1
|
Alshehri FS, Bashmeil AA, Alamar IA, Alouda SK. The natural anticoagulant protein S; hemostatic functions and deficiency. Platelets 2024; 35:2337907. [PMID: 38602463 DOI: 10.1080/09537104.2024.2337907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Protein S (PS) is a vital endogenous anticoagulant. It plays a crucial role in regulating coagulation by acting as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. Additionally, it possesses direct anticoagulant properties by impeding the intrinsic tenase and prothrombinase complexes. Protein S oversees the coagulation process in both the initiation and propagation stages through these roles. The significance of protein S in regulating blood clotting can be inferred from the significant correlation between deficits in protein S and an elevated susceptibility to venous thrombosis. This is likely because activated protein C and tissue factor pathway inhibitor exhibit low efficacy as anticoagulants when no cofactors exist. The precise biochemical mechanisms underlying the roles of protein S cofactors have yet to be fully elucidated. Nevertheless, recent scientific breakthroughs have significantly enhanced comprehension findings for these functions. The diagnosis of protein S deficiency, both from a technical and genetic standpoint, is still a subject of debate due to the complex structural characteristics of the condition. This paper will provide an in-depth review of the molecular structure of protein S and its hemostatic effects. Furthermore, we shall address the insufficiency of protein S and its methods of diagnosis and treatment.
Collapse
Affiliation(s)
- Fahad S Alshehri
- Pathology and Clinical Laboratory Medicine Department, Haematology Division, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
- Pathology and Clinical Laboratory Medicine Department, Haematology Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah A Bashmeil
- Pathology and Clinical Laboratory Medicine Department, Haematology Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ibrahim A Alamar
- Pathology and Clinical Laboratory Medicine Department, Haematology Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sarah K Alouda
- College of Applied Medical Science, Clinical Laboratory Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Owen MJ, Wright JR, Tuddenham EGD, King JR, Goodall AH, Dunster JL. Mathematical models of coagulation-are we there yet? J Thromb Haemost 2024; 22:1689-1703. [PMID: 38521192 DOI: 10.1016/j.jtha.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Mathematical models of coagulation have been developed to mirror thrombin generation in plasma, with the aim of investigating how variation in coagulation factor levels regulates hemostasis. However, current models vary in the reactions they capture and the reaction rates used, and their validation is restricted by a lack of large coherent datasets, resulting in questioning of their utility. OBJECTIVES To address this debate, we systematically assessed current models against a large dataset, using plasma coagulation factor levels from 348 individuals with normal hemostasis to identify the causes of these variations. METHODS We compared model predictions with measured thrombin generation, quantifying and comparing the ability of each model to predict thrombin generation, the contributions of the individual reactions, and their dependence on reaction rates. RESULTS We found that no current model predicted the hemostatic response across the whole cohort and all produced thrombin generation curves that did not resemble those obtained experimentally. Our analysis has identified the key reactions that lead to differential model predictions, where experimental uncertainty leads to variability in predictions, and we determined reactions that have a high influence on measured thrombin generation, such as the contribution of factor XI. CONCLUSION This systematic assessment of models of coagulation, using large dataset inputs, points to ways in which these models can be improved. A model that accurately reflects the effects of the multiple subtle variations in an individual's hemostatic profile could be used for assessing antithrombotics or as a tool for precision medicine.
Collapse
Affiliation(s)
- Matt J Owen
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom. https://twitter.com/MattJOwen_
| | - Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, United Kingdom; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Edward G D Tuddenham
- Royal Free Hospital Haemophilia Centre, University College London, London, United Kingdom
| | - John R King
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, United Kingdom; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom.
| |
Collapse
|
3
|
Gierula M, Noakes VM, Salles-Crawley II, Crawley JTB, Ahnström J. The TFPIα C-terminal tail is essential for TFPIα-FV-short-protein S complex formation and synergistic enhancement of TFPIα. J Thromb Haemost 2023; 21:3568-3580. [PMID: 37739040 DOI: 10.1016/j.jtha.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND For maximal TFPIα functionality, 2 synergistic cofactors, protein S and FV-short, are required. Both interact with TFPIα, protein S through Kunitz 3 residues Arg199/Glu226 and FV-short with the C-terminus. How these interactions impact the synergistic enhancement remains unclear. OBJECTIVES To determine the importance of the TFPIα-protein S and TFPIα-FV-short interactions for TFPIα enhancement. METHODS TFPIα variants unable to bind protein S (K3m [R199Q/E226Q]) or FV-short (ΔCT [aa 1-249]) were generated. TFPIα-FV-short binding was studied by plate-binding and co-immunoprecipitation assays; functional TFPIα enhancement by FXa inhibition and prothrombin activation. RESULTS While WT TFPIα and TFPIα K3m bound FV-short with high affinity (Kd∼2nM), TFPIα ΔCT did not. K3m, in contrast to WT, did not incorporate protein S in a TFPIα-FV-short-protein S complex while TFPIα ΔCT bound neither FV-short nor protein S. Protein S enhanced WT TFPIα-mediated FXa inhibition, but not K3m, in the absence of FV-short. However, once FV-short was present, protein S efficiently enhanced TFPIα K3m (EC50: 4.7nM vs 2.0nM for WT). FXa inhibition by ΔCT was not enhanced by protein S alone or combined with FV-short. In FXa-catalyzed prothrombin activation assays, FV-short enhanced TFPIα K3m function in the presence of protein S (5.5 vs 10.4-fold enhancement of WT) whereas ΔCT showed reduced or lack of enhancement by FV-short and protein S, respectively. CONCLUSION Full TFPIα function requires the presence of both cofactors. While synergistic enhancement can be achieved in the absence of TFPIα-protein S interaction, only TFPIα with an intact C-terminus can be synergistically enhanced by protein S and FV-short.
Collapse
|
4
|
Li X, Song X, Mahmood DFD, Sim MMS, Bidarian SJ, Wood JP. Activated protein C, protein S, and tissue factor pathway inhibitor cooperate to inhibit thrombin activation. Thromb Res 2023; 230:84-93. [PMID: 37660436 PMCID: PMC10543463 DOI: 10.1016/j.thromres.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS). However, prothrombinase is resistant to either of these inhibitory systems in isolation. MATERIALS AND METHODS We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems. RESULTS In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. CONCLUSIONS We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
Collapse
Affiliation(s)
- Xian Li
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Xiaohong Song
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Dlovan F D Mahmood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Martha M S Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Sara J Bidarian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Jeremy P Wood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America; Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
5
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Fenclova T, Matyskova M, Provaznikova D, Marecek F, Geierova V, Kovarova-Kudrnova Z, Hrachovinova I. The impact of PROS1 mutation position on thrombotic risk in protein S-deficient patients. Res Pract Thromb Haemost 2023; 7:100194. [PMID: 37384225 PMCID: PMC10293767 DOI: 10.1016/j.rpth.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Background Inherited protein S deficiency is a thrombophilic risk factor associated with venous thromboembolism. However, there is not much data on the impact of mutation position on thrombotic risk. Objectives The aim of this study was to evaluate the risk of thrombosis due to mutations located in the sex hormone-binding globulin (SHBG)-like region as opposed to the rest of the protein. Methods Genetic analysis of PROS1 was performed in 76 patients with suspected inherited protein S deficiency, and the effect of missense mutations present in the SHBG region on thrombosis risk was analyzed by statistical methods. Results We found 30 unique mutations (13 of them novel), of which 17 were missense mutations, in 70 patients. Patients with missense mutations were then divided into 2 groups: the "SHBG-region" mutation group (27 patients) and the "non-SHBG" group (24 patients). The multivariable binary logistic regression analysis showed that mutation position in the SHBG region of protein S is an independent risk factor for thrombosis in deficient patients (OR, 5.17; 95% CI, 1.29-20.65; P = .02). The patients with a mutation in the SHBG-like region also developed a thrombotic event at a younger age compared to the "non-SHBG" group in the Kaplan-Meier analysis (median thrombosis-free survival of 33 vs 47 years, respectively; P = .018). Conclusion Our findings show that a missense mutation located in the SHBG-like region may contribute to higher thrombotic risk rather than a missense mutation located elsewhere in the protein. However, as our cohort was relatively small, these findings should be taken with this limitation.
Collapse
Affiliation(s)
- Tereza Fenclova
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, National Reference Laboratory for Disorders in Hemostasis, Prague, Czech Republic
| | | | - Dana Provaznikova
- Institute of Hematology and Blood Transfusion, National Reference Laboratory for Disorders in Hemostasis, Prague, Czech Republic
| | - Frantisek Marecek
- Institute of Hematology and Blood Transfusion, National Reference Laboratory for Disorders in Hemostasis, Prague, Czech Republic
| | - Vera Geierova
- Institute of Hematology and Blood Transfusion, Centre for Thrombosis and Hemostasis, Prague, Czech Republic
| | - Zuzana Kovarova-Kudrnova
- Thrombotic Centre of Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital, Prague, Czech Republic
| | - Ingrid Hrachovinova
- Institute of Hematology and Blood Transfusion, National Reference Laboratory for Disorders in Hemostasis, Prague, Czech Republic
| |
Collapse
|
7
|
Reitsma SE, Holle LA, Bouck EG, Monroe DM, Mast AE, Burthem J, Bolton-Maggs PHB, Gidley GN, Wolberg AS. Tissue factor pathway inhibitor is a potential modifier of bleeding risk in factor XI deficiency. J Thromb Haemost 2023; 21:467-479. [PMID: 36696199 PMCID: PMC10111213 DOI: 10.1016/j.jtha.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Factor (F) XI deficiency is associated with increased bleeding risk in some individuals. Neither FXI levels nor clinical clotting assays predict the bleeding risk. Compared with controls, FXI-deficient bleeders have reduced clot formation, decreased fibrin network density, and increased susceptibility to fibrinolysis. Tissue factor pathway inhibitor (TFPI) was recently implicated as a modifying factor in individuals with bleeding of unknown cause. OBJECTIVES To determine the potential of TFPI in modifying the bleeding risk in FXI-deficient individuals. METHODS The effects of TFPI on thrombin generation and clot formation, structure, and fibrinolysis in FXI-deficient plasma were measured in vitro in the absence or presence of inhibitory anti-TFPI antibody or exogenous recombinant TFPIα. Total plasma TFPI concentration was measured in 2 independent cohorts of controls and FXI-deficient individuals classified as bleeders or nonbleeders (cohort 1: 10 controls and 16 FXI-deficient individuals; cohort 2: 48 controls and 57 FXI-deficient individuals) and correlated with ex vivo plasma clot formation and fibrinolysis parameters associated with bleeding risk. RESULTS In an in vitro FXI deficiency model, inhibition of TFPI enhanced thrombin generation and clot formation, increased the network density, and decreased fibrinolysis, whereas an increase in TFPI had the opposite effects. Compared with controls, plasma from FXI-deficient bleeders had higher TFPI concentration. Total plasma TFPI concentrations correlated with parameters from ex vivo clotting and fibrinolysis assays that differentiate FXI-deficient bleeders and nonbleeders. CONCLUSION Coagulation and fibrinolysis parameters that differentiate FXI-deficient nonbleeders and bleeders were altered by plasma TFPIα. Total plasma TFPI was increased in FXI-deficient bleeders. TFPI may modify the bleeding risk in FXI-deficient individuals.
Collapse
Affiliation(s)
- Stéphanie E Reitsma
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emma G Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dougald M Monroe
- Department of Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Alan E Mast
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - John Burthem
- Department of Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK; Institute of Cancer Sciences, The University of Manchester, Manchester, UK
| | | | - Gillian N Gidley
- Institute of Cancer Sciences, The University of Manchester, Manchester, UK; Department of Haematology, St James' Hospital, Leeds Teaching Hospitals Trust, UK
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
8
|
Dahlbäck B. Natural anticoagulant discovery, the gift that keeps on giving: finding FV-Short. J Thromb Haemost 2023; 21:716-727. [PMID: 36746318 DOI: 10.1016/j.jtha.2023.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
The complex reactions of blood coagulation are balanced by several natural anticoagulants resulting in tuned hemostasis. During several decades, the knowledge base of the natural anticoagulants has greatly increased and we have also learned about antiinflammatory and cytoprotective activities expressed by antithrombin and activated protein C (APC). Some coagulation proteins have also been found to function as anticoagulants; e.g., thrombin when bound to thrombomodulin activates protein C. Another example is factor V (FV), which in addition to being a procofactor to FVa has emerged as an anticoagulant. The discovery of APC resistance, caused by FVLeiden, as a thrombosis risk factor resulted in the identification of FV as an APC cofactor working in synergy with protein S in the regulation of FVIIIa in the Xase complex. More recently, a natural anticoagulant FV splice isoform (FV-Short) was discovered when investigating the East Texas bleeding disorder. In FV-Short, the truncated B domain exposes a high-affinity binding site for tissue factor pathway inhibitor alpha (TFPIα), and together with protein S a high-affinity trimolecular complex is generated. The FXa-inhibitory activity of TFPIα is synergistically stimulated by FV-Short and protein S. The circulating FV-Short/protein S/TFPIα complex concentration is normally low (≈0.2 nM) but provides an anticoagulant threshold. In the East Texas bleeding, the concentration of the complex, and thus the threshold, is increased 10-fold, which results in bleeding manifestations. The anticoagulant properties of FV were discovered during investigations of individual patients and follow the great tradition of bed-to-bench and bench-to-bed research in the coagulation field.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, University Hospital, Lund University, 21428 Malmö, Sweden.
| |
Collapse
|
9
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Teraz-Orosz A, Gierula M, Petri A, Jones D, Keniyopoullos R, Folgado PB, Santamaria S, Crawley JTB, Lane DA, Ahnström J. Laminin G1 residues of protein S mediate its TFPI cofactor function and are competitively regulated by C4BP. Blood Adv 2022; 6:704-715. [PMID: 34731882 PMCID: PMC8791571 DOI: 10.1182/bloodadvances.2021005382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Protein S is a cofactor in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. It enhances TFPIα-mediated inhibition of factor (F)Xa activity and generation. The enhancement is dependent on a TFPIα-protein S interaction involving TFPIα Kunitz 3 and protein S laminin G-type (LG)-1. C4b binding protein (C4BP), which binds to protein S LG1, almost completely abolishes its TFPI cofactor function. However, neither the amino acids involved in TFPIα enhancement nor the mechanisms underlying the reduced TFPI cofactor function of C4BP-bound protein S are known. To screen for functionally important regions within protein S LG1, we generated 7 variants with inserted N-linked glycosylation attachment sites. Protein S D253T and Q427N/K429T displayed severely reduced TFPI cofactor function while showing normal activated protein C (APC) cofactor function and C4BP binding. Based on these results, we designed 4 protein S variants in which 4 to 6 surface-exposed charged residues were substituted for alanine. One variant, protein S K255A/E257A/D287A/R410A/K423A/E424A, exhibited either abolished or severely reduced TFPI cofactor function in plasma and FXa inhibition assays, both in the presence or absence of FV-short, but retained normal APC cofactor function and high-affinity C4BP binding. The C4BP β-chain was expressed to determine the mechanisms behind the reduced TFPI cofactor function of C4BP-bound protein S. Like C4BP-bound protein S, C4BP β-chain-bound protein S had severely reduced TFPI cofactor function. These results show that protein S Lys255, Glu257, Asp287, Arg410, Lys423, and Glu424 are critical for protein S-mediated enhancement of TFPIα and that binding of the C4BP β-chain blocks this function.
Collapse
Affiliation(s)
| | | | | | - David Jones
- Centre for Haematology, Imperial College London, London, UK
| | | | | | | | | | - David A. Lane
- Centre for Haematology, Imperial College London, London, UK
| | | |
Collapse
|
11
|
Tang W, Guo Y. Recurrent hematuria and painful necrotic purpura induced by acquired Protein S deficiency associated with monoclonal immunoglobulin. J Thromb Thrombolysis 2022; 54:156-161. [PMID: 35032256 DOI: 10.1007/s11239-022-02632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
Protein S deficiency is associated with an increased risk of thromboembolism, which may be caused by hereditary deficiency and several physiological and pathologic conditions, such as pregnancy, contraceptive use, liver diseases, inflammatory disease, and certain viruses infections. However, monoclonal immunoglobulin-mediated Protein S deficiency is rarely reported. Here we described a 49-year-old woman with a history of recurrent painful swelling in both lower extremities due to venous thrombosis for 7 years, accompanied by recurrent gross hematuria and multiple painful necrotic purpuras for 5 years, who was then diagnosed with acquired Protein S deficiency induced by the monoclonal immunoglobulin. Then she was successfully treated with rituximab combined with anticoagulation therapy. This case highlights the rare manifestations of Protein S deficiency and the influence of the monoclonal immunoglobulin produced by monoclonal B lymphocytes and monoclonal plasma cells on the activity of Protein S, which can be treated effectively with rituximab combined with anticoagulation therapy.
Collapse
Affiliation(s)
- Wenjiao Tang
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, No 37 Guoxue Alley, District Wuhou, Chengdu, 610041, Sichuan, China
| | - Yong Guo
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, No 37 Guoxue Alley, District Wuhou, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Dahlbäck B, Tran S. The preAR2 region (1458-1492) in factor V-Short is crucial for the synergistic TFPIα-cofactor activity with protein S and the assembly of a trimolecular factor Xa-inhibitory complex comprising FV-Short, protein S, and TFPIα. J Thromb Haemost 2022; 20:58-68. [PMID: 34623729 DOI: 10.1111/jth.15547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Factor V-Short (FV756-1458) is a natural splice variant in which 702 residues are deleted from the B domain. It exposes an acid region (AR2; 1493-1537) that binds tissue factor pathway inhibitor alpha (TFPIα). Protein S also interacts with TFPIα and serves as TFPIα-cofactor in factor Xa (FXa) inhibition. FV-Short and protein S function as synergistic TFPIα-cofactors in inhibition of FXa. FV810-1492 is an artificial FV-Short variant that cannot synergize with protein S as TFPIα cofactor even though it contains AR2 and binds TFPIα. OBJECTIVE To elucidate the mechanisms for the synergism between FV756-1458 and protein S as TFPIα cofactors. METHODS Four FV-Short variants were created, FV756-1458 and FV712-1458 contained the preAR2 region (1458-1492), whereas FV810-1492 and FV713-1492 lacked this region. The synergistic TFPIα cofactor activity between FV-Short variants and protein S was analyzed by FXa-inhibition. A microtiter-based assay tested binding between FV-Short variants, protein S, and TFPIα. RESULTS The two preAR2-containing FV-Short variants were active as synergistic TFPIα cofactors, whereas the other two were inactive. All variants bound to TFPIα. None of the FV-Short variants bound directly to protein S. The combination of TFPIα and preAR2-containing FV-Short variants bound protein S, whereas TFPIα together with the preAR2-minus variants did not. Protein S potentiated TFPIα-binding to the preAR2-containing variants and binding between TFPIα and protein S was stimulated only by the preAR2-containing variants. CONCLUSION The preAR2 region is demonstrated to be crucial for the synergistic TFPIα-cofactor activity between FV-Short and protein S and for the assembly of a trimolecular FXa-inhibitory complex comprising FV-Short, protein S, and TFPIα.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| | - Sinh Tran
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| |
Collapse
|
13
|
Ziliotto N, Lamberti N, Manfredini F, Straudi S, Tisato V, Carantoni M, Melloni E, Secchiero P, Basaglia N, Bernardi F, Marchetti G. Baseline and overtime variations of soluble adhesion molecule plasma concentrations are associated with mobility recovery after rehabilitation in multiple sclerosis patients. J Neuroimmunol 2021; 352:577473. [PMID: 33422764 DOI: 10.1016/j.jneuroim.2020.577473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/05/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022]
Abstract
Rehabilitative exercise outcomes and plasma concentrations of soluble adhesion molecules (sEndoglin, sE-Selectin, sL-Selectin, sICAM-1, sNCAM, sNCAM-1, sVCAM-1, sPECAM-1, sVAP-1) were evaluated in 60 severely disabled progressive multiple sclerosis (MS) patients at 4-time points. Changes of sE-Selectin, sL-Selectin, and sPECAM-1 concentrations were observed over time, and their variations were significantly correlated with rehabilitative outcome variations. Baseline sVAP-1 concentrations were able to predict functional mobility recovery. Our data suggest that the evaluation of adhesion molecules in plasma provides useful information to interpret rehabilitative exercise processes and to identify potential predictors of the rehabilitation-induced changes in mobility outcomes in MS patients.
Collapse
Affiliation(s)
- Nicole Ziliotto
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Nicola Lamberti
- Department of Biomedical and Surgical Specialties Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Manfredini
- Department of Biomedical and Surgical Specialties Sciences, University of Ferrara, Ferrara, Italy; Department of Neurosciences/Rehabilitation, Unit of Physical and Rehabilitation Medicine, University Hospital of Ferrara, Ferrara, Italy
| | - Sofia Straudi
- Department of Neurosciences/Rehabilitation, Unit of Physical and Rehabilitation Medicine, University Hospital of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Carantoni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Department of Neurosciences/Rehabilitation, Unit of Physical and Rehabilitation Medicine, University Hospital of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Giovanna Marchetti
- Department of Biomedical and Surgical Specialties Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Brinkman HJM, Ahnström J, Castoldi E, Dahlbäck B, Marlar RA. Pleiotropic anticoagulant functions of protein S, consequences for the clinical laboratory. Communication from the SSC of the ISTH. J Thromb Haemost 2021; 19:281-286. [PMID: 33405384 DOI: 10.1111/jth.15108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023]
Abstract
Hereditary deficiencies of protein S (PS) increase the risk of thrombosis. However, assessing the plasma levels of PS is complicated by its manifold physiological interactions, while the large inter-individual variability makes it problematic to establish reliable cut-off values. PS has multiple physiological functions, with only two appearing to have significant anticoagulant properties: the activated protein C (APC) and tissue factor pathway inhibitor alpha (TFPIα) cofactor activities. Current clinical laboratory investigations for deficiency in PS function rely only on the APC-dependent activity. This communication presents an argument for reclassifying the qualitative PS deficiencies to differentiate the two major anticoagulant functions of PS. Reliable assays are necessary for accurate evaluation of PS function when making a specific diagnosis of PS deficiency based on the anticoagulant phenotype alone. This report emphasizes the pleiotropic anticoagulant functions of PS and presents evidence-based recommendations for their implementation in the clinical laboratory.
Collapse
Affiliation(s)
- Herm Jan M Brinkman
- Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, the Netherlands
| | | | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Björn Dahlbäck
- Department of Translational Medicine, Lund University, Malmō, Sweden
| | - Richard A Marlar
- Department of Pathology, University of New Mexico, TriCore Reference Laboratories, Albuquerque, NM, USA
| |
Collapse
|
15
|
Gierula M, Ahnström J. Anticoagulant protein S-New insights on interactions and functions. J Thromb Haemost 2020; 18:2801-2811. [PMID: 32702208 DOI: 10.1111/jth.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023]
Abstract
Protein S is a critical regulator of coagulation that functions as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. It also has direct anticoagulant functions, inhibiting the intrinsic tenase and prothrombinase complexes. Through these functions, protein S regulates coagulation during both its initiation and its propagation phases. The importance of protein S in hemostatic regulation is apparent from the strong association between protein S deficiencies and increased risk for venous thrombosis. This is most likely because both APC and TFPIα are inefficient anticoagulants in the absence of any cofactors. The detailed molecular mechanisms involved in protein S cofactor functions remain to be fully clarified. However, recent advances in the field have greatly improved our understanding of these functions. Evidence suggests that protein S anticoagulant properties often depend on the presence of synergistic cofactors and the formation of multicomponent complexes on negatively charged phospholipid surfaces. Their high affinity binding to negatively charged phospholipids helps bring the anticoagulant proteins to the membranes, resulting in efficient and targeted regulation of coagulation. In this review, we provide an update on protein S and how it functions as a critical hemostatic regulator.
Collapse
|
16
|
Cicarini WB, Duarte RCF, Ferreira KS, Loures CDMG, Consoli RV, Neiva CLS, de Pádua PM, Nunes FFC, Alves LCV, Reis EA, Moreira CC, Guimarães TMPD, de Toledo VDPCP, Carvalho MDG. Impact of markers of endothelial injury and hypercoagulability on systemic lupus erythematosus. Lupus 2020; 29:182-190. [PMID: 31948350 DOI: 10.1177/0961203319899478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have explored the relationship between possible hemostatic changes and clinical manifestation of the systemic lupus erythematosus (SLE) as a function of greater or lesser disease activity according to Systemic Lupus Erythematosus Disease Activity Index-2000 (SLEDAI-2K) criteria. Endothelial injury and hypercoagulability were investigated in patients with SLE by measuring thrombomodulin (TM), D-dimer (DDi) and thrombin generation (TG) potential. A total of 90 participants were distributed into three groups: 1) women with SLE presenting with low disease activity (laSLE) (SLEDAI-2K ≤ 4), 2) women with SLE presenting with moderate to high disease activity (mhaSLE) (SLEDAI-2K > 4), and 3) a control group comprising healthy women. Levels of TM and DDi were higher both in the laSLE and mhaSLE groups compared to controls and in mhaSLE compared to the laSLE group. With respect to TG assay, lagtime and endogen thrombin potential, low concentrations of tissue factor provided the best results for discrimination among groups. Analysis of these data allow us to conclude that TM, DDi and TG are potentially useful markers for discriminating patients with very active from those with lower active disease. Higher SLE activity may cause endothelial injury, resulting in higher TG and consequently a hypercoagulability state underlying the picture of thrombosis common in this inflammatory disease.
Collapse
Affiliation(s)
- W Batista Cicarini
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - R C Figueiredo Duarte
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - K Silvestre Ferreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - C de Mello Gomes Loures
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | | | | - F Freire Campos Nunes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - L C Vieira Alves
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - E Afonso Reis
- Department of Statistics, Institute of Exact Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - C Coelho Moreira
- Department of Statistics, Institute of Exact Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - T M Pinto Dabés Guimarães
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | - M das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
17
|
Ellery PER, Hilden I, Thyregod P, Martinez ND, Maroney SA, Gill JC, Mast AE. Measurement of plasma and platelet tissue factor pathway inhibitor, factor V and Protein S in people with haemophilia. Haemophilia 2019; 25:1083-1091. [PMID: 31608540 DOI: 10.1111/hae.13860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tissue factor pathway inhibitor (TFPI) is a naturally occurring anticoagulant found in plasma, where it circulates bound to lipoproteins, factor V (FV) or Protein S (PS), and in platelets. Therapeutic agents targeting TFPI are under development for the treatment of haemophilia A and haemophilia B. AIM To begin to understand how TFPI, FV and PS interact to modulate haemophilia bleeding. METHODS Plasma and platelet antigen concentrations of these factors were determined in 73 people with haemophilia A and 18 with haemophilia B. Using multiple regression models, these were compared to the same analytes measured in 224 male blood donors. RESULTS There were no differences in plasma or platelet TFPI, FV or PS concentrations between haemophilia types or severities. However, compared to blood donors, people with haemophilia had approximately one-third lower plasma PS, 9% lower plasma TFPIα, 50% higher platelet FV and 26% lower platelet Protein S. CONCLUSION Together, the presented data suggest that individuals with haemophilia may have a compensatory procoagulant response of both plasma and platelet proteins to the decreased concentrations of FVIII or FIX.
Collapse
Affiliation(s)
- Paul E R Ellery
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Ida Hilden
- Global Drug Discovery, Novo Nordisk, MȧlØv, Denmark
| | | | | | | | - Joan C Gill
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Alan E Mast
- Blood Research Institute, Versiti, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Duarte RCF, Rios DRA, Rezende SM, Jardim LL, Ferreira CN, Carvalho MDG. Standardization and evaluation of the performance of the thrombin generation test under hypo- and hypercoagulability conditions. Hematol Transfus Cell Ther 2018; 41:244-252. [PMID: 31085150 PMCID: PMC6732533 DOI: 10.1016/j.htct.2018.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/19/2018] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Background In order to standardize a thrombin generation() protocol, we analyzed the analytical variables and sensitivity of this test to hypo/hypercoagulability states. Methods The effect of the tissue factor concentration and the intra- and interassay precision were analyzed. To evaluate the hypercoagulability status, the plasma of women under an oral contraceptive was tested, while plasma from hemophilia A patients at 1, 3 and 7 days after recombinant FVIII infusion, and lyophilized plasma deficient in FVII or FVIII were used for the evaluation of hypocoagulability. Results The intra-assay coefficient of variation was <10% with 1 and 5 pM of low and high TF. The oral contraceptive users showed increased thrombin generation in comparison to non-users, which was more pronounced with low TF (endogenous thrombin potential ETP) p = 0.0009; peak p = 0.0009; lagtime p = 0.0008). In relation to the FVIII-deficient plasma, a higher TG was observed as FVIII levels were increased and a better discrimination was obtained for different concentrations of FVIII with low TF (ETP p < 0.0001; peak p < 0.0001; lagtime p = 0.0004). Using low TF, plasma from hemophilia A patients showed higher TG values after 1 day of recombinant FVIII infusion vs after 3 days (ETP p < 0.0001; peak p < 0.0001; lagtime p = 0.0407), while the lowest values were observed after 7 days. With FVII-deficient plasma, thrombin generation was lower than normal plasma and a more pronounced difference was observed with high TF compared to low TF (ETP p < 0.0001; peak p < 0.0001; lagtime p < 0.0001). Conclusion Under our conditions the thrombin generation test seems to be sensitive to evaluation of hyper/hypocoagulability states. Standardization of the thrombin generation test may have an application in the evaluation of bleeding and thrombotic disorders.
Collapse
|
19
|
Huang Y, Long Y, Deng D, Liu Z, Liang H, Sun N, Xu Y, Lai Y, Cheng P. Alterations of anticoagulant proteins and soluble endothelial protein C receptor in thalassemia patients of Chinese origin. Thromb Res 2018; 172:61-66. [DOI: 10.1016/j.thromres.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
|
20
|
Post-transcriptional, post-translational and pharmacological regulation of tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2018; 29:668-682. [PMID: 30439766 DOI: 10.1097/mbc.0000000000000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: Tissue factor (TF) pathway inhibitor (TFPI) is an endogenous natural anticoagulant that readily inhibits the extrinsic coagulation initiation complex (TF-FVIIa-Xa) and prothrombinase (FXa, FVa and calcium ions). Alternatively, spliced TFPI isoforms (α, β and δ) are expressed by vascular and extravascular cells and regulate thrombosis and haemostasis, as well as cell signalling functions of TF complexes via protease-activated receptors (PARs). Proteolysis of TFPI plays an important role in regulating physiological roles of the TF pathway in host defense and possibly haemostasis. Elimination of TFPI inhibition has therefore been proposed as an approach to improve haemostasis in haemophilia patients. In this review, we focus on posttranscription and translational modification of TFPI and its function in thrombosis and how pharmacological inhibitors and endogenous proteases interfere with TFPI and alter haemostasis.
Collapse
|
21
|
Heinzmann A, Hackeng TM, Hartmann R, Scheiflinger F, Dockal M, Rosing J, Peraramelli S, Thomassen S. Role of exosite binding modulators in the inhibition of Fxa by TFPI. Thromb Haemost 2018; 115:580-90. [DOI: 10.1160/th15-04-0354] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/21/2015] [Indexed: 11/05/2022]
Abstract
SummaryTissue factor pathway inhibitor (TFPI) down-regulates the extrinsic coagulation pathway by inhibiting FXa and FVIIa. Both TFPI and FXa interact with several plasma proteins (e. g. prothrombin, FV/FVa, protein S) and non-proteinaceous compounds (e. g. phospholipids, heparin). It was our aim to investigate effects of ligands that bind to FXa and TFPI on FXa inhibition by full-length TFPI (designated TFPI) and truncated TFPI (TFPI1-150). Inhibition of FXa by TFPI and TFPI1-150 and effects of phospholipids, heparin, prothrombin, FV, FVa, and protein S thereon was quantified from progress curves of conversion of the FXa-specific chromogenic substrate CS11-(65). Low concentrations negatively charged phospholipids (~10 μM) already maximally stimulated (up to 5- to 6-fold) FXa inhibition by TFPI. Unfractionated heparin at concentrations (0.2–1 U/ml) enhanced FXa inhibition by TFPI ~8-fold, but impaired inhibition at concentrations > 1 U/ml. Physiological protein S and FV concentrations both enhanced FXa inhibition by TFPI 2- to 3-fold. In contrast, thrombin-activated FV (FVa) impaired the ability of TFPI to inhibit FXa. FXa inhibition by TFPI1–150 was not affected by FV, FVa, protein S, phospholipids and heparin. TFPI potently inhibited FXa-catalysed prothrombin activation in the absence of FVa, but hardly inhibited prothrombin activation in the presence of thrombin-activated FVa. In conclusion, physiological concentrations TFPI (0.25–0.5 nM TFPI) inhibit FXa with a t1/2 between 3–15 minutes. Direct FXa inhibition by TFPI is modulated by physiological concentrations prothrombin, FV, FVa, protein S, phospholipids and heparin indicating the importance of these modulators for the in vivo anticoagulant activity of TFPI.
Collapse
|
22
|
Dahlbäck B, Guo LJ, Livaja‐Koshiar R, Tran S. Factor V-short and protein S as synergistic tissue factor pathway inhibitor (TFPIα) cofactors. Res Pract Thromb Haemost 2018; 2:114-124. [PMID: 30046712 PMCID: PMC6055574 DOI: 10.1002/rth2.12057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND FV-Short is a normal splice variant of Factor V (FV) having a short B domain, which exposes a high affinity-binding site for tissue factor pathway inhibitor α (TFPIα). FV-Short and TFPIα circulate in complex in plasma. OBJECTIVES The aim was to elucidate whether FV-Short affects TFPIα as inhibitor of coagulation FXa and to test whether the TFPIα-cofactor activity of protein S is influenced by FV-Short. METHODS Recombinant FV, wild-type FV-Short and a FV-Short thrombin-cleavage resistant variant were expressed and purified. The influence of FV and FV-Short variants and/or protein S on the FXa inhibitory activity of TFPIα was monitored both in a purified system and in a plasma-based thrombin generation assay. RESULTS FV-Short had intrinsically weak TFPIα-cofactor activity but with protein S present, FV-Short yielded efficient inactivation of FXa. Protein S alone did not promote full TFPIα-activity. Intact FV was inefficient at low protein S concentrations and had 10-fold lower activity compared to FV-Short at physiological protein S levels. Activation of FV-Short by thrombin resulted in the loss of the TFPIα-cofactor activity. The synergistic TFPIα-cofactor activity of FV-Short and protein S was also demonstrated in plasma using a thrombin generation assay. CONCLUSIONS FV-Short and protein S are highly efficient, synergistic cofactors to TFPIα in the regulation of FXa activity, whereas full length FV has lower activity. Our results suggest the formation of an efficient FXa-inhibitory complex between FV-Short, TFPIα and protein S on the surface of negatively charged phospholipids.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Li Jun Guo
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Ruzica Livaja‐Koshiar
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| | - Sinh Tran
- Department of Translational MedicineLund UniversitySkåne University HospitalMalmöSweden
| |
Collapse
|
23
|
Ellery PER, Hilden I, Sejling K, Loftager M, Martinez ND, Maroney SA, Mast AE. Correlates of plasma and platelet tissue factor pathway inhibitor, factor V, and Protein S. Res Pract Thromb Haemost 2017; 2:93-104. [PMID: 29354797 PMCID: PMC5771435 DOI: 10.1002/rth2.12058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Plasma Tissue Factor Pathway Inhibitor (TFPI) circulates bound to factor V (fV) and Protein S (PS). Estrogen therapy decreases plasma TFPI and PS. TFPI, fV, and PS circulate within platelets, and are released upon activation to modulate thrombus formation. Objective Identify factors affecting the concentrations of plasma and platelet TFPI, fV, and PS. Methods Blood samples were obtained from 435 healthy individuals. Plasma total TFPI, TFPIɑ, fV, and PS, and platelet TFPI, fV, and PS were quantified. Correlations between these protein concentrations and age, gender, race, and estrogen use were established. Results In males, only plasma fV increased with age, while in females, all plasma analytes increased with age. Males had higher plasma total TFPI, TFPIα, and PS than females. The platelet proteins in either sex remained relatively stable with increasing age. Platelet TFPI and PS were comparable in both sexes, while platelet fV was higher in females. Estrogen use was associated with decreased plasma total TFPI and TFPIα, and platelet PS, but not with platelet TFPI concentration. Racial differences in plasma and platelet proteins were observed, some of which were larger than inter-individual differences observed within racial groups. TFPI, fV and PS concentrations correlated in plasma, while only fV and PS correlated in platelets. Conclusions Plasma and platelet TFPI, fV and PS differ in their: (i) in vivo association; (ii) demographic correlates; and (iii) alteration by estrogen therapies. Therefore, the plasma and platelet pools of these proteins may modulate hemostasis and thrombosis via different biochemical pathways.
Collapse
Affiliation(s)
- Paul E R Ellery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Ida Hilden
- Global Research, Novo Nordisk, Maaloev, Denmark
| | - Ken Sejling
- Global Research, Novo Nordisk, Maaloev, Denmark
| | | | | | - Susan A Maroney
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Alan E Mast
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Kenet G, Kurnik K, Gelas MA, Finckh U, Junker R, Heller C, Zieger B, Knöfler R, Holzhauer S, Mesters R, Krümpel A, Klostermeier UC, Limperger V, Nowak-Göttl U. Role of protein S deficiency in children with venous thromboembolism. Thromb Haemost 2017; 113:426-33. [DOI: 10.1160/th14-06-0533] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/28/2014] [Indexed: 11/05/2022]
Abstract
SummaryVenous thromboembolism [TE] is a multifactorial disease, and protein S deficiency [PSD] constitutes a major risk factor. In the present study the prevalence of PSD and the clinical presentation at TE onset in a cohort of children is reported. In 367 unselected paediatric patients with TE (age 0.1–18 years) recruited between July 1996 and December 2013, a comprehensive thrombophilia screening was performed along with recording of anamnestic data. Thirty of 367 paediatric patients (8.2 %) derived from 27 families had PSD. Mean age at first TE onset was 14.5 years (range 0.1 to 18). Thrombotic locations were cerebral veins (n=8), calf vein TE (n=3) deep veins (DVT) of the leg (n=12), DVT & pulmonary embolism (n=5) and intra-cardiac veins (n=1) or purpura fulminans (n=1). PSD co-occurred with the factor 5 mutation at rs6025 or the homozygous factor 2 susceptibility variant at rs1799963 in one case each. The Heerlen polymorphism detected in five children presented with milder PSD. In 18 patients (60 %) a concomitant risk factor for TE was identified. A second TE event within primarily healthy siblings occurred in three of 27 PSD families (11.0 %). In this cohort of children with symptomatic TE, the prevalence of PSD adjusted for family status was 7.4 %. Given its clinical implication for patients and family members, thrombophilia testing should be performed and the benefit of medical or educational interventions should be evaluated in this high-risk population.
Collapse
|
25
|
Tanratana P, Ellery P, Westmark P, Mast AE, Sheehan JP. Elevated Plasma Factor IXa Activity in Premenopausal Women on Hormonal Contraception. Arterioscler Thromb Vasc Biol 2017; 38:266-274. [PMID: 29097362 DOI: 10.1161/atvbaha.117.309919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Combined oral contraceptives induce a reversible hypercoagulable state with an enhanced risk of venous thromboembolism, but the underlying mechanism(s) remain unclear. Subjects on combined oral contraceptives also demonstrate a characteristic resistance to APC (activated protein C) in the thrombin generation assay. Here, we report the potential role of plasma factor IXa (FIXa) as a mechanism for hormone-induced systemic hypercoagulability. APPROACH AND RESULTS A novel assay was used to determine FIXa activity in plasma samples from volunteer blood donors. Plasma from 36 premenopausal females on hormonal contraception and 35 not on hormonal contraception, 35 postmenopausal females, and 10 males were analyzed for FIXa activity, total PS (protein S), total tissue factor pathway inhibitor (TFPI), and TFPI-α antigen. Premenopausal females on hormonal contraception demonstrated significantly increased FIXa activity and decreased TFPI-α compared with the other groups. Remarkably, FIXa values were not normally distributed in the hormonal contraception group, but skewed toward the high end. Plasma FIXa activity inversely correlated with both TFPI-α and total PS antigen. Ex vivo determination of TF-dependent FIX activation in FV-deficient plasma demonstrated that inhibitory anti-TFPI antibodies enhanced FIXa generation by 2- to 3-fold, whereas addition of 75 nmol/L PS reduced FIXa generation by ≈2-fold. Further, increasing FIXa concentration enhanced APC resistance during TF-triggered plasma thrombin generation. CONCLUSIONS Elevation of plasma FIXa activity in association with reductions in TFPI-α and PS is a potential mechanism for systemic hypercoagulability and resistance to APC in premenopausal females on hormonal contraception.
Collapse
Affiliation(s)
- Pansakorn Tanratana
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Paul Ellery
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Pamela Westmark
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Alan E Mast
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - John P Sheehan
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.).
| |
Collapse
|
26
|
Dahlbäck B. Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitorα, and protein S. J Thromb Haemost 2017; 15:1241-1250. [PMID: 28671348 DOI: 10.1111/jth.13665] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Factor V (FV) is a regulator of both pro- and anticoagulant pathways. It circulates as a single-chain procofactor, which is activated by thrombin or FXa to FVa that serves as cofactor for FXa in prothrombin activation. The cofactor function of FVa is regulated by activated protein C (APC) and protein S. FV can also function as an anticoagulant APC cofactor in the inhibition of FVIIIa in the membrane-bound tenase complex (FIXa/FVIIIa). In recent years, it has become clear that FV also functions in multiple ways in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. Of particular importance is a FV splice variant (FV-Short) that serves as a carrier and cofactor to TFPIα in the inhibition of FXa. FV-Short is generated through alternative splicing of exon 13 that encodes the large activation B domain. A highly negatively charged binding site for TFPIα is exposed in the C-terminus of the FV-Short B domain, which binds the positively charged C-terminus of TFPIα, thus keeping TFPIα in circulation. The binding of TFPIα to FV-Short is also instrumental in localizing the inhibitor to the surface of negatively charged phospholipids, where TFPIα inhibits FXa in process that is stimulated by protein S. Plasma FV activation intermediates and partially proteolyzed platelet FV similarly bind TFPIα with high affinity and regulate formation of prothrombinase. The novel insights gained into the interaction between FV isoforms, TFPIα, and protein S have opened a new avenue for research about the mechanisms of coagulation regulation and also for future development of therapeutics aimed at modulating coagulation.
Collapse
Affiliation(s)
- B Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital SUS, Malmö, Sweden
| |
Collapse
|
27
|
Alshaikh NA, Rosing J, Thomassen MCLGD, Castoldi E, Simioni P, Hackeng TM. New functional assays to selectively quantify the activated protein C- and tissue factor pathway inhibitor-cofactor activities of protein S in plasma. J Thromb Haemost 2017; 15:950-960. [PMID: 28211163 DOI: 10.1111/jth.13657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/28/2022]
Abstract
Essentials Protein S is a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI). There are no assays to quantify separate APC and TFPI cofactor activities of protein S in plasma. We developed assays to measure the APC- and TFPI-cofactor activities of protein S in plasma. The assays were sensitive to protein S deficiency, and not affected by the Factor V Leiden mutation. SUMMARY Background Protein S plays an important role in the down-regulation of coagulation as cofactor for activated protein C (APC) and tissue factor pathway inhibitor (TFPI). Aim To develop functional assays to quantify the APC- and TFPI-cofactor activities of protein S in plasma. Methods APC- and TFPI-cofactor activities of protein S in plasma were measured using calibrated automated thrombography in protein S-depleted plasma supplemented with a small amount of sample plasma either in the presence of anti-TFPI antibodies and APC (APC-cofactor activity) or at excess full-length TFPI without APC (TFPI-cofactor activity). Total and free protein S levels in plasma were measured by ELISAs. Results Average APC-cofactor activities of protein S were 113%, 108% and 89% in plasma from normal individuals (n = 15), FV Leiden heterozygotes (n = 14) and FV Leiden homozygotes (n = 7), respectively, whereas the average APC-cofactor activity of protein S in plasma from heterozygous protein S-deficient individuals (n = 21) was significantly lower (55%). Similar trends were observed for the TFPI-cofactor activity of protein S, with averages of 109%, 115% and 124% in plasma from individuals with normal protein S levels and different FV Leiden genotypes, and 64% in plasma from protein S-deficient patients. APC-cofactor activities of protein S correlated significantly with free and total protein S antigen levels, whereas TFPI-cofactor activities correlated less with protein S antigen levels. Conclusion We have developed functional protein S assays that measure both the APC- and TFPI-cofactor activities of protein S in plasma, which are hardly if at all affected by the FV Leiden mutation.
Collapse
Affiliation(s)
- N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - J Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - M C L G D Thomassen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - E Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - P Simioni
- Thrombotic and Haemorrhagic Unit, Department of Medicine (DIMED), 5th Chair of Internal Medicine, University of Padua Medical School, Padua, Italy
| | - T M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
28
|
Tissue factor pathway inhibitor for prediction of placenta-mediated adverse pregnancy outcomes in high-risk women: AngioPred study. PLoS One 2017; 12:e0173596. [PMID: 28328938 PMCID: PMC5362074 DOI: 10.1371/journal.pone.0173596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022] Open
Abstract
Objective The study aimed to evaluate if the rate of tissue factor pathway inhibitor during pregnancy and following delivery could be a predictive factor for placenta-mediated adverse pregnancy outcomes in high-risk women. Methods This was a prospective multicentre cohort study of 200 patients at a high risk of occurrence or recurrence of placenta-mediated adverse pregnancy outcomes conducted between June 2008 and October 2010. Measurements of tissue factor pathway inhibitor resistance (normalized ratio) and tissue factor pathway inhibitor activity were performed for the last 72 patients at 20, 24, 28, 32, and 36 weeks of gestation and during the postpartum period. Results Overall, 15 patients presented a placenta-mediated adverse pregnancy outcome. There was no difference in normalized tissue factor pathway inhibitor ratios between patients with and without placenta-mediated adverse pregnancy outcomes during pregnancy and in the post-partum period. Patients with placenta-mediated adverse pregnancy outcomes had tissue factor pathway inhibitor activity rates that were significantly higher than those in patients without at as early as 24 weeks of gestation. The same results were observed following delivery. Conclusion Among high-risk women, the tissue factor pathway inhibitor activity of patients with gestational vascular complications is higher than that in other patients. Hence, these markers could augment a screening strategy that includes an analysis of angiogenic factors as well as clinical and ultrasound imaging with Doppler measurement of the uterine arteries.
Collapse
|
29
|
Impact of high risk thrombophilia status on recurrence among children and adults with VTE: An observational multicenter cohort study. Blood Cells Mol Dis 2016; 62:24-31. [PMID: 27838551 DOI: 10.1016/j.bcmd.2016.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antithrombin [AT]-, protein C [PC]- or protein S [PS]-deficiency [D] constitutes a major risk factor for venous thromboembolism [VTE]. Primary study objective was to evaluate if the clinical presentation at first VTE onset differs between children and adults and to compare the individual recurrence risk among patients with respect to age at onset and their thrombophilia status ATD, PCD or PSD. METHODS/PATIENTS/RESULTS In 137 of 688 consecutively enrolled pediatric and adult VTE patients we calculated the absolute risk of VTE recurrence and event-free-survival adjusted for thrombophilia and positive family VTE history. At first VTE children manifested i) with a lower rate of pulmonary embolism, ii) a higher rate of cerebral vascular events or multiple VTEs, and iii) showed a higher proportion of unprovoked VTE compared to adolescents and adults. Adult patients reported more often a positive VTE history compared to younger study participants. The adjusted odds of recurrence in adults was 2.05 compared to children. CONCLUSION At disease manifestation children and adults differ with respect to i) thrombotic locations, ii) percentage of unprovoked versus provoked VTE, and iii) different rates of positive VTE family histories. Furthermore, adults showed a two-fold increase risk of VTE recurrence compared to children.
Collapse
|
30
|
Dennis J, Truong V, Aïssi D, Medina-Rivera A, Blankenberg S, Germain M, Lemire M, Antounians L, Civelek M, Schnabel R, Wells P, Wilson MD, Morange PE, Trégouët DA, Gagnon F. Single nucleotide polymorphisms in an intergenic chromosome 2q region associated with tissue factor pathway inhibitor plasma levels and venous thromboembolism. J Thromb Haemost 2016; 14:1960-1970. [PMID: 27490645 PMCID: PMC6544906 DOI: 10.1111/jth.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/01/2016] [Indexed: 02/01/2023]
Abstract
Essentials Tissue factor pathway inhibitor (TFPI) regulates the blood coagulation cascade. We replicated previously reported linkage of TFPI plasma levels to the chromosome 2q region. The putative causal locus, rs62187992, was associated with TFPI plasma levels and thrombosis. rs62187992 was marginally associated with TFPI expression in human aortic endothelial cells. Click to hear Ann Gil's presentation on new insights into thrombin activatable fibrinolysis inhibitor SUMMARY: Background Tissue factor pathway inhibitor (TFPI) regulates fibrin clot formation, and low TFPI plasma levels increase the risk of arterial thromboembolism and venous thromboembolism (VTE). TFPI plasma levels are also heritable, and a previous linkage scan implicated the chromosome 2q region, but no specific genes. Objectives To replicate the finding of the linkage region in an independent sample, and to identify the causal locus. Methods We first performed a linkage analysis of microsatellite markers and TFPI plasma levels in 251 individuals from the F5L Family Study, and replicated the finding of the linkage peak on chromosome 2q (LOD = 3.06). We next defined a follow-up region that included 112 603 single nucleotide polymorphisms (SNPs) under the linkage peak, and meta-analyzed associations between these SNPs and TFPI plasma levels across the F5L Family Study and the Marseille Thrombosis Association (MARTHA) Study, a study of 1033 unrelated VTE patients. SNPs with false discovery rate q-values of < 0.10 were tested for association with TFPI plasma levels in 892 patients with coronary artery disease in the AtheroGene Study. Results and Conclusions One SNP, rs62187992, was associated with TFPI plasma levels in all three samples (β = + 0.14 and P = 4.23 × 10-6 combined; β = + 0.16 and P = 0.02 in the F5L Family Study; β = + 0.13 and P = 6.3 × 10-4 in the MARTHA Study; β = + 0.17 and P = 0.03 in the AtheroGene Study), and contributed to the linkage peak in the F5L Family Study. rs62187992 was also associated with clinical VTE (odds ratio 0.90, P = 0.03) in the INVENT Consortium of > 7000 cases and their controls, and was marginally associated with TFPI expression (β = + 0.19, P = 0.08) in human aortic endothelial cells, a primary site of TFPI synthesis. The biological mechanisms underlying these associations remain to be elucidated.
Collapse
Affiliation(s)
- J Dennis
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - V Truong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - D Aïssi
- Sorbonne Universités, UPMC Univ. Paris 06, Paris, France
- INSERM, UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - A Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Blankenberg
- Department of General and Interventional Cardiology, University of Hamburg, Hamburg, Germany
| | - M Germain
- Sorbonne Universités, UPMC Univ. Paris 06, Paris, France
- INSERM, UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - M Lemire
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - L Antounians
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - M Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - R Schnabel
- Department of General and Interventional Cardiology, University of Hamburg, Hamburg, Germany
| | - P Wells
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - M D Wilson
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - P-E Morange
- INSERM, UMR_S 1062, Marseille, France
- Inra, UMR_INRA 1260, Marseille, France
- Aix Marseille Université, Marseille, France
| | - D-A Trégouët
- Sorbonne Universités, UPMC Univ. Paris 06, Paris, France
- INSERM, UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - F Gagnon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Limperger V, Kenet G, Goldenberg NA, Heller C, Holzhauer S, Junker R, Klostermeier UC, Knoefler R, Kurnik K, Krümpel A, Mesters R, Stach M, Young G, Nowak-Göttl U. Impact of high-risk thrombophilia status on recurrence among children with a first non-central-venous-catheter-associated VTE: an observational multicentre cohort study. Br J Haematol 2016; 175:133-40. [PMID: 27329967 DOI: 10.1111/bjh.14192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/15/2016] [Indexed: 11/30/2022]
Abstract
Deficiency of antithrombin (AT), protein C (PC) or protein S (PS) constitutes a major risk factor for venous thromboembolism (VTE). Individuals at high risk for recurrence who benefit from screening need to be identified. The primary study objective was to determine the individual recurrence risk among children with a first non-central-venous-catheter-associated VTE with respect to their thrombophilia status and to evaluate if the clinical presentation at first VTE onset differs between children with AT, PC or PS deficiency versus no thrombophilia. We calculated the absolute risk of VTE recurrence and event-free-survival adjusted for thrombophilia, age, sex and positive family VTE history in 161 consecutively enrolled paediatric VTE patients. The presence of a deficiency relative to no thrombophilia was evaluated as a potential predictor of recurrence. Predictors for recurrence were AT deficiency (hazard ratio/95% CI: 6·5/2·46-17·2) and female gender (2·6/1·1-6·35). The annual recurrence rates (95% CIs) were 5·4% (2·6-10) in AT-deficient children, 1·3% (0·3-3·8) in patients with PC deficiency, 0·7% (0·08-2·4) in the PS-deficient cohort and 0·9% (0·4-1·8) in patients with no thrombophilia. Positive family VTE history or combined thrombophilias did not predict recurrence. Given the overall annual incidence rate of recurrence of 1·5% we suggest screening for AT deficiency in children with VTE.
Collapse
Affiliation(s)
- Verena Limperger
- Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany
| | - Gili Kenet
- Thrombosis Unit, National Haemophilia Centre, Tel Hashomer and the Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| | - Neil A Goldenberg
- All Children's Hospital Johns Hopkins Medicine and All Children's Research Institute, St. Petersburg, FL, USA.,Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Susanne Holzhauer
- Department of Paediatric Haematology/Oncology, Charité, Berlin, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany
| | | | - Ralf Knoefler
- Department of Paediatric Haemostaseology, Dresden, Germany
| | - Karin Kurnik
- Department of Paediatrics, University Children Hospital Munich, Munich, Germany
| | - Anne Krümpel
- Department of Paediatric Haematology/Oncology, University Children Hospital Münster, Münster, Germany
| | - Rolf Mesters
- Department of Medicine/Haematology & Oncology, Univ. Hospital Münster, Münster, Germany
| | - Michael Stach
- IT Service Centre, University Hospital of Münster, Münster, Germany
| | - Guy Young
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Nowak-Göttl
- Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany. .,Department of Paediatric Haematology/Oncology, University Children Hospital Münster, Münster, Germany.
| |
Collapse
|
32
|
Dahlbäck B. Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. Int J Lab Hematol 2016; 38 Suppl 1:4-11. [PMID: 27161771 DOI: 10.1111/ijlh.12508] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/29/2022]
Abstract
Factor V (FV) serves an important role in the regulation of blood coagulation, having both pro- and anticoagulant properties. The circulating high molecular weight single-chain FV molecule undergoes a series of proteolytic cleavages during both activation of coagulation and during anticoagulant regulation of coagulation by activated protein C (APC). It is noteworthy that mutations in the factor V gene (F5) either cause thrombosis or bleeding. New insights into the importance and complexity of FV functions have been generated from elucidation of the pathogenic mechanisms of two familial mutations in the F5 gene. The first mutation was identified as a result of the discovery of APC resistance as the most common risk factor for venous thrombosis. The mutation (FV Leiden) predicts the Arg(506) Gln replacement, which impairs the normal regulation of FVa by APC, as the Arg506 site is an important APC cleavage site. In addition, elucidation of APC resistance resulted in the discovery of the anticoagulant APC cofactor activity of FV. The second FV mutation (FV(A2440G) ), identified in a family with an autosomal dominant bleeding disorder, has led to the discovery of an alternative splicing generating a previously unidentified FV isoform (FV-Short), which inhibits coagulation via an unexpected and intriguing mechanism involving the coagulation inhibitor TFPI-α. These are naturally occurring mutations in the F5 gene that have generated new knowledge on the role of FV in regulation of coagulation and the importance of genetic risk factors for thrombosis and bleeding.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Wallenberg Laboratory, University Hospital, Malmö, Sweden
| |
Collapse
|
33
|
Dennis J, Kassam I, Morange PE, Trégouët DA, Gagnon F. Genetic determinants of tissue factor pathway inhibitor plasma levels. Thromb Haemost 2015; 114:245-57. [PMID: 25879386 DOI: 10.1160/th14-12-1043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) impedes early stages of the blood coagulation response, and low TFPI plasma levels increase the risk of thrombosis. TFPI plasma levels are heritable, but specific genetic determinants are unclear. We conducted a comprehensive review of genetic risk factors for TFPI plasma levels and identified 26 studies. We included 16 studies, as well as results from two unpublished genome-wide studies, in random effects meta-analyses of four commonly reported genetic variants in TFPI and its promoter (rs5940, rs7586970/rs8176592, rs10931292, and rs10153820) and 10 studies were summarised narratively. rs5940 was associated with all measures of TFPI (free, total, and activity), and rs7586970 was associated with total TFPI. Neither rs10931292 nor rs10153820 showed evidence of association. The narrative summary included 6 genes and genetic variants (P151L mutation in TFPI, PROS1, F5, APOE, GLA, and V617F mutation in JAK2) as well as a genome-wide linkage study, and suggested future research directions. A limitation of the systematic review was the heterogeneous measurement of TFPI. Nonetheless, our review found robust evidence that rs5940 and rs7586970 moderate TFPI plasma levels and are candidate risk factors for thrombosis, and that the regulation of TFPI plasma levels involves genetic factors beyond the TFPI gene.
Collapse
Affiliation(s)
| | | | | | | | - F Gagnon
- France Gagnon, MSc, PhD, Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON M5T3M7, Canada, Tel.: +1 416 978 0130, E-mail:
| |
Collapse
|
34
|
Somajo S, Ahnström J, Fernandez-Recio J, Gierula M, Villoutreix BO, Dahlbäck B. Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction. Thromb Haemost 2015; 113:976-87. [PMID: 25716664 DOI: 10.1160/th14-09-0803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/05/2015] [Indexed: 11/05/2022]
Abstract
Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function. The aim of the current study was to localise functionally important interaction sites in the protein S LG-domains using amino acid substitutions. Four protein S variants were created in which clusters of surface-exposed amino acid residues within the LG-domains were substituted. All variants bound normally to C4BP and were fully functional as cofactors for APC in plasma and in pure component assays. Two variants, SHBG2 (E612A, I614A, F265A, V393A, H453A), involving residues from both LG-domains, and SHBG3 (K317A, I330A, V336A, D365A) where residues in LG1 were substituted, showed 50-60 % reduction in enhancement of TFPI in FXa inhibition assays. For SHBG3 the decreased TFPI cofactor function was confirmed in plasma based thrombin generation assays. Both SHBG variants bound to TFPI with decreased affinity in surface plasmon resonance experiments. The TFPI Kunitz 3 domain is known to contain the interaction site for protein S. Using in silico analysis and protein docking exercises, preliminary models of the protein S SHBG/TFPI Kunitz domain 3 complex were created. Based on a combination of experimental and in silico data we propose a binding site for TFPI on protein S, involving both LG-domains.
Collapse
Affiliation(s)
| | | | | | | | | | - Björn Dahlbäck
- Björn Dahlbäck MD, PhD, Professor of Blood Coagulation Research, Lund University, Department of Translational Medicine, Division of Clinical Chemistry, Wallenberg laboratory, floor 6, University Hospital, Malmö, S-20502 Malmö, Sweden, E-mail:
| |
Collapse
|
35
|
Abstract
D-dimer is the smallest fibrinolysis-specific degradation product found in the circulation. The origins, assays, and clinical use of D-dimer will be addressed. Hemostasis (platelet and vascular function, coagulation, fibrinolysis, hemostasis) is briefly reviewed. D-dimer assays are reviewed. The D-dimer is very sensitive to intravascular thrombus and may be markedly elevated in disseminated intravascular coagulation, acute aortic dissection, and pulmonary embolus. Because of its exquisite sensitivity, negative tests are useful in the exclusion venous thromboembolism. Elevations occur in normal pregnancy, rising two- to fourfold by delivery. D-dimer also rises with age, limiting its use in those >80 years old. There is a variable rise in D-dimer in active malignancy and indicates increased thrombosis risk in active disease. Elevated D-dimer following anticoagulation for a thrombotic event indicates increased risk of recurrent thrombosis. These and other issues are addressed.
Collapse
|
36
|
Thomassen MCLGD, Heinzmann ACA, Herfs L, Hartmann R, Dockal M, Scheiflinger F, Hackeng TM, Rosing J. Tissue factor-independent inhibition of thrombin generation by tissue factor pathway inhibitor-α. J Thromb Haemost 2015; 13:92-100. [PMID: 25348176 DOI: 10.1111/jth.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor-α (TFPIα) inhibits factor Xa by forming a binary TFPI-FXa complex in a reaction that is stimulated by protein S. TF-FVIIa forms a quaternary complex with TFPIα and FXa, which shuts off the initiation of coagulation via the extrinsic pathway. AIM To investigate whether direct inhibition of FXa by TFPIα independently of TF plays a role in downregulating coagulation. METHODS Inhibition of FXa by TFPIα in plasma was determined by measuring thrombin generation triggered with FXa, the FX activator from Russell's viper venom (RVV-X), FXIa, or FIXa. TF-independent anticoagulant activities of TFPIα and its cofactor, protein S, were quantified: (i) after neutralization of TFPIα and protein S with anti-TFPI or anti-protein S antibodies; and (ii) in TFPI-depleted or protein S-depleted plasmas supplemented with varying amounts of TFPIα or protein S. RESULTS Both anti-TFPI and anti-protein S antibodies enhanced thrombin generation in plasma triggered with RVV-X, FXa, FIXa, or FXIa. Anti-TFPI and anti-protein S antibodies decreased the lag time and increased the peak height of thrombin generation to the same extent, indicating that inhibition of FXa by TFPIα requires the presence of protein S. TFPIα and protein S titrations in TFPI-depleted or protein S-depleted plasma in which thrombin formation was initiated with triggers other than TF also revealed TF-independent anticoagulant activity of TFPIα, which was completely dependent on the presence of protein S. CONCLUSION Direct inhibition of FXa by TFPIα contributes to the downregulation of coagulation.
Collapse
Affiliation(s)
- M C L G D Thomassen
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Liver disease is characterized by changes in all phases of hemostasis. These hemostatic alterations were long considered to predispose patients with liver disease towards a bleeding tendency, as they are associated with prolonged conventional coagulation tests. However, these patients may also suffer from thrombotic complications, and we now know that the hemostatic system in patient with liver disease is, in fact, in a rebalanced state. In this review we discuss the concept of rebalanced hemostasis and its implications for clinical management of patients with liver disease. For instance, there is no evidence that the use of prophylactic blood product transfusion prior to invasive procedures reduces bleeding risk. Clinicians should also be aware of the possibility of thrombosis occurring in patients with a liver disease, and regular thrombosis prophylaxis should not be withheld in these patients.
Collapse
Affiliation(s)
- Wilma Potze
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Centre Groningen, BA44, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | |
Collapse
|
38
|
Livaja Koshiar R, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One 2014; 9:e104200. [PMID: 25136857 PMCID: PMC4138094 DOI: 10.1371/journal.pone.0104200] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle surface is suitable for the anticoagulant reactions of the protein C system, which may be important to balance the initiation and propagation of coagulation in vivo.
Collapse
Affiliation(s)
- Ruzica Livaja Koshiar
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sofia Somajo
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Eva Norström
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Björn Dahlbäck
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
- * E-mail:
| |
Collapse
|
39
|
Reglińska-Matveyev N, Andersson HM, Rezende SM, Dahlbäck B, Crawley JTB, Lane DA, Ahnström J. TFPI cofactor function of protein S: essential role of the protein S SHBG-like domain. Blood 2014; 123:3979-87. [PMID: 24740810 PMCID: PMC4064334 DOI: 10.1182/blood-2014-01-551812] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/17/2023] Open
Abstract
Protein S is a cofactor for tissue factor pathway inhibitor (TFPI), accelerating the inhibition of activated factor X (FXa). TFPI Kunitz domain 3 residue Glu226 is essential for enhancement of TFPI by protein S. To investigate the complementary functional interaction site on protein S, we screened 44 protein S point, composite or domain swap variants spanning the whole protein S molecule for their TFPI cofactor function using a thrombin generation assay. Of these variants, two protein S/growth arrest-specific 6 chimeras, with either the whole sex hormone-binding globulin (SHBG)-like domain (Val243-Ser635; chimera III) or the SHBG laminin G-type 1 subunit (Ser283-Val459; chimera I), respectively, substituted by the corresponding domain in growth arrest-specific 6, were unable to enhance TFPI. The importance of the protein S SHBG-like domain (and its laminin G-type 1 subunit) for binding and enhancement of TFPI was confirmed in FXa inhibition assays and using surface plasmon resonance. In addition, protein S bound to C4b binding protein showed greatly reduced enhancement of TFPI-mediated inhibition of FXa compared with free protein S. We show that binding of TFPI to the protein S SHBG-like domain enables TFPI to interact optimally with FXa on a phospholipid membrane.
Collapse
Affiliation(s)
| | - Helena M Andersson
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Suely M Rezende
- Department of Internal Medicine, Faculty of Medicine, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; and
| | - Björn Dahlbäck
- Department of Laboratory Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - James T B Crawley
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David A Lane
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Josefin Ahnström
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Protein S and factor V in regulation of coagulation on platelet microparticles by activated protein C. Thromb Res 2014; 134:144-52. [PMID: 24835672 DOI: 10.1016/j.thromres.2014.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Platelets are the main source of microparticles in plasma and the concentration of microparticles is increased in many diseases. As microparticles expose negatively charged phospholipids, they can bind and assemble the procoagulant enzyme-cofactor complexes. Our aim was to elucidate possible regulation of these complexes on microparticles by the anticoagulant protein C system. MATERIALS AND METHODS Platelets were activated with thrombin ± collagen or the calcium ionophore A23187 ± thrombin to generate microparticles. The microparticles were analyzed using flow cytometry and functional coagulation assays to characterize parameters with importance for the activated protein C system. RESULTS Activation with A23187+thrombin was most efficient, fully converting the platelets to microparticle-like vesicles, characterized by high lactadherin and protein S binding capacity. Suppression of thrombin generation by activated protein C in plasma spiked with these microparticles was dependent on the presence of plasma protein S. Experiments with purified components showed that activated protein C inhibited both factor Va and factor VIIIa on the microparticle surface. Inhibition of factor Va was stimulated by, but not fully dependent on, the presence of protein S. In the factor VIIIa-degradation, activated protein C was dependent on the addition of protein S, and exogenous factor V further increased the efficiency. CONCLUSIONS Protein S is crucial for activated protein C-mediated inhibition of thrombin generation on platelet-derived microparticles in plasma. Moreover, protein S and factor V are synergistic cofactors in the inhibition of factor VIIIa. The results demonstrate that the activated protein C system has the capacity to counterbalance the procoagulant ability of microparticles.
Collapse
|
41
|
Abstract
Recent studies of the anticoagulant activities of the tissue factor (TF) pathway inhibitor (TFPI) isoforms, TFPIα and TFPIβ, have provided new insight into the biochemical and physiological mechanisms that underlie bleeding and clotting disorders. TFPIα and TFPIβ have tissue-specific expression patterns and anticoagulant activities. An alternative splicing event in the 5' untranslated region allows for translational regulation of TFPIβ expression. TFPIα has 3 Kunitz-type inhibitor domains (K1, K2, K3) and a basic C terminus, whereas TFPIβ has the K1 and K2 domains attached to a glycosylphosphatidyl inositol-anchored C terminus. TFPIα is the only isoform present in platelets, whereas endothelial cells produce both isoforms, secreting TFPIα and expressing TFPIβ on the cell surface. TFPIα and TFPIβ inhibit both TF-factor VIIa-dependent factor Xa (FXa) generation and free FXa. Protein S enhances FXa inhibition by TFPIα. TFPIα produces isoform-specific inhibition of prothrombinase during the initiation of coagulation, an anticoagulant activity that requires an exosite interaction between its basic C terminus and an acidic region in the factor Va B domain. Platelet TFPIα may be optimally localized to dampen initial thrombin generation. Similarly, endothelial TFPIβ may be optimally localized to inhibit processes that occur when endothelial TF is present, such as during the inflammatory response.
Collapse
|
42
|
|
43
|
Cellular expression and biological activities of alternatively spliced forms of tissue factor pathway inhibitor. Curr Opin Hematol 2013; 20:403-9. [PMID: 23839295 DOI: 10.1097/moh.0b013e3283634412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Tissue factor pathway inhibitor (TFPI) is an anticoagulant protein that inhibits tissue factor-factor VIIa (TF-fVIIa) and factor Xa (fXa). Recent studies revealed distinct cellular expression patterns for TFPIα and TFPIβ and spurred additional experiments to define unique functions for these alternatively spliced TFPI isoforms. RECENT FINDINGS TFPIα is produced by endothelial cells, localizes to an intracellular granule, and is released following cellular stimulation with thrombin or heparin. TFPIα also is produced by megakaryocytes and released from activated platelets. Platelet TFPIα limits clot growth following vessel injury and alters bleeding in hemophilia, suggesting that its primary physiological role is modulation of clot development. TFPIβ is made by endothelial cells, localizes to the endothelium surface, and is not in platelets. TFPIβ is an effective inhibitor of TF-mediated cellular migration and may act to dampen the adverse effects of intravascular TF expressed during inflammation. SUMMARY Knowledge of TFPI isoform expression and activity provides new insights into the biochemical regulation of TF-mediated thrombotic and inflammatory disease. Recent findings have therapeutic implications for use of recombinant TFPI to treat severe sepsis in community-acquired pneumonia or to achieve improved engraftment of hematopoietic stem cells, and for development of TFPI-blocking pharmaceuticals to treat hemophilia.
Collapse
|
44
|
Wood JP, Ellery PER, Maroney SA, Mast AE. Protein S is a cofactor for platelet and endothelial tissue factor pathway inhibitor-α but not for cell surface-associated tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2013; 34:169-76. [PMID: 24233490 DOI: 10.1161/atvbaha.113.302655] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Tissue factor pathway inhibitor (TFPI) is produced in 2 isoforms: TFPIα, a soluble protein in plasma, platelets, and endothelial cells, and TFPIβ, a glycosylphosphatidylinositol-anchored protein on endothelium. Protein S (PS) functions as a cofactor for TFPIα, enhancing the inhibition of factor Xa. However, PS does not alter the inhibition of prothrombinase by TFPIα, and PS interactions with TFPIβ are undescribed. Thus, the physiological role and scope of the PS-TFPI system remain unclear. APPROACH AND RESULTS Here, the cofactor activity of PS toward platelet and endothelial TFPIα and endothelial TFPIβ was quantified. PS enhanced the inhibition of factor Xa by TFPIα from platelets and endothelial cells and stabilized the TFPIα/factor Xa inhibitory complex, delaying thrombin generation by prothrombinase. By contrast, PS did not enhance the inhibitory activity of TFPIβ or a membrane-anchored form of TFPI containing the PS-binding third Kunitz domain (K1K2K3) although PS did function as a cofactor for K1K2K3 enzymatically released from the cell surface. CONCLUSIONS The PS-TFPI anticoagulant system is limited to plasma TFPIα and TFPIα released from platelets and endothelial cells. PS likely functions to localize solution-phase TFPIα to the cell surface, where factor Xa is bound. PS does not alter the activity of membrane-associated TFPI. Because activated platelets release TFPIα and PS, the PS-TFPIα anticoagulant system may act physiologically to dampen thrombin generation at the platelet surface.
Collapse
Affiliation(s)
- Jeremy P Wood
- From the Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI (J.P.W., P.E.R.E., S.A.M., A.E.M.); and Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI (A.E.M.)
| | | | | | | |
Collapse
|
45
|
Broze GJ, Girard TJ. Factor V, tissue factor pathway inhibitor, and east Texas bleeding disorder. J Clin Invest 2013; 123:3710-2. [PMID: 23979154 DOI: 10.1172/jci71220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a report reading like a fascinating detective story, Vincent and colleagues crack the mysterious case of east Texas bleeding disorder. They show that affected individuals have a mutation in exon 13 of the coagulation F5 gene that causes increased expression of an alternatively spliced transcript, which encodes a previously unrecognized factor V (FV) isoform they call FV-short. This FV isoform lacks a large portion of the B domain of FV, which is normally released upon the proteolytic activation of FV by thrombin and binds tightly to the coagulation regulator tissue factor pathway inhibitor-α (TFPIα). This interaction leads to an approximately 10-fold increase in the level of TFPIα circulating in plasma and a resultant anticoagulant effect that produces a hemorrhagic diathesis.
Collapse
Affiliation(s)
- George J Broze
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
46
|
Potze W, Arshad F, Adelmeijer J, Blokzijl H, van den Berg AP, Meijers JCM, Porte RJ, Lisman T. Decreased tissue factor pathway inhibitor (TFPI)-dependent anticoagulant capacity in patients with cirrhosis who have decreased protein S but normal TFPI plasma levels. Br J Haematol 2013; 162:819-26. [PMID: 23841464 DOI: 10.1111/bjh.12462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 12/16/2022]
Abstract
Protein S acts as a cofactor for tissue factor pathway inhibitor (TFPI) in the down regulation of thrombin generation, and acquired and congenital protein S deficiencies are associated with a concomitant TFPI deficiency. In contrast, in patients with liver diseases, decreased protein S, but normal or increased levels of TFPI have been reported. We compared TFPI and protein S plasma levels between 26 patients with cirrhosis and 20 healthy controls and found that TFPI levels were comparable between patients (111 ± 38%) and controls (108 ± 27%), despite reduced protein S levels (74 ± 23% in patients vs. 98 ± 10% in controls). Subsequently, we quantified the activity of the TFPI-protein S system by measuring thrombin generation in the absence and presence of neutralizing antibodies to protein S or TFPI. Ratios of peak thrombin generation in the absence and presence of these antibodies were calculated. Both the protein S and the TFPI ratios were increased in patients with cirrhosis compared to controls. Protein S ratios were (0·62 [0·08-0·93] in patients vs. 0·32 [0·20-0·54] in controls; TFPI ratios were 0·50 [0·05-0·90] in patients vs. 0·18 [0·11-0·49] in controls). Thus, although the acquired protein S deficiency in patients with cirrhosis is not associated with decreased TFPI levels, the TFPI/protein S anticoagulant system is functionally impaired.
Collapse
Affiliation(s)
- Wilma Potze
- Surgical Research Laboratory, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Winckers K, ten Cate H, Hackeng TM. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev 2013; 27:119-32. [PMID: 23631910 DOI: 10.1016/j.blre.2013.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tissue factor pathway inhibitor (TFPI) is the main inhibitor of tissue factor (TF)-mediated coagulation. In atherosclerotic plaques TFPI co-localizes with TF, where it is believed to play an important role in attenuating TF activity. Findings in animal models such as TFPI knockout models and gene transfer models are consistent on the role of TFPI in arterial thrombosis as they reveal an active role for TFPI in attenuating arterial thrombus formation. In addition, ample experimental evidence exists indicating that TFPI has inhibitory effects on both smooth muscle cell migration and proliferation, both which are recognized as important pathological features in atherosclerosis development. Nonetheless, the clinical relevance of these antithrombotic and atheroprotective effects remains unclear. Paradoxically, the majority of clinical studies find increased instead of decreased TFPI antigen and activity levels in atherothrombotic disease, particularly in atherosclerosis and coronary artery disease (CAD). Increased TFPI levels in cardiovascular disease might result from complex interactions with established cardiovascular risk factors, such as hypercholesterolemia, diabetes and smoking. Moreover, it is postulated that increased TFPI levels reflect either the amount of endothelial perturbation and platelet activation, or a compensatory mechanism for the increased procoagulant state observed in cardiovascular disease. In all, the prognostic value of plasma TFPI in cardiovascular disease remains to be established. The current review focuses on TFPI in clinical studies of asymptomatic and symptomatic atherosclerosis, coronary artery disease and ischemic stroke, and discusses potential atheroprotective actions of TFPI.
Collapse
Affiliation(s)
- Kristien Winckers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, MUMC, Maastricht, The Netherlands
| | | | | |
Collapse
|
48
|
Raps M, Helmerhorst FM, Fleischer K, Dahm AEA, Rosendaal FR, Rosing J, Reitsma P, Sandset PM, van Vliet HAAM. The effect of different hormonal contraceptives on plasma levels of free protein S and free TFPI. Thromb Haemost 2013; 109:606-13. [PMID: 23407778 DOI: 10.1160/th12-10-0771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022]
Abstract
Use of combined oral contraceptives is associated with a three- to six-fold increased risk of venous thrombosis. Hormonal contraceptives induce acquired resistance to activated protein C (APC), which predicts the risk of venous thrombosis. The biological basis of the acquired APC resistance is unknown. Free protein S (PS) and free tissue factor pathway inhibitor (TFPI) are the two main determinants of APC. Our objective was to assess the effect of both hormonal and non-hormonal contraceptives with different routes of administration on free TFPI and free PS levels. We conducted an observational study in 243 users of different contraceptives and measured APC sensitivity ratios (nAPCsr), free TFPI and free PS levels. Users of contraceptives with the highest risk of venous thrombosis as reported in recent literature, had the lowest free TFPI and free PS levels, and vice versa, women who used contraceptives with the lowest risk of venous thrombosis had the highest free TFPI and free PS levels. An association was observed between levels of free TFPI and nAPCsr, and between free PS and nAPCsr. The effect of oral contraceptives on TFPI and PS is a possible explanation for the increased risk of venous thrombosis associated with oral contraceptives.
Collapse
Affiliation(s)
- Marjolein Raps
- Marjolein Raps, Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
Collapse
Affiliation(s)
- Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W. M. Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Levi
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Identification of functionally important residues in TFPI Kunitz domain 3 required for the enhancement of its activity by protein S. Blood 2012; 120:5059-62. [DOI: 10.1182/blood-2012-05-432005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Protein S is a cofactor for tissue factor pathway inhibitor (TFPI) that critically reduces the inhibition constant for FXa to below the plasma concentration of TFPI. TFPI Kunitz domain 3 is required for this enhancement to occur. To delineate the molecular mechanism underlying enhancement of TFPI function, in the present study, we produced a panel of Kunitz domain 3 variants of TFPI encompassing all 12 surface-exposed charged residues. Thrombin-generation assays in TFPI-depleted plasma identified a novel variant, TFPI E226Q, which exhibited minimal enhancement by protein S. This was confirmed in purified FXa inhibition assays in which no protein S enhancement of TFPI E226Q was detected. Surface plasmon resonance demonstrated concentration-dependent binding of protein S to wild-type TFPI, but almost no binding to TFPI E226Q. We conclude that the TFPI Kunitz domain 3 residue Glu226 is essential for TFPI enhancement by protein S.
Collapse
|