1
|
Otani T, Moriguchi-Goto S, Nishihira K, Oguri N, Shibata Y, Matsuura Y, Kodama T, Asada Y, Hatakeyama K, Yamashita A. Intralesional pentraxin 3 increases with atherosclerotic disease progression, but may protect from thrombosis: Friend or foe? Thromb Res 2024; 234:134-141. [PMID: 38218110 DOI: 10.1016/j.thromres.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
AIM To investigate the role of pentraxin 3 (PTX3) in atherosclerotic disease progression and plaque destabilization, as well as in coronary restenosis after directional coronary atherectomy (DCA). MATERIALS AND METHODS PTX3 contents of early and advanced atherosclerotic lesions of the aorta obtained at autopsy were determined by ELISA and Western blot. Also, coronary plaques of patients with acute coronary syndrome (ACS) or stable angina pectoris (SAP) obtained by DCA were analyzed by immunohistochemistry for PTX3. The effects of PTX3 on smooth muscle cells (SMCs) and thrombogenesis were investigated with cultured human coronary artery SMCs and a flow chamber system, respectively. RESULTS Advanced atherosclerotic lesions contained a significantly larger amount of PTX3 than early lesions (ELISA: 9.96 ± 2.77 ng/100 mg tissue, n = 8 vs 0.24 ± 0.18 ng/100 mg tissue, n = 6, P = 0.0097). Also, ACS plaques contained a significantly larger amount of PTX3 than SAP plaques (PTX3 immunohistochemistry-positive area percentage: 2.88 ± 0.53 %, n = 22 vs 0.67 ± 0.27 %, n = 23, P = 0.0009). Curiously, the patients who would remain free of post-DCA restenosis (n = 19) had plaques with a significantly higher PTX3 immunohistochemistry-positive area percentage than those who would develop restenosis (n = 12) (2.32 ± 0.49 % vs 0.49 ± 0.17 %, P = 0.002). In the mechanistic part of the study, PTX3 inhibited SMC proliferation and migration. PTX3 also inhibited platelet thrombus formation in the condition simulating arterial blood flow. CONCLUSIONS PTX3 is increased in advanced (vs early) atherosclerotic lesions and unstable (vs stable) coronary plaques. The inhibitory effects of PTX3 on SMCs and thrombogenesis suggest that intraplaque PTX3 might have atheroprotective effects.
Collapse
Affiliation(s)
- Tomoyuki Otani
- Department of Pathology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ono-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Sayaka Moriguchi-Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Kensaku Nishihira
- Department of Cardiology, Miyazaki Medical Association Hospital, 1173 Arita, Miyazaki 880-2102, Japan
| | - Nobuyuki Oguri
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshisato Shibata
- Department of Cardiology, Miyazaki Medical Association Hospital, 1173 Arita, Miyazaki 880-2102, Japan
| | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Tatsuhiko Kodama
- Department of Nuclear Receptor Medicine, Laboratories for Systems Biology and Medicine (LSBM) at the Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan; Department of Pathology, Miyazaki Medical Association Hospital, 1173 Arita, Miyazaki 880-2102, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan; Department of Diagnostic Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
2
|
Yamashita A, Asada Y. Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis. Pathol Int 2023; 73:65-80. [PMID: 36598039 PMCID: PMC11551813 DOI: 10.1111/pin.13305] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023]
Abstract
Thrombosis remains a leading cause of death worldwide despite technological advances in prevention, diagnosis, and treatment. The traditional view of arterial thrombus formation is that it is a platelet-dependent process, whereas that of venous thrombus formation is a coagulation-dependent process. Current pathological and basic studies on atherothrombosis and venous thrombosis have revealed the diverse participation of platelet and coagulation activation mechanisms in both thrombus initiation and growth processes during clinical thrombotic events. Atherosclerotic plaque cell-derived tissue factor contributes to fibrin formation and platelet aggregation. The degree of plaque disruption and a blood flow alteration promote atherothrombotic occlusion. While blood stasis/turbulent flow due to luminal stenosis itself initiates venous thrombus formation. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. These lines of evidence indicate that atherothrombosis onset is affected by the thrombogenic potential of atherosclerotic plaques, the plaque disruption size, and an alteration in blood flow. Upon onset of venous thrombosis, enhancement of the propagation phase of blood coagulation under blood stasis and a hypercoagulable state contribute to large thrombus formation.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
- Department of PathologyMiyazaki Medical Association HospitalMiyazakiJapan
| |
Collapse
|
3
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
4
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70:309-322. [PMID: 32166823 PMCID: PMC7317428 DOI: 10.1111/pin.12921] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and morbidity worldwide. The underlying mechanisms of atherothrombosis comprise plaque disruption and subsequent thrombus formation. Arterial thrombi are thought to mainly comprise aggregated platelets as a result of high blood velocity. However, thrombi that develop on disrupted plaques comprise not only aggregated platelets, but also large amounts of fibrin, because plaques contain large amount of tissue factor that activate the coagulation cascade. Since not all thrombi grow large enough to occlude the vascular lumen, the propagation of thrombi is also critical in the onset of adverse vascular events. Various factors such as vascular wall thrombogenicity, local hemorheology, systemic thrombogenicity and fibrinolytic activity modulate thrombus formation and propagation. Although the activation mechanisms of platelets and the coagulation cascade have been intensively investigated, the underlying mechanisms of occlusive thrombus formation on disrupted plaques remain obscure. Pathological findings derived from humans and animal models of human atherothrombosis have uncovered pathophysiological processes during thrombus formation and propagation after plaque disruption, and novel factors have been identified that modulate the activation of platelets and the coagulation cascade. These findings have also provided insights into the development of novel drugs for atherothrombosis.
Collapse
Affiliation(s)
- Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
6
|
Li Q, Wang Q, Xu W, Ma Y, Wang Q, Eatman D, You S, Zou J, Champion J, Zhao L, Cui Y, Li W, Deng Y, Ma L, Wu B, Wang G, Zhang X, Wang Q, Bayorh MA, Song Q. C-Reactive Protein Causes Adult-Onset Obesity Through Chronic Inflammatory Mechanism. Front Cell Dev Biol 2020; 8:18. [PMID: 32154244 PMCID: PMC7044181 DOI: 10.3389/fcell.2020.00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023] Open
Abstract
Obesity is characterized by low-grade chronic inflammation. As an acute-phase reactant to inflammation and infection, C-reactive protein (CRP) has been found to be the strongest factor associated with obesity. Here we show that chronic elevation of human CRP at baseline level causes the obesity. The obesity phenotype is confirmed by whole-body magnetic resonance imaging (MRI), in which the total fat mass is 6- to 9- fold higher in the CRP rats than the control rats. Univariate linear regression analysis showed different growth rates between the CRP rats and the control rats, and that the difference appears around 11 weeks old, indicating that they developed adult-onset obesity. We also found that chronic elevation of CRP can prime molecular changes broadly in the innate immune system, energy expenditure systems, thyroid hormones, apolipoproteins, and gut flora. Our data established a causal role of CRP elevation in the development of adult-onset obesity.
Collapse
Affiliation(s)
- Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Xu
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yamin Ma
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Qing Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Danita Eatman
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shaojin You
- Histo-Pathology Core, Atlanta Research & Educational Foundation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, United States
| | - James Champion
- Center for Laboratory Animal Resources, Morehouse School of Medicine, Atlanta, GA, United States
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ye Cui
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| | - Wenzhi Li
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yangyang Deng
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States
| | - Xiaodong Zhang
- Yerkes Imaging Center MRI Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Qingwei Wang
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Mohamed A Bayorh
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Qing Song
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Watanabe Y, Koyama S, Yamashita A, Matsuura Y, Nishihira K, Kitamura K, Asada Y. Indoleamine 2,3-dioxygenase 1 in coronary atherosclerotic plaque enhances tissue factor expression in activated macrophages. Res Pract Thromb Haemost 2018; 2:726-735. [PMID: 30349892 PMCID: PMC6178752 DOI: 10.1002/rth2.12128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent clinical studies have found that changes in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism are associated with cardiovascular events. However, the roles of the Kyn pathway on vascular wall thrombogenicity remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) is a rate-limiting enzyme of the Kyn pathway. OBJECTIVE The present study aimed to localize IDO1 in human coronary atherosclerotic plaques from patients with angina pectoris and define its role in plaque thrombogenicity. METHODS Immunohistochemical methods were applied to localize IDO1 in coronary atherosclerotic plaques from patients with stable (SAP) and unstable (UAP) angina pectoris. The role of IDO1 in tissue factor (TF) expression was investigated in THP-1 macrophages activated by interferon (IFN)γ and tissue necrosis factor (TNF)α. RESULTS We localized IDO1 mainly in CD68-positive macrophages within atherosclerotic plaques, and in close association with TF. Areas that were immunopositive for IDO1, TF, and CD3-positive T lymphocytes were significantly larger in plaques from patients with UAP than SAP. Macrophages activated by IFNγ and TNFα upregulated IDO1 expression, increased the Kyn/Trp ratio and enhanced TF expression and activity, but not TF pathway inhibitor expression. The IDO1 inhibitor epacadostat significantly reduced the Kyn/Trp ratio, TF expression and activity, as well as NF-κB (p65) binding activity in activated macrophages. Inhibition of the aryl hydrocarbon receptor that binds to Kyn, also reduced Kyn-induced TF expression in activated macrophages. CONCLUSION Indoleamine 2,3-dioxygenase 1 expressed in coronary atherosclerotic plaques might contribute to thrombus formation through TF upregulation in activated macrophages.
Collapse
Affiliation(s)
- Yuki Watanabe
- Department of PathologyFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
- Department of Internal MedicineFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Shohei Koyama
- Department of PathologyFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
- Department of Internal MedicineFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Atsushi Yamashita
- Department of PathologyFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Yunosuke Matsuura
- Department of Internal MedicineFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Kensaku Nishihira
- Department of Internal MedicineFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Kazuo Kitamura
- Department of Internal MedicineFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Yujiro Asada
- Department of PathologyFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
8
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
9
|
Fan J, Chen Y, Yan H, Niimi M, Wang Y, Liang J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J Atheroscler Thromb 2018; 25:213-220. [PMID: 29046488 PMCID: PMC5868506 DOI: 10.5551/jat.rv17018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 02/02/2023] Open
Abstract
Rabbits are one of the most used experimental animals for biomedical research, particularly as a bioreactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large animals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diagnostic methods for patients. The principle of using rabbits rather than other animals as an experimental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future. In this review, we provide an overview of the recent progress using rabbits with specific reference to their usefulness for studying human atherosclerosis.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Jingyan Liang
- Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China
| |
Collapse
|
10
|
The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:123-30. [DOI: 10.1016/j.pbiomolbio.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
|
11
|
Dominguez-Rodriguez A, Abreu-Gonzalez P, Consuegra-Sanchez L, Avanzas P, Sanchez-Grande A, Conesa-Zamora P. Thrombus Aspirated from Patients with ST-Elevation Myocardial Infarction: Association between 3-Nitrotyrosine and Inflammatory Markers - Insights from ARTERIA Study. Int J Med Sci 2016; 13:477-82. [PMID: 27429583 PMCID: PMC4946117 DOI: 10.7150/ijms.15463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022] Open
Abstract
Recent studies have demonstrated that inflammatory cells are a component that plays a role in thrombus formation in ST-elevation myocardial infarction (STEMI). 3-nitrotyrosine (3-NO2-Tyr), a specific marker for protein modification by nitric oxide-derived oxidants, is increased in human atherosclerotic lesions. The purpose of this study was to determine the possible association of inflammatory markers of coronary thrombi with nitroxidative stress. Intracoronary thrombus (n=51) and blood from the systemic circulation were obtained by thromboaspiration in 138 consecutive STEMI patients presenting for primary percutaneous coronary intervention (PCI). Each blood and intracoronary thrombus were measured simultaneously the following biomarkers: C-reactive protein (CRP), 3-NO2-Tyr, soluble CD 40 ligand (sCD40L), vascular cellular adhesion molecule-1 (VCAM-1) and haemoglobin content (only in coronary thrombus). Time delay in minutes from symptom onset to PCI was 244 ± 324. Serum CRP was positively correlated to CRP content in the thrombus (r= 0.395; p = 0.02) and serum sCD40L was negatively correlated to sCD40L in the thrombus (r= -0.394; p = 0.02). Patients were divided into tertiles according to thrombi 3-NO2-Tyr concentration: 1(st)tertile (<0.146ng/mg), 2(nd)tertile (0.146-0.485ng/mg) and 3(rd)tertile (>0.485ng/mg). Thus, thrombus in the highest tertile had significantly higher levels of CRP (p=0.002), VCAM-1 (p=0.003) and haemoglobin (p=0.002). In conclusion, the present study demonstrated that coronary thrombi with higher levels of 3-NO2-Tyr content often contain more inflammatory markers which could have a direct impact on the efficacy of drugs or devices used for coronary reperfusion.
Collapse
Affiliation(s)
- Alberto Dominguez-Rodriguez
- 1. Hospital Universitario de Canarias. Servicio de Cardiología. Santa Cruz de Tenerife. Spain.; 2. Facultad de Ciencias de la Salud. Universidad Europea de Canarias. La Orotava. Santa Cruz de Tenerife. Spain
| | - Pedro Abreu-Gonzalez
- 3. Departamento de Ciencias Médicas Básicas (Unidad de Fisiología), Universidad de La Laguna. Santa Cruz de Tenerife. Spain
| | | | - Pablo Avanzas
- 5. Hospital Universitario Central de Asturias. Área del Corazón. Oviedo. Spain
| | | | - Pablo Conesa-Zamora
- 6. Hospital Universitario de Santa Lucía de Cartagena, Servicio de Anatomía Patológica. Murcia. Spain
| |
Collapse
|
12
|
Matsuura Y, Yamashita A, Iwakiri T, Sugita C, Okuyama N, Kitamura K, Asada Y. Vascular wall hypoxia promotes arterial thrombus formation via augmentation of vascular thrombogenicity. Thromb Haemost 2015; 114:158-72. [PMID: 25833755 DOI: 10.1160/th14-09-0794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Atherosclerotic lesions represent a hypoxic milieu. However, the significance of this milieu in atherothrombosis has not been established. We aimed to assess the hypothesis that vascular wall hypoxia promotes arterial thrombus formation. We examined the relation between vascular wall hypoxia and arterial thrombus formation using a rabbit model in which arterial thrombosis was induced by 0.5 %-cholesterol diet and repeated balloon injury of femoral arteries. Vascular wall hypoxia was immunohistochemically detected by pimonidazole hydrochloride, a hypoxia marker. Rabbit neointima and THP-1 macrophages were cultured to analyse prothrombotic factor expression under hypoxic conditions (1 % O2). Prothrombotic factor expression and nuclear localisation of hypoxia-inducible factor (HIF)-1α and nuclear factor-kappa B (NF-κB) p65 were immunohistochemically assessed using human coronary atherectomy plaques. Hypoxic areas were localised in the macrophage-rich deep portion of rabbit neointima and positively correlated with the number of nuclei immunopositive for HIF-1α and NF-κB p65, and tissue factor (TF) expression. Immunopositive areas for glycoprotein IIb/IIIa and fibrin in thrombi were significantly correlated with hypoxic areas in arteries. TF and plasminogen activator inhibitor-1 (PAI-1) expression was increased in neointimal tissues and/or macrophages cultured under hypoxia, and both were suppressed by inhibitors of either HIF-1 or NF-κB. In human coronary plaques, the number of HIF-1α-immunopositive nuclei was positively correlated with that of NF-κB-immunopositive nuclei and TF-immunopositive and PAI-1-immunopositive area, and it was significantly higher in thrombotic plaques. Vascular wall hypoxia augments the thrombogenic potential of atherosclerotic plaque and thrombus formation on plaques via prothrombotic factor upregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yujiro Asada
- Yujiro Asada, MD, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan, Tel.: + 81 985 85 2810, Fax: + 81 985 85 7614, E-mail:
| |
Collapse
|
13
|
Fan J, Zhang J, Chen YE. C-Reactive Protein and its Pathophysiological Roles in Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146:104-19. [PMID: 25277507 PMCID: PMC4304984 DOI: 10.1016/j.pharmthera.2014.09.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan.
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruo Watanabe
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Animal models of C-reactive protein. Mediators Inflamm 2014; 2014:683598. [PMID: 24872599 PMCID: PMC4020216 DOI: 10.1155/2014/683598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 11/17/2022] Open
Abstract
As the main theme of this special issue, CRP not only is an inflammatory marker but also has diverse biological functions associated with different diseases. To investigate CRP's physiologies and their relationship with human pathological significance, it is essential to use appropriate animal models for translational research. The most popular models for the study of CRP are transgenic mice. However, researchers should be careful when extrapolating the findings derived from these animal models. This review will discuss the current concerns on CRP transgenic mice and rabbits.
Collapse
|
16
|
Abstract
The pathogenesis of arterial thrombosis is complex and dynamic. Unlike venous thrombi, arterial thrombi typically form under conditions of high blood flow and are mainly composed of platelet aggregates, giving them the appearance of 'white clots'. Strong evidence suggests that arterial thrombi originate as a consequence of an injured atherosclerotic plaque, and that their formation involves the release of prothrombotic material (such as tissue factor), platelet aggregation, and platelet adhesion to the vascular wall. The initially labile platelet plaque is then stabilized by insoluble fibrin produced upon activation of the coagulation cascade. Inherited genetic factors (gene polymorphisms) and acquired predisposing conditions (such as the concentration and activity of clotting factors) can influence both the composition and the size of an arterial thrombus. Further research is needed to elucidate the functions of blood coagulation proteins and cellular elements that are critical to the pathogenesis of arterial thrombosis. This Review explains mechanisms of pathological arterial thrombus formation and discusses genetic and acquired risk factors of atherothrombosis.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Clinical Chemistry Laboratory, Academic Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy.
| | | | | |
Collapse
|