1
|
Izumi-Nakaseko H, Fujiyoshi M, Hagiwara-Nagasawa M, Goto A, Chiba K, Kambayashi R, Naito AT, Ando K, Kanda Y, Ishii I, Sugiyama A. Dasatinib can Impair Left Ventricular Mechanical Function But May Lack Proarrhythmic Effect: A Proposal of Non-clinical Guidance for Predicting Clinical Cardiovascular Adverse Events of Tyrosine Kinase Inhibitors. Cardiovasc Toxicol 2020; 20:58-70. [PMID: 31280457 DOI: 10.1007/s12012-019-09538-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors are known to clinically induce various types of cardiovascular adverse events; however, it is still difficult to predict them at preclinical stage. In order to explore how to better predict such drug-induced cardiovascular adverse events, we tried to develop a new protocol by assessing acute electrophysiological, cardiohemodynamic, and cytotoxic effects of dasatinib in vivo and in vitro. Dasatinib at 0.03 and 0.3 mg/kg was intravenously administered to the halothane-anesthetized dogs for 10 min with an interval of 20 min between the dosing (n = 4). Meanwhile, that at 0.1, 0.3, and 1 μM was cumulatively applied to the human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) (n = 7). In the dogs, the low and high doses provided peak plasma concentrations of 40 ± 5 (0.08) and 615 ± 38 ng/mL (1.26 μM), respectively. The low dose decreased the heart rate, impaired the left ventricular mechanical function, and prolonged the ventricular effective refractory period. The high dose prolonged the repolarization period, induced hemorrhagic tendency, and increased plasma cardiac troponin I level in addition to enhancement of the changes observed after the low dose, whereas it neither affected the cardiac conduction nor induced ventricular arrhythmias. In the hiPSC-CMs, dasatinib prolonged the repolarization and refractory periods like in dogs, while it did not induce apoptotic or necrotic process, but that it increased the conduction speed. Clinically observed major cardiovascular adverse events of dasatinib were observed qualitatively by currently proposed assay protocol, which may become a useful guide for predicting the cardiotoxicity of new tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.,Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Masachika Fujiyoshi
- Personalized Medicine & Preventive Healthcare Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Mihoko Hagiwara-Nagasawa
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ai Goto
- Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Koki Chiba
- Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsuhiko T Naito
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.,Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kentaro Ando
- Department of Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Itsuko Ishii
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.,Division of Pharmacy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Pharmacology, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
2
|
Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood 2018; 131:1122-1144. [PMID: 29301754 DOI: 10.1182/blood-2017-02-768077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring.
Collapse
|
3
|
Abstract
SUCNR1 (or GPR91) belongs to the family of G protein-coupled receptors (GPCR), which represents the largest group of membrane proteins in human genome. The majority of marketed drugs targets GPCRs, directly or indirectly. SUCNR1 has been classified as an orphan receptor until a landmark study paired it with succinate, a citric acid cycle intermediate. According to the current paradigm, succinate triggers SUCNR1 signaling pathways to indicate local stress that may affect cellular metabolism. SUCNR1 implication has been well documented in renin-induced hypertension, ischemia/reperfusion injury, inflammation and immune response, platelet aggregation and retinal angiogenesis. In addition, the SUCNR1-induced increase of blood pressure may contribute to diabetic nephropathy or cardiac hypertrophy. The understanding of SUCNR1 activation, signaling pathways and functions remains largely elusive, which calls for deeper investigations. SUCNR1 shows a high potential as an innovative drug target and is probably an important regulator of basic physiology. In order to achieve the full characterization of this receptor, more specific pharmacological tools such as small-molecules modulators will represent an important asset. In this review, we describe the structural features of SUCNR1, its current ligands and putative binding pocket. We give an exhaustive overview of the known and hypothetical signaling partners of the receptor in different in vitro and in vivo systems. The link between SUCNR1 intracellular pathways and its pathophysiological roles are also extensively discussed.
Collapse
|
4
|
Abstract
Multiple studies have now shown that various species of bacteria can stimulate platelets; many in a strain and donor-dependent manner. The signalling pathways underlying this platelet activation has been the subject of scrutiny for the last decade. The best-delineated pathway is that in response to Streptococcal species, such as Streptococcus sanguinis (S. sanguinis), Streptococcus gordonii (S. gordonii) and Streptococcus oralis (S. oralis), where a pathway is initiated by the engagement of the low affinity IgG receptor, FcγRIIA. This leads to and involves the tyrosine kinase Syk, the adaptor protein Linker of Activated T Cells (LAT) and subsequently both phospholipase Cγ2 (PLCγ2) and phosphatidylinositol-3-kinase (PI-3-K). Finally, this leads to the expression of the αIIbβ3 integrin, the synthesis and release of thromboxane A2 (T × A2) and the exocytosis of PF4, each of which plays a crucial role in secondary signalling and full platelet activation. Roles for other signalling pathways in Streptococcal-induced platelet activation are less clear, although an ADP-mediated inhibition of adenylyl cyclase, a glycoprotein Ib/IX/V-mediated pathway and perhaps a complement-induced pathway have each been proposed. Platelet activation by Porphyromonas gingivalis (P. gingivalis) at least partially shares the FcγRIIA/Syk/PLCγ2/PI-3-K mechanism utilised by Streptococcal species. However, it has also been suggested that P. gingivalis activates platelets by two additional methods; stimulation of the protease-activated receptors leading to activation of phospholipase Cβ (PLCβ), and the engagement of Toll-like receptors 2 and 4 by released lipopolysaccharide leading to an ill-defined pathway which may involve PI-3-K. Consequently, it appears that bacteria can stimulate platelets by eliciting multiple signalling pathways some of which are common, and some unique, to individual species.
Collapse
|
5
|
Walsh TG, Harper MT, Poole AW. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4. Cell Signal 2014; 27:37-46. [PMID: 25283599 PMCID: PMC4265729 DOI: 10.1016/j.cellsig.2014.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/12/2022]
Abstract
Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20–100 ng/mL− 1 could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca(2 +) mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway. Collagen-induced platelet aggregation, TxA2 production and dense granule secretion require CXCR4 signalling. CXCR4 regulates platelet thrombus formation. SDF-1α-induced changes in cAMP and Ca(2 +) signalling require CXCR4. SDF-1α, via CXCR4, enhances platelet activation responses to collagen, primarily through a TxA2-dependent and ADP-independent pathway.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Matthew T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
6
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
7
|
Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4. Blood 2014; 123:3166-74. [PMID: 24642751 DOI: 10.1182/blood-2013-11-540526] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial adhesion to platelets is mediated via a range of strain-specific bacterial surface proteins that bind to a variety of platelet receptors. It is unclear how these interactions lead to platelet activation. We demonstrate a critical role for the immune receptor FcγRIIA, αIIbβ3, and Src and Syk tyrosine kinases in platelet activation by Staphylococcus aureus, Streptococcus sanguinis, Streptococcus gordonii, Streptococcus oralis, and Streptococcus pneumoniae. FcγRIIA activation is dependent on immunoglobulin G (IgG) and αIIbβ3 engagement. Moreover, feedback agonists adenosine 5'-diphosphate and thromboxane A2 are mandatory for platelet aggregation. Additionally, platelet factor 4 (PF4) binds to bacteria and reduces the lag time for aggregation, and gray platelet syndrome α-granule-deficient platelets do not aggregate to 4 of 5 bacterial strains. We propose that FcγRIIA-mediated activation is a common response mechanism used against a wide range of bacteria, and that release of secondary mediators and PF4 serve as a positive feedback mechanism for activation through an IgG-dependent pathway.
Collapse
|
8
|
Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2013; 165:165-78. [DOI: 10.1111/bjh.12662] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alan T. Nurden
- L'Institut de Rhythmologie et Modélisation Cardiaque (LIRYC); Plateforme Technologique et d'Innovation Biomédicale; Hôpital Xavier Arnozan; Pessac France
| | - Paquita Nurden
- L'Institut de Rhythmologie et Modélisation Cardiaque (LIRYC); Plateforme Technologique et d'Innovation Biomédicale; Hôpital Xavier Arnozan; Pessac France
| |
Collapse
|
9
|
Neferine exerts its antithrombotic effect by inhibiting platelet aggregation and promoting dissociation of platelet aggregates. Thromb Res 2013; 132:202-10. [PMID: 23773522 DOI: 10.1016/j.thromres.2013.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/08/2013] [Accepted: 05/21/2013] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neferine, a kind of isoquinoline alkaloid, extracted from the seed embryo of Nelumbo nucifera Gaertn, has long been recognized in traditional medicine as a medicinal plant with various usages. Neferine has many biological activities, including anti-hypertensive, anti-arrhythmic, negative inotropic effect and relaxation on vascular smooth muscle. Although previous studies have reported its antithrombotic effect, the mechanisms by which it exerts antithrombotic effect have not been thoroughly studied. METHOD Washed mice platelets and mice platelet-rich-plasma (PRP) were used to investigate the effects of neferine on platelet aggregation, secretion induced by various agonists and dissociation of agonist-formed platelet aggregates. Bioflux plates coated with collagen were used to investigate the effect of neferine on platelet adhesion and thrombosis in vitro. With collagen-epinephrine-induced acute pulmonary thrombus formation mouse model, the effect of neferine on thrombosis in vivo was also examined. RESULTS Neferine, significantly and dose-dependently, inhibited collagen-, thrombin-, U46619-induced platelet aggregation in mice washed platelets, or ADP-induced platelet aggregation in PRP. Neferine treatment decreased platelet dense granule secretion initiated by collagen, thrombin and U46619. Also, Neferine dramatically and dose-dependently promoted the dissociation of platelet aggregates pre-formed by various agonists including collagen, thrombin, U46619 or ADP. Neferine can significantly reduce the area of mice platelets adhesion to the collagen and inhibit thrombosis in vitro. In collagen-epinephrine-induced acute pulmonary thrombus mouse model, neferine, at 6 mg/kg, significantly attenuated thrombus formation. CONCLUSIONS Neferine remarkably prevents thrombus formation by inhibiting platelet activation, adhesion and aggregation, as well as promoting disassembly of pre-formed platelet aggregates. The inhibitory effects of neferine on platelet activation might be relevant in cases involving aberrant platelet activation where neferine could be used as an anti-platelet and antithrombotic agent.
Collapse
|
10
|
Lordkipanidzé M, Lowe GC, Watson SP. Simultaneous measurement of ATP release and LTA does not potentiate platelet aggregation to epinephrine. Thromb Haemost 2013; 110:199-201. [PMID: 23636351 DOI: 10.1160/th13-02-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/20/2013] [Indexed: 01/25/2023]
|
11
|
Brass LF, Tomaiuolo M, Stalker TJ. Harnessing the platelet signaling network to produce an optimal hemostatic response. Hematol Oncol Clin North Am 2013; 27:381-409. [PMID: 23714305 DOI: 10.1016/j.hoc.2013.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Once released into the circulation by megakaryocytes, circulating platelets can undergo rapid activation at sites of vascular injury and resist unwarranted activation, which can lead to heart attacks and strokes. Historically, the signaling mechanisms underlying the regulation of platelet activation have been approached as a collection of individual pathways unique to agonist. This review takes a different approach, casting platelet activation as the product of a signaling network, in which activating and restraining mechanisms interact in a flexible network that regulates platelet adhesiveness, cohesion between platelets, granule secretion, and the formation of a stable hemostatic thrombus.
Collapse
Affiliation(s)
- Lawrence F Brass
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
12
|
Hughes CE, Radhakrishnan UP, Lordkipanidzé M, Egginton S, Dijkstra JM, Jagadeeswaran P, Watson SP. G6f-like is an ITAM-containing collagen receptor in thrombocytes. PLoS One 2012; 7:e52622. [PMID: 23285115 PMCID: PMC3528668 DOI: 10.1371/journal.pone.0052622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/20/2012] [Indexed: 01/22/2023] Open
Abstract
Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.
Collapse
Affiliation(s)
- Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
13
|
Dawood BB, Lowe GC, Lordkipanidzé M, Bem D, Daly ME, Makris M, Mumford A, Wilde JT, Watson SP. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood 2012; 120:5041-9. [PMID: 23002116 PMCID: PMC3790949 DOI: 10.1182/blood-2012-07-444281] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/12/2012] [Indexed: 11/20/2022] Open
Abstract
Light transmission aggregometry (LTA) is used worldwide for the investigation of heritable platelet function disorders (PFDs), but interpretation of results is complicated by the feedback effects of ADP and thromboxane A(2) (TxA(2)) and by the overlap with the response of healthy volunteers. Over 5 years, we have performed lumi-aggregometry on 9 platelet agonists in 111 unrelated research participants with suspected PFDs and in 70 healthy volunteers. Abnormal LTA or ATP secretion test results were identified in 58% of participants. In 84% of these, the patterns of response were consistent with defects in Gi receptor signaling, the TxA(2) pathway, and dense granule secretion. Participants with defects in signaling to Gq-coupled receptor agonists and to collagen were also identified. Targeted genotyping identified 3 participants with function-disrupting mutations in the P2Y(12) ADP and TxA(2) receptors. The results of the present study illustrate that detailed phenotypic analysis using LTA and ATP secretion is a powerful tool for the diagnosis of PFDs. Our data also enable subdivision at the level of platelet-signaling pathways and in some cases to individual receptors. We further demonstrate that most PFDs can be reliably diagnosed using a streamlined panel of key platelet agonists and specified concentrations suitable for testing in most clinical diagnostic laboratories.
Collapse
Affiliation(s)
- Ban B Dawood
- Department of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Séverin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, Senis YA, Watson SP. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost 2012; 10:1631-45. [PMID: 22694307 PMCID: PMC4280098 DOI: 10.1111/j.1538-7836.2012.04814.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Src family kinases (SFKs) play a critical role in initiating and propagating signals in platelets. The aims of this study were to quantitate SFK members present in platelets and to analyze their contribution to platelet regulation using glycoprotein VI (GPVI) and intregrin αIIbβ3, and in vivo. METHODS AND RESULTS Mouse platelets express four SFKs, Fgr, Fyn, Lyn and Src, with Lyn expressed at a considerably higher level than the others. Using mutant mouse models, we demonstrate that platelet activation by collagen-related peptide (CRP) is delayed and then potentiated in the absence of Lyn, but only marginally reduced in the absence of Fyn or Fgr, and unaltered in the absence of Src. Compound deletions of Lyn/Src or Fyn/Lyn, but not of Fyn/Src or Fgr/Lyn, exhibit a greater delay in activation relative to Lyn-deficient platelets. Fibrinogen-adherent platelets show reduced spreading in the absence of Src, potentiation in the absence of Lyn, but no change in the absence of Fyn or Fgr. In mice double-deficient in Lyn/Src or Fgr/Lyn, the inhibitory role of Lyn on spreading on fibrinogen is lost. Lyn is the major SFK-mediating platelet aggregation on collagen at arterial shear and its absence leads to a reduction in thrombus size in a laser injury model. CONCLUSION These results demonstrate that SFKs share individual and overlapping roles in regulating platelet activation, with Lyn having a dual role in regulating GPVI signaling and an inhibitory role downstream of αIIbβ3, which requires prior signaling through Src.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
McNicol A, Agpalza A, Jackson ECG, Hamzeh-Cognasse H, Garraud O, Cognasse F. Streptococcus sanguinis-induced cytokine release from platelets. J Thromb Haemost 2011; 9:2038-49. [PMID: 21824285 DOI: 10.1111/j.1538-7836.2011.04462.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND There is increasing evidence that both chronic and acute infections play a role in the development and progression of atherothrombotic disorders. One potential mechanism is the direct activation of platelets by bacteria. A wide range of bacterial species activate platelets through heterogeneous mechanisms. The oral micro-organism S. sanguinis stimulates platelet aggregation in vitro in a strain-dependent manner, although there are no reports of associated cytokine production. OBJECTIVE The aim of the present study was to determine whether platelet activation by S. sanguinis involved the release of pro-inflammatory and immune modulating factors, and whether activation was enhanced by epinephrine. METHODS AND RESULTS Four strains of S. sanguinis and one of S. gordonii stimulated the release of RANTES, PF4, sCD40L and PDGF-AB, whereas only one S. sanguinis strain caused the release of sCD62p. Epinephrine enhanced S. sanguinis-induced platelet aggregation and phosphorylation of phospholipase Cγ2 and Erk, but inhibited RANTES, PF4, sCD40L and PDGF-AB release. Wortmannin inhibited S. sanguinis-induced aggregation and release; however, only aggregation was partially reversed by epinephrine. CONCLUSIONS The present study demonstrates that platelets respond to S. sanguinis with both prothrombotic and pro-inflammatory/immune-modulating responses. Epinephrine, potentially released in response to infection and/or stress, can significantly enhance the prothrombotic response, thereby providing a putative link between bacteraemia and acute coronary events during stress. In contrast, epinephrine inhibited the pro-inflammatory/immune-modulating response by an undetermined mechanism.
Collapse
Affiliation(s)
- A McNicol
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Mazharian A, Ghevaert C, Zhang L, Massberg S, Watson SP. Dasatinib enhances megakaryocyte differentiation but inhibits platelet formation. Blood 2011; 117:5198-206. [PMID: 21385851 PMCID: PMC3109542 DOI: 10.1182/blood-2010-12-326850] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/17/2011] [Indexed: 12/12/2022] Open
Abstract
Dasatinib is a novel, potent, ATP-competitive inhibitor of Bcr-Abl, cKIT, and Src family kinases that exhibits efficacy in patients with imatinib-resistant chronic myelogenous leukemia. Dasatinib treatment is associated with mild thrombocytopenia and an increased risk of bleeding, but its biological effect on megakaryocytopoiesis and platelet production is unknown. In this study, we show that dasatinib causes mild thrombocytopenia in mice without altering platelet half-life, suggesting that it inhibits platelet formation. Conversely, the number of megakaryocytes (MKs) in the bone marrow of dasatinib-treated mice was increased and the ploidy of MKs derived from bone marrow progenitor cells in vitro was elevated in the presence of dasatinib. Furthermore, a significant delay in platelet recovery after immune-induced thrombocytopenia was observed in dasatinib-treated mice even though the number of MKs in the bone marrow was increased relative to controls at all time points. Interestingly, the migration of MKs toward a gradient of stromal cell-derived factor 1α (SDF1α) and the formation of proplatelets in vitro were abolished by dasatinib. We propose that dasatinib causes thrombocytopenia as a consequence of ineffective thrombopoiesis, promoting MK differentiation but also impairing MK migration and proplatelet formation.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | |
Collapse
|
18
|
Mahaut-Smith MP, Jones S, Evans RJ. The P2X1 receptor and platelet function. Purinergic Signal 2011; 7:341-56. [PMID: 21484087 PMCID: PMC3166991 DOI: 10.1007/s11302-011-9224-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/22/2011] [Indexed: 12/17/2022] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca(2+), leading to shape change, movement of secretory granules and low levels of α(IIb)β(3) integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, UK,
| | | | | |
Collapse
|
19
|
Högberg C, Gidlöf O, Tan C, Svensson S, Nilsson-Öhman J, Erlinge D, Olde B. Succinate independently stimulates full platelet activation via cAMP and phosphoinositide 3-kinase-β signaling. J Thromb Haemost 2011; 9:361-72. [PMID: 21143371 DOI: 10.1111/j.1538-7836.2010.04158.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The citric cycle intermediate succinate has recently been identified as a ligand for the G-protein-coupled receptor (GPCR) SUCNR1. We have previously found that this receptor is one of the most highly expressed GPCRs in human platelets. OBJECTIVE The aim of this study was to investigate the role of SUCNR1 in platelet aggregation and to explore the signaling pathways of this receptor in platelets. METHODS AND RESULTS Using real-time-PCR, we demonstrated that SUCNR1 is expressed in human platelets at a level corresponding to that of the P2Y(1) receptor. Light transmission aggregation experiments showed dose-dependent aggregation induced by succinate, reaching a maximum response at 0.5 mM. The effect of succinate on platelet aggregation was confirmed with flow cytometry, showing increased surface expression of activated glycoprotein IIb-IIIa and P-selectin. Intracellular SUCNR1 signaling was found to result in decreased cAMP levels, Akt phosphorylation mediated by phosphoinositide 3-kinase-β activation, and receptor desensitization. Furthermore, succinate-induced platelet aggregation was demonstrated to depend on Src, generation of thromboxane A(2), and ATP release. Platelet SUCNR1 is subject to desensitization through both homologous and heterologous mechanisms. In addition, the P2Y(12) receptor inhibitor ticagrelor completely prevented platelet aggregation induced by succinate. CONCLUSIONS Our experiments show that succinate induces full aggregation of human platelets via SUCNR1. Succinate-induced platelet aggregation depends on thromboxane A(2) generation, ATP release, and P2Y(12) activation.
Collapse
Affiliation(s)
- C Högberg
- Department of Cardiology, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|