1
|
Madarati H, DeYoung V, Singh K, Sparring T, Kwong AC, Fredenburgh JC, Teney C, Koschinsky ML, Boffa MB, Weitz JI, Kretz CA. Optimization of plasma-based BioID identifies plasminogen as a ligand of ADAMTS13. Sci Rep 2024; 14:9073. [PMID: 38643218 PMCID: PMC11032339 DOI: 10.1038/s41598-024-59672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
ADAMTS13, a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13, regulates the length of Von Willebrand factor (VWF) multimers and their platelet-binding activity. ADAMTS13 is constitutively secreted as an active protease and is not inhibited by circulating protease inhibitors. Therefore, the mechanisms that regulate ADAMTS13 protease activity are unknown. We performed an unbiased proteomics screen to identify ligands of ADAMTS13 by optimizing the application of BioID to plasma. Plasma BioID identified 5 plasma proteins significantly labeled by the ADAMTS13-birA* fusion, including VWF and plasminogen. Glu-plasminogen, Lys-plasminogen, mini-plasminogen, and apo(a) bound ADAMTS13 with high affinity, whereas micro-plasminogen did not. None of the plasminogen variants or apo(a) bound to a C-terminal truncation variant of ADAMTS13 (MDTCS). The binding of plasminogen to ADAMTS13 was attenuated by tranexamic acid or ε-aminocaproic acid, and tranexamic acid protected ADAMTS13 from plasmin degradation. These data demonstrate that plasminogen is an important ligand of ADAMTS13 in plasma by binding to the C-terminus of ADAMTS13. Plasmin proteolytically degrades ADAMTS13 in a lysine-dependent manner, which may contribute to its regulation. Adapting BioID to identify protein-interaction networks in plasma provides a powerful new tool to study protease regulation in the cardiovascular system.
Collapse
Affiliation(s)
- Hasam Madarati
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Veronica DeYoung
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Kanwal Singh
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Taylor Sparring
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Andrew C Kwong
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - James C Fredenburgh
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Cherie Teney
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Marlys L Koschinsky
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Jeffrey I Weitz
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada
| | - Colin A Kretz
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Launois A, Valade S, Mariotte E, Galicier L, Azoulay E, Roose E, Vanhoorelbeke K, Veyradier A, Joly BS. Hemophagocytic lymphohistiocytosis is associated with deficiency and closed conformation of ADAMTS-13. Res Pract Thromb Haemost 2024; 8:102292. [PMID: 38371335 PMCID: PMC10869956 DOI: 10.1016/j.rpth.2023.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 02/20/2024] Open
Abstract
Background A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS-13) is the specific von Willebrand factor-cleaving protease and circulates in a closed and latent conformation due to a spacer/CUB1 domain interaction. ADAMTS-13 is allosterically activated after binding of its substrate or antibodies, inducing an open conformation. Recently, we suggested a potential role of plasmin (fibrinolysin) in hemostasis disorders reported in most patients with hemophagocytic lymphohistiocytosis (HLH), a rare and life-threatening condition related to a severe systemic inflammatory state. Most patients with HLH had a partial ADAMTS-13 deficiency, and plasmin could induce a truncation of the C-terminal part of ADAMTS-13 and thus an open conformation. Objectives To understand the effect of plasmin on ADAMTS-13, our study aimed to investigate ADAMTS-13 conformation in patients with HLH. Methods Forty-five critically ill patients with HLH were prospectively enrolled between April 2015 and December 2018. ADAMTS-13 activity was measured by fluorescent resonance energy transfer-VWF73 assay, ADAMTS-13 antigen, and conformation with our homemade 3H9-enzyme-linked immunosorbent assay and 1C4-enzyme-linked immunosorbent assay. Results ADAMTS-13 activity ranged from <10 to 65 IU/dL, and 41 of the 45 patients had a quantitative deficiency in ADAMTS-13 (activity <50 IU/dL). Twenty patients had a severe ADAMTS-13 deficiency (activity <20 IU/dL). ADAMTS-13 conformation was folded in all patients under normal conditions. Surprisingly, the switch of ADAMTS-13 conformation expected with the monoclonal antibody 17G2 (anti-CUB1) was disturbed in 6 patients (activity <20 IU/dL). Conclusion Our study reported that ADAMTS-13 conformation is closed in HLH and provides an indirect proof that plasmin is not able to massively degrade ADAMTS-13. Further studies on glycosylation and citrullination profiles of ADAMTS-13 are needed to understand their role in HLH.
Collapse
Affiliation(s)
- Amélie Launois
- Service d’Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
- Equipe d'Accueil 3518, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Sandrine Valade
- Service de Réanimation médicale, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Eric Mariotte
- Service de Réanimation médicale, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Lionel Galicier
- Service d’Immunologie clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Elie Azoulay
- Service de Réanimation médicale, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Elien Roose
- Laboratory for Thrombosis Research, Interdisciplinarity Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinarity Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Service d’Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
- Equipe d'Accueil 3518, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Bérangère S. Joly
- Service d’Hématologie biologique, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
- Equipe d'Accueil 3518, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
DeYoung V, Singh K, Kretz CA. Mechanisms of ADAMTS13 regulation. J Thromb Haemost 2022; 20:2722-2732. [PMID: 36074019 PMCID: PMC9826392 DOI: 10.1111/jth.15873] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Recombinant ADAMTS13 is currently undergoing clinical trials as a treatment for hereditary thrombotic thrombocytopenic purpura, a lethal microvascular condition resulting from ADAMTS13 deficiency. Preclinical studies have also demonstrated its efficacy in treating arterial thrombosis and inflammation without causing bleeding, suggesting that recombinant ADAMTS13 may have broad applicability as an antithrombotic agent. Despite this progress, we currently do not understand the mechanisms that regulate ADAMTS13 activity in vivo. ADAMTS13 evades canonical means of protease regulation because it is secreted as an active enzyme and has a long half-life in circulation, suggesting that it is not inhibited by natural protease inhibitors. Although shear can spatially and temporally activate von Willebrand factor to capture circulating platelets, it is also required for cleavage by ADAMTS13. Therefore, spatial and temporal regulation of ADAMTS13 activity may be required to stabilize von Willebrand factor-platelet strings at sites of vascular injury. This review outlines potential mechanisms that regulate ADAMTS13 in vivo including shear-dependency, local inactivation, and biochemical and structural regulation of substrate binding. Recently published structural data of ADAMTS13 is discussed, which may help to generate novel hypotheses for future research.
Collapse
Affiliation(s)
- Veronica DeYoung
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| | - Kanwal Singh
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| | - Colin A. Kretz
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| |
Collapse
|
4
|
Sweeney JM, Barouqa M, Krause GJ, Gonzalez-Lugo JD, Rahman S, Gil MR. Low ADAMTS13 Activity Correlates with Increased Mortality in COVID-19 Patients. TH OPEN 2021; 5:e89-e103. [PMID: 33709050 PMCID: PMC7943318 DOI: 10.1055/s-0041-1723784] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The causes of coagulopathy associated with coronavirus disease 2019 (COVID-19) are poorly understood. We aimed to investigate the relationship between von Willebrand factor (VWF) biomarkers, intravascular hemolysis, coagulation, and organ damage in COVID-19 patients and study their association with disease severity and mortality. We conducted a retrospective study of 181 hospitalized COVID-19 patients randomly selected with balanced distribution of survivors and nonsurvivors. Patients who died had significantly lower ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity, significantly elevated lactate dehydrogenase levels, significantly increased shistocyte/RBC fragment counts, and significantly elevated VWF antigen and activity levels compared with patients discharged alive. These biomarkers correlate with markedly elevated D-dimers. Additionally, only 30% of patients who had an ADAMTS13 activity level of less than 43% on admission survived, yet 60% of patients survived who had an ADAMTS13 activity level of greater than 43% on admission. In conclusion, COVID-19 may present with low ADAMTS13 activity in a subset of hospitalized patients. Presence of schistocytes/RBC fragment and elevated D-dimer on admission may warrant a work-up for ADAMTS13 activity and VWF antigen and activity levels. These findings indicate the need for future investigation to study the relationship between endothelial and coagulation activation and the efficacy of treatments aimed at prevention and/or amelioration of microangiopathy in COVID-19.
Collapse
Affiliation(s)
- Joseph M Sweeney
- Department Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Mohammad Barouqa
- Department of Pathology Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States.,Institute of Aging Studies, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Jesus D Gonzalez-Lugo
- Division of Hematology, Department of Medical Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States
| | - Shafia Rahman
- Division of Hematology, Department of Medical Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States
| | - Morayma Reyes Gil
- Department of Pathology Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
5
|
Sweeney JM, Barouqa M, Krause GJ, Gonzalez-Lugo JD, Rahman S, Gil MR. Evidence for secondary thrombotic microangiopathy in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.20.20215608. [PMID: 33106812 PMCID: PMC7587832 DOI: 10.1101/2020.10.20.20215608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The causes of coagulopathy associated with COVID-19 disease are poorly understood. We aimed to investigate the relationship between markers of endothelial activation, intravascular hemolysis, coagulation, and organ damage in COVID-19 patients and study their association with disease severity and mortality. We conducted a retrospective study of 181 hospitalized COVID-19 patients randomly selected with equal distribution of survivors and non-survivors. Patients who died had significantly lower ADAMTS13 activity, significantly higher LDH, schistocytes and von Willebrand Factor levels compared to patients discharged alive. Only 30% of patients with an initial ADAMTS13 activity <43% survived vs. 60% with ADAMTS13 ≥43% who survived. In conclusion, COVID-19 may manifest as a TMA-like illness in a subset of hospitalized patients. Presence of schistocytes on admission may warrant a work-up for TMA. These findings indicate the need for future investigation to study the relationship between endothelial and coagulation activation and the efficacy of TMA treatments in COVID-19.
Collapse
Affiliation(s)
- Joseph M. Sweeney
- Department Physiology and Biophysics. Albert Einstein College of Medicine, Bronx, NY
| | - Mohammad Barouqa
- Department of Pathology Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, NY
- Institute of Aging Studies. Albert Einstein College of Medicine, Bronx, NY
| | - Jesus D. Gonzalez-Lugo
- Division of Hematology, Department of Medical Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Shafia Rahman
- Division of Hematology, Department of Medical Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Morayma Reyes Gil
- Department of Pathology Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
6
|
Kangro K, Roose E, Schelpe A, Tellier E, Kaplanski G, Voorberg J, De Meyer SF, Männik A, Vanhoorelbeke K. Generation and validation of small ADAMTS13 fragments for epitope mapping of anti-ADAMTS13 autoantibodies in immune-mediated thrombotic thrombocytopenic purpura. Res Pract Thromb Haemost 2020; 4:918-930. [PMID: 32685903 PMCID: PMC7354404 DOI: 10.1002/rth2.12379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In immune-mediated thrombotic thrombocytopenic purpura (iTTP), patients develop an immune response against the multidomain enzyme ADAMTS13. ADAMTS13 consists of a metalloprotease (M) and disintegrin-like (D) domain, 8 thrombospondin type 1 repeats (T1-T8), a cysteine-rich (C), a spacer (S), and 2 CUB domains (CUB1-2). Previous epitope mapping studies have used relatively large overlapping ADAMTS13 fragments. OBJECTIVES We aimed at developing small nonoverlapping ADAMTS13 fragments to fine map anti-ADAMTS13 autoantibodies in iTTP patients. METHODS A library of 16 ADAMTS13 fragments, comprising several small (M, DT, C, S, T2-T5, T6-T8, CUB1, CUB2), and some larger fragments with overlapping domains (MDT, MDTC, DTC, CS, T2-T8, CUB1-2, MDTCS, T2-C2), were generated. All fragments, and ADAMTS13, were expressed as a fusion protein with albumin domain 1, and purified. The folding of the fragments was tested using 17 anti-ADAMTS13 monoclonal antibodies with known epitopes. An epitope mapping assay using small ADAMTS13 fragments was set up, and validated by analyzing 18 iTTP patient samples. RESULTS Validation with the monoclonal antibodies demonstrated that single S and CUB1 were not correctly folded, and therefore CS and CUB1-2 fragments were selected instead of single C, S, CUB1, and CUB2 fragments. Epitope mapping of antibodies of patients with iTTP confirmed that 6 nonoverlapping ADAMTS13 fragments M, DT, CS, T2-T5, T6-T8, and CUB1-2 were sufficient to accurately determine the antibody-binding sites. CONCLUSION We have developed a tool to profile patients with iTTP according to their anti-ADAMTS13 antibodies for a better insight in their immune response.
Collapse
Affiliation(s)
- Kadri Kangro
- Laboratory for Thrombosis ResearchIRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - Elien Roose
- Laboratory for Thrombosis ResearchIRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - An‐Sofie Schelpe
- Laboratory for Thrombosis ResearchIRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - Edwige Tellier
- INSERM, INRAEAix‐Marseille UniversityMarseilleFrance
- French Reference Center for Thrombotic MicroangiopathiesFrance
| | - Gilles Kaplanski
- INSERM, INRAEAix‐Marseille UniversityMarseilleFrance
- French Reference Center for Thrombotic MicroangiopathiesFrance
- INSERM, INRAE, Hôpital de la ConceptionAix‐Marseille UniversityMarseilleFrance
| | - Jan Voorberg
- Department of Molecular and Cellular HemostasisSanquin‐Academic Medical Center Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Simon F. De Meyer
- Laboratory for Thrombosis ResearchIRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | | | - Karen Vanhoorelbeke
- Laboratory for Thrombosis ResearchIRF Life SciencesKU Leuven Campus Kulak KortrijkKortrijkBelgium
| |
Collapse
|
7
|
Dyer MR, Plautz WE, Ragni MV, Alexander W, Haldeman S, Sperry JL, Guyette FX, Zuckerbraun BS, Rollins-Raval MA, Raval JS, Neal MD. Traumatic injury results in prolonged circulation of ultralarge von Willebrand factor and a reduction in ADAMTS13 activity. Transfusion 2020; 60:1308-1318. [PMID: 32441353 DOI: 10.1111/trf.15856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/19/2020] [Accepted: 04/05/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Increases in plasma von Willebrand Factor (VWF) levels, accompanied by decreases in the metalloprotease ADAMTS13, have been demonstrated soon after traumatic injury while downstream effects remain unclear. STUDY DESIGN AND METHODS A cohort of 37 injured trauma patients from a randomized control trial investigating the use of prehospital plasma transfusion were analyzed for activity and antigen levels of ADAMTS13 and VWF at 0 and 24 hours after admission. Relevant clinical data were abstracted from the medical records. Trauma patient plasma was analyzed via agarose gel electrophoresis to evaluate the effects of injury on VWF multimer composition compared to healthy controls. RESULTS von Willebrand factor levels were elevated at presentation (189% [110%-263%] vs. 95% [74%-120%]), persisting through 24 hours (213% [146%-257%] vs. 132% [57%-160%]), compared to healthy controls. Ultralarge VWF (UL-VWF) forms were elevated in trauma patients at both 0 and 24 hours, when compared to pooled normal plasma (10.0% [8.9%-14.3%] and 11.3% [9.1%-21.2%], respectively, vs. 0.6%). Circulating plasma ADAMTS13 activity was decreased at 0 hours (66% [47%-86%] vs. 100% [98%-100%]) and at 24 hours (72.5% [56%-87.3%] vs. 103% [103%-103%]) in trauma patients. ADAMTS13 activity independently predicted the development of coagulopathy and correlated with international normalized ratio, thromboelastography values, injury severity, and blood product transfusion. CONCLUSION Traumatic injury is associated with acute coagulopathy that is characterized by increased UL-VWF multimers and reduction in ADAMTS13, which correlates with blood loss, transfusion requirement, and injury severity. These findings suggest the potential for future trials targeting ADAMTS13 repletion to enhance clearance of VWF multimers.
Collapse
Affiliation(s)
- Mitchell R Dyer
- Pittsburgh Trauma Research Center and the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William E Plautz
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Margaret V Ragni
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wyeth Alexander
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shannon Haldeman
- Pittsburgh Trauma Research Center and the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason L Sperry
- Pittsburgh Trauma Research Center and the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Pittsburgh Trauma Research Center and the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marian A Rollins-Raval
- Department of Pathology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jay S Raval
- Department of Pathology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Matthew D Neal
- Pittsburgh Trauma Research Center and the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
8
|
Newnham M, South K, Bleda M, Auger WR, Barberà JA, Bogaard H, Bunclark K, Cannon JE, Delcroix M, Hadinnapola C, Howard LS, Jenkins D, Mayer E, Ng C, Rhodes CJ, Screaton N, Sheares K, Simpson MA, Southwood M, Su L, Taboada D, Traylor M, Trembath RC, Villar SS, Wilkins MR, Wharton J, Gräf S, Pepke-Zaba J, Laffan M, Lane DA, Morrell NW, Toshner M. The ADAMTS13-VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53:13993003.01805-2018. [PMID: 30655285 PMCID: PMC6437602 DOI: 10.1183/13993003.01805-2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is an important consequence of pulmonary embolism that is associated with abnormalities in haemostasis. We investigated the ADAMTS13–von Willebrand factor (VWF) axis in CTEPH, including its relationship with disease severity, inflammation, ABO groups and ADAMTS13 genetic variants. ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH (n=208), chronic thromboembolic disease without pulmonary hypertension (CTED) (n=35), resolved pulmonary embolism (n=28), idiopathic pulmonary arterial hypertension (n=30) and healthy controls (n=68). CTEPH genetic ABO associations and protein quantitative trait loci were investigated. ADAMTS13–VWF axis abnormalities were assessed in CTEPH and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF multimeric size. Patients with CTEPH had decreased ADAMTS13 (adjusted β −23.4%, 95% CI −30.9– −15.1%, p<0.001) and increased VWF levels (β +75.5%, 95% CI 44.8–113%, p<0.001) compared to healthy controls. ADAMTS13 levels remained low after reversal of pulmonary hypertension by pulmonary endarterectomy surgery and were equally reduced in CTED. We identified a genetic variant near the ADAMTS13 gene associated with ADAMTS13 protein that accounted for ∼8% of the variation in levels. The ADAMTS13–VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary hypertension, disease severity or markers of systemic inflammation and implicates the ADAMTS13–VWF axis in CTEPH pathobiology. The ADAMTS-13–VWF axis is dysregulated in chronic thromboembolism with and without pulmonary hypertension and is implicated in the pathogenesishttp://ow.ly/J9SC30nh5T0
Collapse
Affiliation(s)
- Michael Newnham
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Royal Papworth Hospital, Cambridge, UK
| | - Kieron South
- Centre for Haematology, Imperial College London, London, UK
| | - Marta Bleda
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | - Joan A Barberà
- Hospital Clínic - IDIBAPS-CIBER Enfermedades Respiratorias, University of Barcelona, Barcelona, Spain
| | - Harm Bogaard
- VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | - Charaka Hadinnapola
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Luke S Howard
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | | | - Eckhard Mayer
- Kerckhoff Heart and Lung Centre, Bad Nauheim, Germany
| | - Choo Ng
- Royal Papworth Hospital, Cambridge, UK
| | - Christopher J Rhodes
- Centre for Pharmacology and Therapeutics, Dept of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | | | | | - Michael A Simpson
- Dept of Medical and Molecular Genetics, King's College London School of Basic and Medical Biosciences, London, UK
| | | | - Li Su
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Matthew Traylor
- Dept of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard C Trembath
- Dept of Medical and Molecular Genetics, King's College London School of Basic and Medical Biosciences, London, UK
| | - Sofia S Villar
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Wilkins
- Centre for Pharmacology and Therapeutics, Dept of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - John Wharton
- Centre for Pharmacology and Therapeutics, Dept of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Stefan Gräf
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Dept of Haematology, National Health Service Blood and Transplant Centre, University of Cambridge, Cambridge, UK.,National Institute of Health Research BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Michael Laffan
- Centre for Haematology, Imperial College London, London, UK
| | - David A Lane
- Centre for Haematology, Imperial College London, London, UK
| | - Nicholas W Morrell
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mark Toshner
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
9
|
Post-transcriptional, post-translational and pharmacological regulation of tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2018; 29:668-682. [PMID: 30439766 DOI: 10.1097/mbc.0000000000000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: Tissue factor (TF) pathway inhibitor (TFPI) is an endogenous natural anticoagulant that readily inhibits the extrinsic coagulation initiation complex (TF-FVIIa-Xa) and prothrombinase (FXa, FVa and calcium ions). Alternatively, spliced TFPI isoforms (α, β and δ) are expressed by vascular and extravascular cells and regulate thrombosis and haemostasis, as well as cell signalling functions of TF complexes via protease-activated receptors (PARs). Proteolysis of TFPI plays an important role in regulating physiological roles of the TF pathway in host defense and possibly haemostasis. Elimination of TFPI inhibition has therefore been proposed as an approach to improve haemostasis in haemophilia patients. In this review, we focus on posttranscription and translational modification of TFPI and its function in thrombosis and how pharmacological inhibitors and endogenous proteases interfere with TFPI and alter haemostasis.
Collapse
|
10
|
Shin Y, Miyake H, Togashi K, Hiratsuka R, Endou-Ohnishi K, Imamura Y. Proteolytic inactivation of ADAMTS13 by plasmin in human plasma: risk of thrombotic thrombocytopenic purpura. J Biochem 2018; 163:381-389. [PMID: 29228282 DOI: 10.1093/jb/mvx084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/05/2017] [Indexed: 11/13/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is caused by inactivation of a von Willebrand factor (VWF)-cleaving enzyme, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), which leads to platelet-rich thrombi comprising unusually large VWF multimers. We have found that ADAMTS13 can bind to the inactivated form of plasmin. In addition, plasmin cleaves purified ADAMTS13 into several fragments and inactivates it. Hence, we hypothesized that activation of plasminogen to plasmin becomes a new-onset factor for TTP due to ADAMTS13 inactivation. Plasmin was added exogenously or activated from plasminogen by streprokinase addition in human plasma (HP). ADAMTS13 digestion and effects of the digestion on ADAMTS13 activity were evaluated. Exogenous plasmin cleaved ADAMTS13 into several fragments, but a portion of ADAMTS13 remained in full-length form. Digestion profile of ADAMTS13 with streprokinase added exogenously in HP was similar to that of ADAMTS13 with exogenous plasmin. ADAMTS13 activity measured using FRETS-VWF73 decreased to ∼40% compared with that for normal plasma. Endogenous VWF multimer-cleaving activity was attenuated more severely (∼10%). These data suggest that endogenous plasmin cleaves ADAMTS13 into fragments and reduces its activity to ∼10%. We suggest that endogenous plasmin activation alone is not sufficient to cause TTP, but plasmin activation with ADAMTS13 deficiency might increase the risk of TTP onset.
Collapse
Affiliation(s)
- Yongchol Shin
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan.,Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan
| | - Haruki Miyake
- Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan
| | - Kenshi Togashi
- Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan
| | - Ryuichi Hiratsuka
- Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan
| | - Kana Endou-Ohnishi
- Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan
| | - Yasutada Imamura
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan.,Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, 1920015 Tokyo, Japan
| |
Collapse
|
11
|
Roose E, Tersteeg C, Demeersseman R, Schelpe AS, Deforche L, Pareyn I, Vandenbulcke A, Vandeputte N, Dierickx D, Voorberg J, Deckmyn H, De Meyer SF, Vanhoorelbeke K. Anti-ADAMTS13 Antibodies and a Novel Heterozygous p.R1177Q Mutation in a Case of Pregnancy-Onset Immune-Mediated Thrombotic Thrombocytopenic Purpura. TH OPEN 2018; 2:e8-e15. [PMID: 31249923 PMCID: PMC6524854 DOI: 10.1055/s-0037-1615252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated a case of pregnancy-onset thrombotic thrombocytopenic purpura (TTP). The patient had severely decreased ADAMTS13 (
ad
isintegrin
a
nd
m
etalloprotease with
t
hrombo
s
pondin type 1 motif, member 13) activity levels during acute phase and the presence of inhibitory anti-ADAMTS13 autoantibodies was demonstrated, which led to the diagnosis of immune-mediated TTP. However, ADAMTS13 activity was only mildly restored during remission, although inhibitory anti-ADAMTS13 antibodies were no longer detected. We hypothesized that genetic abnormalities could account for this discrepancy between ADAMTS13 activity and antigen. Genetic analysis revealed the presence of two heterozygous substitutions on the same allele: a single nucleotide polymorphism (SNP) c.2699C > T (p.A900V), located in the beginning of the T5 domain, and a mutation c.3530G > A (p.R1177Q) located in the third linker region of ADAMTS13. In vitro testing of those substitutions by expression of recombinant proteins revealed a normal secretion but a reduced ADAMTS13 activity by the novel p.R1177Q mutation, which could partially explain the subnormal activity levels found during remission. Although changes in the linker region might induce conformational changes in ADAMTS13, the p.R1177Q mutation in the third linker region of ADAMTS13 did not expose a cryptic epitope in the metalloprotease domain. In conclusion, we report on an immune-mediated pregnancy-onset TTP patient who had inhibitory anti-ADAMTS13 autoantibodies during acute phase, but not during remission. Genetic analysis confirmed the diagnosis of immune-mediated TTP and revealed the novel p.R1177Q mutation which mildly impaired ADAMTS13 activity.
Collapse
Affiliation(s)
- Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Ruth Demeersseman
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - An-Sofie Schelpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Louis Deforche
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Inge Pareyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Nele Vandeputte
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Daan Dierickx
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
12
|
Garland KS, Reitsma SE, Shirai T, Zilberman-Rudenko J, Tucker EI, Gailani D, Gruber A, McCarty OJT, Puy C. Removal of the C-Terminal Domains of ADAMTS13 by Activated Coagulation Factor XI induces Platelet Adhesion on Endothelial Cells under Flow Conditions. Front Med (Lausanne) 2017; 4:232. [PMID: 29326937 PMCID: PMC5742325 DOI: 10.3389/fmed.2017.00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Platelet recruitment to sites of vascular injury is mediated by von Willebrand factor (VWF). The shear-induced unraveling of ultra-large VWF multimers causes the formation of a “stringlike” conformation, which rapidly recruits platelets from the bloodstream. A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) regulates this process by cleaving VWF to prevent aberrant platelet adhesion; it is unclear whether the activity of ADAMTS13 itself is regulated. The serine proteases α-thrombin and plasmin have been shown to cleave ADAMTS13. Based on sequence homology, we hypothesized that activated coagulation factor XI (FXIa) would likewise cleave ADAMTS13. Our results show that FXIa cleaves ADAMTS13 at the C-terminal domains, generating a truncated ADAMTS13 with a deletion of part of the thrombospondin type-1 domain and the CUB1-2 domains, while α-thrombin cleaves ADAMTS13 near the CUB1-2 domains and plasmin cleaves ADAMTS13 at the metalloprotease domain and at the C-terminal domain. Using a cell surface immunoassay, we observed that FXIa induced the deletion of the CUB1-2 domains from ADAMTS13 on the surface of endothelial cells. Removal of the C-terminal domain of ADAMTS13 by FXIa or α-thrombin caused an increase in ADAMTS13 activity as measured by a fluorogenic substrate (FRETS) and blocked the ability of ADAMTS13 to cleave VWF on the endothelial cell surface, resulting in persistence of VWF strands and causing an increase in platelet adhesion under flow conditions. We have demonstrated a novel mechanism for coagulation proteinases including FXIa in regulating ADAMTS13 activity and function. This may represent an additional hemostatic function by which FXIa promotes local platelet deposition at sites of vessel injury.
Collapse
Affiliation(s)
- Kathleen S Garland
- Division of Pediatric Hematology/Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toshiaki Shirai
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jevgenia Zilberman-Rudenko
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Erik I Tucker
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Aronora, Inc., Portland, OR, United States
| | - David Gailani
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - András Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Aronora, Inc., Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
13
|
Langley K, Chitolie A, Liesner R, Scully M, Machin S, Peyvandi F, Mackie I. Discrepancies between ADAMTS13 activity assays in patients with thrombotic microangiopathies. Thromb Haemost 2017; 109:488-96. [DOI: 10.1160/th12-08-0565] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/07/2012] [Indexed: 11/05/2022]
Abstract
SummaryADAMTS13 activity assays are sometimes useful in confirming the clinical diagnosis or to distinguish different thrombotic microangiopathies (TMA). We investigated the commonly used clinical assays for ADAMTS13 activity. 159 samples from normal subjects or acquired TMA patients were studied in collagen binding (CBA), Fret and chromogenic peptide substrate assays. Frozen aliquots of pooled normal plasma gave similar values by CBA, Fret-VWF73 peptide, Fret-VWF86 and chromogenic VWF73 ELISA (chr-VWF73). Two lyophilised commercial calibrants gave lower ADAMTS13 activity by CBA than peptide substrate assays. The addition of solid HEPES to normal plasma caused a significant fall in CBA, but not Fret-VWF73 activity and might partly explain the differences, since lyophilised plasmas are often HEPES buffered. Normal plasmas showed good agreement between CBA and Fret assays, although chr-VWF73 gave slightly higher values. In acquired TMA, there was reasonable agreement between assays for samples with <11% ADAMTS13 activity (83% of samples showed agreement between CBA, Fret-VWF73 and chr-VWF73), but samples with moderate deficiency frequently showed lower CBA levels (only 41–52% agreement). However, there were also some discrepancies among the peptide substrate assays, with Fret-VWF86 sometimes giving slightly higher values than the VWF73 substrate assays. An International reference plasma might improve standardisation, but is not the only problem. It is unclear which assay has greatest clinical utility, this may depend on the nature of the sample. If the activity does not match the clinical picture, an alternative method should be performed. Where therapeutic monitoring is required, the same activity assay should be used throughout.
Collapse
|
14
|
Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017; 130:1181-1188. [PMID: 28768626 DOI: 10.1182/blood-2017-04-636431] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/27/2017] [Indexed: 01/29/2023] Open
Abstract
The discovery of a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) revolutionized our approach to thrombotic thrombocytopenic purpura (TTP). Inherited or acquired ADAMTS13 deficiency allows the unrestrained growth of microthrombi that are composed of von Willebrand factor and platelets, which account for the thrombocytopenia, hemolytic anemia, schistocytes, and tissue injury that characterize TTP. Most patients with acquired TTP respond to a combination of plasma exchange and rituximab, but some die or acquire irreversible neurological deficits before they can respond, and relapses can occur unpredictably. However, knowledge of the pathophysiology of TTP has inspired new ways to prevent early deaths by targeting autoantibody production, replenishing ADAMTS13, and blocking microvascular thrombosis despite persistent ADAMTS13 deficiency. In addition, monitoring ADAMTS13 has the potential to identify patients who are at risk of relapse in time for preventive therapy.
Collapse
|
15
|
Abstract
Thrombotic thrombocytopenic purpura (TTP; also known as Moschcowitz disease) is characterized by the concomitant occurrence of often severe thrombocytopenia, microangiopathic haemolytic anaemia and a variable degree of ischaemic organ damage, particularly affecting the brain, heart and kidneys. Acute TTP was almost universally fatal until the introduction of plasma therapy, which improved survival from <10% to 80-90%. However, patients who survive an acute episode are at high risk of relapse and of long-term morbidity. A timely diagnosis is vital but challenging, as TTP shares symptoms and clinical presentation with numerous conditions, including, for example, haemolytic uraemic syndrome and other thrombotic microangiopathies. The underlying pathophysiology is a severe deficiency of the activity of a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), the protease that cleaves von Willebrand factor (vWF) multimeric strings. Ultra-large vWF strings remain uncleaved after endothelial cell secretion and anchorage, bind to platelets and form microthrombi, leading to the clinical manifestations of TTP. Congenital TTP (Upshaw-Schulman syndrome) is the result of homozygous or compound heterozygous mutations in ADAMTS13, whereas acquired TTP is an autoimmune disorder caused by circulating anti-ADAMTS13 autoantibodies, which inhibit the enzyme or increase its clearance. Consequently, immunosuppressive drugs, such as corticosteroids and often rituximab, supplement plasma exchange therapy in patients with acquired TTP.
Collapse
|
16
|
Tersteeg C, Verhenne S, Roose E, Schelpe AS, Deckmyn H, De Meyer SF, Vanhoorelbeke K. ADAMTS13 and anti-ADAMTS13 autoantibodies in thrombotic thrombocytopenic purpura – current perspectives and new treatment strategies. Expert Rev Hematol 2015; 9:209-21. [DOI: 10.1586/17474086.2016.1122515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Deforche L, Roose E, Vandenbulcke A, Vandeputte N, Feys HB, Springer TA, Mi LZ, Muia J, Sadler JE, Soejima K, Rottensteiner H, Deckmyn H, De Meyer SF, Vanhoorelbeke K. Linker regions and flexibility around the metalloprotease domain account for conformational activation of ADAMTS-13. J Thromb Haemost 2015; 13:2063-75. [PMID: 26391536 PMCID: PMC4778570 DOI: 10.1111/jth.13149] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/05/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recently, conformational activation of ADAMTS-13 was identified. This mechanism showed the evolution from a condensed conformation, in which the proximal MDTCS and distal T2-CUB2 domains are in close contact with each other, to an activated, open structure due to binding with von Willebrand factor (VWF). OBJECTIVES Identification of cryptic epitope/exosite exposure after conformational activation and of sites of flexibility in ADAMTS-13. METHODS The activating effect of 25 anti-T2-CUB2 antibodies was studied in the FRETS-VWF73 and the vortex assay. Cryptic epitope/exosite exposure was determined with ELISA and VWF binding assay. The molecular basis for flexibility was hypothesized through rapid automatic detection and alignment of repeats (RADAR) analysis, tested with ELISA using deletion variants and visualized using electron microscopy. RESULTS Eleven activating anti-ADAMTS-13 antibodies, directed against the T5-CUB2 domains, were identified in the FRETS-VWF73 assay. RADAR analysis identified three linker regions in the distal domains. Interestingly, identification of an antibody recognizing a cryptic epitope in the metalloprotease domain confirmed the contribution of these linker regions to conformational activation of the enzyme. The proof of flexibility around both the T2 and metalloprotease domains, as shown by by electron microscopy, further supported this contribution. In addition, cryptic epitope exposure was identified in the distal domains, because activating anti-T2-CUB2 antibodies increased the binding to folded VWF up to ~3-fold. CONCLUSION Conformational activation of ADAMTS-13 leads to cryptic epitope/exosite exposure in both proximal and distal domains, subsequently inducing increased activity. Furthermore, three linker regions in the distal domains are responsible for flexibility and enable the interaction between the proximal and the T8-CUB2 domains.
Collapse
Affiliation(s)
- L Deforche
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| | - E Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| | - A Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| | - N Vandeputte
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| | - H B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Gent, Belgium
| | - T A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - L Z Mi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Muia
- Departments of Medicine, Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - J E Sadler
- Departments of Medicine, Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - K Soejima
- Research Department 1, The Chemo-Sero-Therapeutic Research Institute, Kikuchi, Kumamoto, Japan
| | | | - H Deckmyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| | - S F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium
| |
Collapse
|
18
|
Guo C, Tsigkou A, Lee MH. ADAMTS13 and 15 are not regulated by the full length and N-terminal domain forms of TIMP-1, -2, -3 and -4. Biomed Rep 2015; 4:73-78. [PMID: 26870338 DOI: 10.3892/br.2015.535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 11/06/2022] Open
Abstract
A disintegrin and metalloproteinase with thombospondin motifs (ADAMTS) 13 and 15 are secreted zinc proteinases involved in the turnover of von Willebrand factor and cancer suppression. In the present study, ADAMTS13 and 15 were subjected to inhibition studies with the full-length and N-terminal domain forms of tissue inhibitor of metalloproteinases (TIMPs)-1 to -4. TIMPs have no ability to inhibit the ADAMTS proteinases in the full-length or N-terminal domain form. While ADAMTS13 is also not sensitive to the hydroxamate inhibitors, batimastat and ilomastat, ADAMTS15 can be effectively inhibited by batimastat (Kiapp 299 nM). In conclusion, the present results indicate that TIMPs are not the regulators of these two ADAMTS proteinases.
Collapse
Affiliation(s)
- Cenqi Guo
- Department of Biological Sciences, Xian Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P.R. China
| | - Anastasia Tsigkou
- Department of Biological Sciences, Xian Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P.R. China
| | - Meng Huee Lee
- Department of Biological Sciences, Xian Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
19
|
Abstract
A disintegrin and metalloprotease with thrombospondin motifs 13 (ADAMTS13) is a metalloprotease that regulates von Willebrand factor (VWF) function. ADAMTS13-mediated proteolysis is determined by conformational changes in VWF, but also may depend on its own conformational activation. Kinetic analysis of WT ADAMTS13 revealed ∼ 2.5-fold reduced activity compared with ADAMTS13 lacking its C-terminal tail (MDTCS) or its CUB1-2 domains (WTΔCUB1-2), suggesting that the CUB domains naturally limit ADAMTS13 function. Consistent with this suggestion, WT ADAMTS13 activity was enhanced ∼ 2.5-fold by preincubation with either an anti-CUB mAb (20E9) or VWF D4CK (the natural binding partner for the CUB domains). Furthermore, the isolated CUB1-2 domains not only bound MDTCS, but also inhibited activity by up to 2.5-fold. Interestingly, a gain-of-function (GoF) ADAMTS13 spacer domain variant (R568K/F592Y/R660K/Y661F/Y665F) was ∼ 2.5-fold more active than WT ADAMTS13, but could not be further activated by 20E9 mAb or VWF D4CK and was unable to bind or to be inhibited by the CUB1-2 domains, suggesting that the inhibitory effects of the CUB domains involve an interaction with the spacer domain that is disrupted in GoF ADAMTS13. Electron microscopy demonstrated a "closed" conformation of WT ADAMTS13 and suggested a more "open" conformation for GoF ADAMTS13. The cryptic spacer domain epitope revealed by conformational unfolding also represents the core antigenic target for autoantibodies in thrombotic thrombocytopenic purpura. We propose that ADAMTS13 circulates in a closed conformation, which is maintained by a CUB-spacer domain binding interaction. ADAMTS13 becomes conformationally activated on demand through interaction of its C-terminal CUB domains with VWF, making it susceptible to immune recognition.
Collapse
|
20
|
Wang Y, Chen J, Ling M, López JA, Chung DW, Fu X. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem 2014; 290:1422-31. [PMID: 25422322 DOI: 10.1074/jbc.m114.599084] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ADAMTS13 is a plasma metalloproteinase that cleaves large multimeric forms of von Willebrand factor (VWF) to smaller, less adhesive forms. ADAMTS13 activity is reduced in systemic inflammatory syndromes, but the cause is unknown. Here, we examined whether neutrophil-derived oxidants can regulate ADAMTS13 activity. We exposed ADAMTS13 to hypochlorous acid (HOCl), produced by a myeloperoxidase-H2O2-Cl(-) system, and determined its residual proteolytic activity using both a VWF A2 peptide substrate and multimeric plasma VWF. Treatment with 25 nm myeloperoxidase plus 50 μm H2O2 reduced ADAMTS13 activity by >85%. Using mass spectrometry, we demonstrated that Met(249), Met(331), and Met(496) in important functional domains of ADAMTS13 were oxidized to methionine sulfoxide in an HOCl concentration-dependent manner. The loss of enzyme activity correlated with the extent of oxidation of these residues. These Met residues were also oxidized in ADAMTS13 exposed to activated human neutrophils, accompanied by reduced enzyme activity. ADAMTS13 treated with either neutrophil elastase or plasmin was inhibited to a lesser extent, especially in the presence of plasma. These observations suggest that oxidation could be an important mechanism for ADAMTS13 inactivation during inflammation and contribute to the prothrombotic tendency associated with inflammation.
Collapse
Affiliation(s)
- Yi Wang
- From the Research Institute, Puget Sound Blood Center, Seattle, Washington 98104 and
| | - Junmei Chen
- From the Research Institute, Puget Sound Blood Center, Seattle, Washington 98104 and
| | - Minhua Ling
- From the Research Institute, Puget Sound Blood Center, Seattle, Washington 98104 and
| | - José A López
- From the Research Institute, Puget Sound Blood Center, Seattle, Washington 98104 and the Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington 98195
| | - Dominic W Chung
- From the Research Institute, Puget Sound Blood Center, Seattle, Washington 98104 and the Departments of Biochemistry and
| | - Xiaoyun Fu
- From the Research Institute, Puget Sound Blood Center, Seattle, Washington 98104 and Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
21
|
Tersteeg C, de Maat S, De Meyer SF, Smeets MWJ, Barendrecht AD, Roest M, Pasterkamp G, Fijnheer R, Vanhoorelbeke K, de Groot PG, Maas C. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation 2014; 129:1320-31. [PMID: 24449821 DOI: 10.1161/circulationaha.113.006727] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Von Willebrand factor (VWF) multimer size is controlled through continuous proteolysis by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type I motif, member 13). This prevents spontaneous platelet agglutination and microvascular obstructions. ADAMTS13 deficiency is associated with thrombotic thrombocytopenic purpura, in which life-threatening episodes of microangiopathy damage kidneys, heart, and brain. Enigmatically, a complete ADAMTS13 deficiency does not lead to continuous microangiopathy. We hypothesized that plasmin, the key enzyme of the fibrinolytic system, serves as a physiological backup enzyme for ADAMTS13 in the degradation of pathological platelet-VWF complexes. METHODS AND RESULTS Using real-time microscopy, we determined that plasmin rapidly degrades platelet-VWF complexes on endothelial cells in absence of ADAMTS13, after activation by urokinase-type plasminogen activator or the thrombolytic agent streptokinase. Similarly, plasmin degrades platelet-VWF complexes in platelet agglutination studies. Plasminogen directly binds to VWF and its A1 domain in a lysine-dependent manner, as determined by enzyme-linked immunosorbent assay. Plasma levels of plasmin-α2-antiplasmin complexes increase with the extent of thrombocytopenia in patients with acute episodes of thrombotic thrombocytopenic purpura, independent of ADAMTS13 activity. This indicates that plasminogen activation takes place during microangiopathy. Finally, we show that the thrombolytic agent streptokinase has therapeutic value for Adamts13(-/-) mice in a model of thrombotic thrombocytopenic purpura. CONCLUSIONS We propose that plasminogen activation on endothelial cells acts as a natural backup for ADAMTS13 to degrade obstructive platelet-VWF complexes. Our findings indicate that thrombolytic agents may have therapeutic value in the treatment of microangiopathies and may be useful to bypass inhibitory antibodies against ADAMTS13 that cause thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Claudia Tersteeg
- Laboratory of Clinical Chemistry and Haematology (C.T., S.d.M., M.W.J.S., A.D.B., M.R., R.F., P.G.d.G., C.M.) and Laboratory of Experimental Cardiology (C.T., G.P.), UMC Utrecht, Utrecht, The Netherlands; and Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Kulak, Kortrijk, Belgium (S.F.D.M., K.V.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peigne V, Azoulay E, Coquet I, Mariotte E, Darmon M, Legendre P, Adoui N, Marfaing-Koka A, Wolf M, Schlemmer B, Veyradier A. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit Care 2013; 17:R273. [PMID: 24238574 PMCID: PMC4056532 DOI: 10.1186/cc13115] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/28/2013] [Indexed: 11/23/2022] Open
Abstract
Introduction ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency has been reported in patients with sepsis but its clinical relevance and pathophysiology remain unclear. Our objectives were to assess the clinical significance, prognostic value and pathophysiology of ADAMTS13 deficiency in patients with septic shock with and without disseminated intravascular coagulation (DIC). Methods This was a prospective monocenter cohort study of patients with septic shock. Von Willebrand Factor, ADAMTS13-related parameters and plasma IL-6 concentration were measured at inclusion to the study. Patients were categorized into three groups according to the presence of ADAMT13 deficiency (<30%) or DIC. Results This study included 72 patients with a median age of 59 years (interquartile range (IQR) 50 to 71). Each of the included patients received vasopressors; 55 (76%) were under mechanical ventilation and 22 (33%) underwent renal replacement therapy. Overall, 19 patients (26%) had DIC, and 36 patients had ADMTS13 deficiency (50%). Patients with DIC, ADAMTS13 deficiency or both were more severe at ICU admission. Mortality was higher in septic shock patients from group one. By multivariate analysis, Simplified Acute Physiology Score 2 (SAPS2) score (odds ratio (OR) 1.11/point; 95% CI 1.01 to 1.24) and ADAMTS13 activity <30% (OR 11.86; 95% CI 1.36 to 103.52) were independently associated with hospital mortality. There was no correlation between ADAMTS13 activity and the International Society for Thrombosis and Haemostasis (ISTH) score (rs = -0.97, P = 0.41) suggesting that ADAMTS13 functional deficiency and DIC were independent parameters. IL-6 level was higher in patients with ADAMTS13 activity <30% [895 (IQR 330 to 1843) pg/mL versus 83 (IQR 43 to 118), P = 0.0003). Conclusions Septic shock was associated with a functional deficiency of ADAMTS13, independently of DIC. ADAMTS13 functional deficiency is then a prognostic factor for mortality in septic shock patients, independently of DIC.
Collapse
|
23
|
Ferrari S, Palavra K, Gruber B, Kremer Hovinga JA, Knöbl P, Caron C, Cromwell C, Aledort L, Plaimauer B, Turecek PL, Rottensteiner H, Scheiflinger F. Persistence of circulating ADAMTS13-specific immune complexes in patients with acquired thrombotic thrombocytopenic purpura. Haematologica 2013; 99:779-87. [PMID: 24241492 DOI: 10.3324/haematol.2013.094151] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anti-ADAMTS13 autoantibodies are the main cause of acquired thrombotic thrombocytopenic purpura. Binding of these antibodies to ADAMTS13 eventually results in the formation of antigen-antibody immune complexes. Circulating ADAMTS13-specific immune complexes have been described in patients with acquired thrombotic thrombocytopenic purpura, although the prevalence and persistence of these immune complexes over time have hitherto remained elusive. Here, we analyzed a large cohort of patients with acquired thrombotic thrombocytopenic purpura for the presence of free and complexed anti-ADAMTS13 antibodies. In the acute phase (n=68), 100% of patients had free IgG antibodies and 97% had ADAMTS13-specific immune complexes. In remission (n=28), 75% of patients had free antibodies (mainly IgG) and 93% had ADAMTS13-specific immune complexes. Free antibodies were mainly of subclasses IgG1 and IgG4, whereas IgG4 was by far the most prevalent in ADAMTS13-specific immune complexes. Comparison of ADAMTS13 inhibitor and anti-ADAMTS13 IgG (total and subclasses) antibody titers in acute phase and in remission samples showed a statistically significant decrease in all parameters in remission. Although non-significant, a trend towards reduced or undetectable titers in remission was also observed for ADAMTS13-specific immune complexes of subclasses IgG1, IgG2 and IgG3. No such trend was discernible for IgG4; IgG4 immune complexes persisted over years, even in patients who had been treated with rituximab and who showed no features suggesting relapse.
Collapse
|
24
|
Feys HB, Van Aelst B, Devreese K, Devloo R, Coene J, Vandekerckhove P, Compernolle V. Oxygen removal during pathogen inactivation with riboflavin and UV light preserves protein function in plasma for transfusion. Vox Sang 2013; 106:307-15. [PMID: 24460692 DOI: 10.1111/vox.12106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Photochemical pathogen inactivation technologies (PCT) for individual transfusion products act by inhibition of replication through irreversibly damaging nucleic acids. Concern on the collateral impact of PCT on the blood component's integrity has caused reluctance to introduce this technology in routine practice. This work aims to uncover the mechanism of damage to plasma constituents by riboflavin pathogen reduction technology (RF-PRT). METHODS Activity and antigen of plasma components were determined following RF-PRT in the presence or absence of dissolved molecular oxygen. RESULTS Employing ADAMTS13 as a sentinel molecule in plasma, our data show that its activity and antigen are reduced by 23 ± 8% and 29 ± 9% (n = 24), respectively, which corroborates with a mean decrease of 25% observed for other coagulation factors. Western blotting of ADAMTS13 shows decreased molecular integrity, with no obvious indication of additional proteolysis nor is riboflavin able to directly inhibit the enzyme. However, physical removal of dissolved oxygen prior to RF-PRT protects ADAMTS13 as well as FVIII and fibrinogen from damage, indicating a direct role for reactive oxygen species. Redox dye measurements indicate that superoxide anions are specifically generated during RF-PRT. Protein carbonyl content as a marker of disseminated irreversible biomolecular damage was significantly increased (3·1 ± 0·8 vs. 1·6 ± 0·5 nmol/mg protein) following RF-PRT, but not in the absence of dissolved molecular oxygen (1·8 ± 0·4 nmol/mg). CONCLUSIONS RF-PRT of single plasma units generates reactive oxygen species that adversely affect biomolecular integrity of relevant plasma constituents, a side-effect, which can be bypassed by applying hypoxic conditions during the pathogen inactivation process.
Collapse
Affiliation(s)
- H B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Crawley JTB, Scully MA. Thrombotic thrombocytopenic purpura: basic pathophysiology and therapeutic strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:292-9. [PMID: 24319194 DOI: 10.1182/asheducation-2013.1.292] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
VWF is a multimeric plasma glycoprotein that specifically recruits platelets to sites of vessel injury. VWF multimeric size is central to this function, with larger multimers being more hemostatically active. Regulation of VWF multimeric size is mediated by the plasma metalloprotease ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motifs, member 13). This enzyme can only recognize and cleave VWF when it is unraveled by rheological shear forces of the flowing blood. After the exposure of cryptic exosites, VWF recognition by ADAMTS13 involves multiple interactions that enable the protease to cleave VWF. Loss of VWF multimer size regulation caused by severe ADAMTS13 deficiency (either inherited or acquired) is associated with the microvascular thrombotic disorder thrombotic thrombocytopenic purpura (TTP). The sequelae associated with TTP are widely thought to be linked to hyperreactive circulating VWF that cause unwanted platelet aggregation in the high shear environment of the microvasculature. Diagnosis of TTP is primarily made through a combination of symptoms, analysis of plasma ADAMTS13 activity, and detection of inhibitory anti-ADAMTS13 antibodies. Current frontline treatments for TTP include plasma exchange, which serves to remove inhibitory antibodies (in acquired TTP) and provide a source of functional ADAMTS13, and steroids to treat the autoimmune component of acquired TTP. The use of anti-CD20 therapy has also exhibited encouraging results in the treatment of acquired TTP. Newer therapeutic strategies that are currently being explored or are in development include recombinant ADAMTS13, a hyperreactive ADAMTS13 variant, and anti-VWF therapy. This review discusses the basic biochemistry of VWF and ADAMTS13, their dysfunction in TTP, and therapeutic approaches for the amelioration of TTP.
Collapse
Affiliation(s)
- James T B Crawley
- 1Centre for Haematology, Imperial College London, London, United Kingdom; and
| | | |
Collapse
|
26
|
Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118:3212-21. [PMID: 21715306 DOI: 10.1182/blood-2011-02-306597] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
von Willebrand factor (VWF) is a large adhesive glycoprotein with established functions in hemostasis. It serves as a carrier for factor VIII and acts as a vascular damage sensor by attracting platelets to sites of vessel injury. VWF size is important for this latter function, with larger multimers being more hemostatically active. Functional imbalance in multimer size can variously cause microvascular thrombosis or bleeding. The regulation of VWF multimeric size and platelet-tethering function is carried out by ADAMTS13, a plasma metalloprotease that is constitutively active. Unusually, protease activity of ADAMTS13 is controlled not by natural inhibitors but by conformational changes in its substrate, which are induced when VWF is subject to elevated rheologic shear forces. This transforms VWF from a globular to an elongated protein. This conformational transformation unfolds the VWF A2 domain and reveals cryptic exosites as well as the scissile bond. To enable VWF proteolysis, ADAMTS13 makes multiple interactions that bring the protease to the substrate and position it to engage with the cleavage site as this becomes exposed by shear. This article reviews recent literature on the interaction between these 2 multidomain proteins and provides a summary model to explain proteolytic regulation of VWF by ADAMTS13.
Collapse
|