viz. cisplatin, aspirin, vancomycin and balhimycin. Furthermore, the undesirable reactions resulting from chemotherapy could be attributed at least to some extent to the systemic stress induced by microparticles, which in turn are the byproducts of platelet apoptosis. Thereby, the essay aims to highlight the challenges in the emerging trend of cross-disciplinary implications, i.e., drug-induced platelet apoptosis, which is a nascent field. Thus, the different mechanisms through which drugs induce platelet apoptosis are discussed, which also opens up a new perspective through which the adverse effects of commonly used drugs could be dealt. The drug-associated platelet toxicity is of grave concern and demands immediate attention. Besides, it would also be appealing to examine the platelet pro-apoptotic effects of other commonly used therapeutic drugs.
Collapse
Affiliation(s)
- R M Thushara
- Department of Studies in Biochemistry, University of Mysore, Mysore, 570006, India
| | | | | | | | | | | |
Collapse
|
48
|
Montoro-García S, Shantsila E, Lip GYH. Potential value of targeting von Willebrand factor in atherosclerotic cardiovascular disease. Expert Opin Ther Targets 2013; 18:43-53. [DOI: 10.1517/14728222.2013.840585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis 2013; 5:e2013046. [PMID: 23936617 PMCID: PMC3736882 DOI: 10.4084/mjhid.2013.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Von Willebrand factor (VWF) is a large multimeric protein, the function of which has been demonstrated to be pivotal to the haemostatic system. Indeed, quantitative and/or qualitative abnormalities of VWF are associated with the bleeding disorder Von Willebrand disease (VWD). Moreover, increased plasma concentrations of VWF have been linked to an increased risk for thrombotic complications. In the previous decades, many studies have contributed to our understanding of how VWF is connected to the haemostatic system, particularly with regard to structure-function relationships. Interactive sites for important ligands of VWF (such as factor VIII, collagen, glycoprotein Ibα, integrin αIIbβ3 and protease ADAMTS13) have been identified, and mutagenesis studies have confirmed the physiological relevance of the interactions between VWF and these ligands. However, we have also become aware that VWF has a more versatile character than previously thought, given its potential role in various non-hemostatic processes, like intimal thickening, tumor cell apoptosis and inflammatory processes. In the presence review, a summary of our knowledge on VWF structure-function relationships is provided in the context of the “classical” haemostatic task of VWF and in perspective of pathological processes beyond haemostasis.
Collapse
|
50
|
Abstract
Aspirin is widely used in the treatment of a number of clinical conditions. Although aspirin is being thought to be a relatively "safe" medicine, it also has some side effects, particularly the risk of bleeding which may be severe and lead to death. The mechanisms, however, are not totally understood. It has been reported recently that aspirin induces apoptosis in many cell types. Thus, the aim of the current study is to explore whether aspirin induces platelet apoptosis. The data show that mitochondrial transmembrane potential (ΔΨm) depolarizations and phosphatidylserine (PS) exposures were dose-dependently induced by aspirin in platelets. To further confirm that aspirin incurs platelet apoptosis, caspase-3 activity was measured in platelets, and the result indicated that aspirin induced caspase-3 activation. Furthermore, the mean volume of platelets incubated with aspirin was obviously reduced. Caspase inhibitor z-VAD-fmk inhibited aspirin induced apoptotic platelet shrinkage and ΔΨm depolarization, but had no effect on PS exposure. In addition, platelets incubated with cyclooxygenase inhibitor indomethacin did not incur ΔΨm depolarazation and PS exposure. Taken together, the data indicate that aspirin induces platelet apoptosis via caspase-3 activation.
Collapse
Affiliation(s)
- Lili Zhao
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics , Beijing , China
| | | | | | | | | | | |
Collapse
|