1
|
Zou J, Zhang P, Solari FA, Schönichen C, Provenzale I, Mattheij NJA, Kuijpers MJE, Rauch JS, Swieringa F, Sickmann A, Zieger B, Jurk K, Heemskerk JWM. Suppressed ORAI1-STIM1-dependent Ca 2+ entry by protein kinase C isoforms regulating platelet procoagulant activity. J Biol Chem 2024:107899. [PMID: 39424145 DOI: 10.1016/j.jbc.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Agonist-induced rises in cytosolic Ca2+ control most platelet responses in thrombosis and hemostasis. In human platelets we earlier demonstrated that the ORAI1-STIM1 pathway is a major component of extracellular Ca2+ entry, in particular when induced via the ITAM-linked collagen receptor, glycoprotein VI (GPVI). In the present paper, using functionally defective platelets from patients with a loss-of-function mutation in ORAI1 or STIM1, we show that Ca2+ entry induced by the endoplasmic reticulum ATPase inhibitor, thapsigargin, fully relies on this pathway. We demonstrate that both the GPVI-induced and thapsigargin-induced Ca2+ entry is strongly suppressed by protein kinase C (PKC) activation, while leaving intracellular Ca2+ mobilization unchanged. Comparing effects of a PKC inhibitory panel pointed to redundant roles of beta and theta PKC isoforms in Ca2+-entry suppression. In contrast, tyrosine kinases positively regulated GPVI-induced Ca2+ entry and mobilization. Label-free and stable isotope phosphoproteome analysis of GPVI-stimulated platelets suggested a regulatory role of bridging integrator-2 (BIN2), known as important mediator of the ORAI1-STIM1 pathway in mouse platelets. Identified were 25-45 regulated phospho- sites in BIN2 and 16-18 in STIM1. Five of these were characterized as direct substrates of the expressed PKC isoforms alpha, beta delta and theta. Functional platelet testing indicated that the downregulation of Ca2+ entry by PKC resulted in suppressed phosphatidylserine exposure and plasmatic thrombin generation. Conclusively, our results indicate that in platelets multiple PKC isoforms constrain the store-regulated Ca2+ entry via ORAI1-BIN2-STIM1, and hence downregulate platelet-dependent coagulation.
Collapse
Affiliation(s)
- Jinmi Zou
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217 KD Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Pengyu Zhang
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Nadine J A Mattheij
- Department of Clinical Chemistry and Hematology, Maxima Medical Center Veldhoven, 5500 MB Veldhoven, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Julia S Rauch
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217 KD Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, United Kingdom
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Johan W M Heemskerk
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217 KD Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Harper MT. Platelet-Derived Extracellular Vesicles in Arterial Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:259-275. [PMID: 37603285 DOI: 10.1007/978-981-99-1443-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Blood platelets are necessary for normal haemostasis but also form life-threatening arterial thrombi when atherosclerotic plaques rupture. Activated platelets release many extracellular vesicles during thrombosis. Phosphatidylserine-exposing microparticles promote coagulation. Small exosomes released during granule secretion deliver cargoes including microRNAs to cells throughout the cardiovascular system. Here, we discuss the mechanisms by which platelets release these extracellular vesicles, together with the possibility of inhibiting this release as an antithrombotic strategy.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Niehues RV, Wozniak J, Wiersch F, Lilienthal E, Tacken N, Schumertl T, Garbers C, Ludwig A, Düsterhöft S. The collectrin-like part of the SARS-CoV-1 and -2 receptor ACE2 is shed by the metalloproteinases ADAM10 and ADAM17. FASEB J 2022; 36:e22234. [PMID: 35199397 PMCID: PMC9111296 DOI: 10.1096/fj.202101521r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
The transmembrane protease angiotensin converting enzyme 2 (ACE2) is a protective regulator within the renin angiotensin system and additionally represents the cellular receptor for SARS‐CoV. The release of soluble ACE2 (sACE2) from the cell surface is hence believed to be a crucial part of its (patho)physiological functions, as both, ACE2 protease activity and SARS‐CoV binding ability, are transferred from the cell membrane to body fluids. Yet, the molecular sources of sACE2 are still not completely investigated. In this study, we show different sources and prerequisites for the release of sACE2 from the cell membrane. By using inhibitors as well as CRISPR/Cas9‐derived cells, we demonstrated that, in addition to the metalloprotease ADAM17, also ADAM10 is an important novel shedding protease of ACE2. Moreover, we observed that ACE2 can also be released in extracellular vesicles. The degree of either ADAM10‐ or ADAM17‐mediated ACE2 shedding is dependent on stimulatory conditions and on the expression level of the pro‐inflammatory ADAM17 regulator iRhom2. Finally, by using structural analysis and in vitro verification, we determined for the first time that the susceptibility to ADAM10‐ and ADAM17‐mediated shedding is mediated by the collectrin‐like part of ACE2. Overall, our findings give novel insights into sACE2 release by several independent molecular mechanisms.
Collapse
Affiliation(s)
- Rabea Victoria Niehues
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Wiersch
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lilienthal
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tim Schumertl
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Supramaximal calcium signaling triggers procoagulant platelet formation. Blood Adv 2021; 4:154-164. [PMID: 31935287 DOI: 10.1182/bloodadvances.2019000182] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Procoagulant platelets promote thrombin generation during thrombosis. Platelets become procoagulant in an all-or-nothing manner. We investigated how distinct Ca2+ signaling between platelet subpopulations commits some platelets to become procoagulant, using the high-affinity Ca2+ indicator Fluo-4, which may become saturated during platelet stimulation, or low-affinity Fluo-5N, which reports only very high cytosolic Ca2+ concentrations. All activated platelets had high Fluo-4 fluorescence. However, in Fluo-5N-loaded platelets, only the procoagulant platelets had high fluorescence, indicating very high cytosolic Ca2+. This finding indicates a novel, "supramaximal" Ca2+ signal in procoagulant platelets (ie, much higher than normally considered maximal). Supramaximal Ca2+ signaling and the percentage of procoagulant platelets were inhibited by cyclosporin A, a mitochondrial permeability transition pore blocker, and Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, with no effect on Fluo-4 fluorescence. In contrast, Synta-66, an Orai1 blocker, reduced Fluo-4 fluorescence but did not directly inhibit generation of the supramaximal Ca2+ signal. Our findings show a distinct pattern of Ca2+ signaling in procoagulant platelets and provide a new framework to interpret the role of platelet signaling pathways in procoagulant platelets. This requires reassessment of the role of different Ca2+ channels and may provide new targets to prevent formation of procoagulant platelets and limit thrombosis.
Collapse
|
5
|
Kostyak JC, Mauri B, Patel A, Dangelmaier C, Reddy H, Kunapuli SP. Phosphorylation of protein kinase Cδ Tyr311 positively regulates thromboxane generation in platelets. J Biol Chem 2021; 296:100720. [PMID: 33932405 PMCID: PMC8164046 DOI: 10.1016/j.jbc.2021.100720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation. However, the mechanism by which PKCδ regulates this process as well as other facets of platelet activity is unknown. We speculated that the way PKCδ regulates platelet function may be because of the phosphorylation of tyrosine residues on PKCδ. We investigated phosphorylation of PKCδ following glycoprotein VI-mediated and PAR4-mediated platelet activation and found that Y311 is selectively phosphorylated when PAR4 is activated in human platelets. Therefore, we generated PKCδ Y311F knock-in mice, which are viable and have no gross abnormalities. However, PKCδY311F mice have significantly enhanced tail-bleeding times compared with WT littermate controls, which means hemostasis is interrupted. Furthermore, PKCδY311F mice exhibit longer time to carotid artery occlusion compared with WT control using a ferric chloride in vivo thrombosis model, indicating that the phosphorylation of PKCδ Y311 is prothrombotic. Washed platelets from PKCδY311F mice have reduced reactivity after stimulation with a PAR-4 agonist indicating its importance in platelet signaling. The phenotype observed in Y311F mouse platelets is because of reduced thromboxane generation, as an inhibitor of thromboxane generation equalizes the PKCδY311F platelet response to that of WT. Therefore, phosphorylation of PKCδ on Y311 is important for regulation of platelet function and specifically thromboxane generation, which reinforces platelet activation.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA; Department of Physiology, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA; Department of Pharmacology, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Abstract
Platelets are the major cellular contributor to arterial thrombosis. However, activated platelets form two distinct subpopulations during thrombosis. Pro-aggregatory platelets aggregate to form the main body of the thrombus. In contrast, procoagulant platelets expose phosphatidylserine on their outer surface and promote thrombin generation. This apparently all-or-nothing segregation into subpopulations indicates that, during activation, platelets commit to becoming procoagulant or pro-aggregatory. Although the signaling pathways that control this commitment are not understood, distinct cytosolic and mitochondrial Ca2+ signals in different subpopulations are likely to be central. In this review, we discuss how these Ca2+ signals control procoagulant platelet formation and whether this process can be targeted pharmacologically to prevent arterial thrombosis.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge Cambridge, UK
| |
Collapse
|
7
|
Molecular Drivers of Platelet Activation: Unraveling Novel Targets for Anti-Thrombotic and Anti-Thrombo-Inflammatory Therapy. Int J Mol Sci 2020; 21:ijms21217906. [PMID: 33114406 PMCID: PMC7662962 DOI: 10.3390/ijms21217906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally-partly a consequence of increased population size and ageing-and are major contributors to reduced quality of life. Platelets play a major role in hemostasis and thrombosis. While platelet activation and aggregation are essential for hemostasis at sites of vascular injury, uncontrolled platelet activation leads to pathological thrombus formation and provokes thrombosis leading to myocardial infarction or stroke. Platelet activation and thrombus formation is a multistage process with different signaling pathways involved to trigger platelet shape change, integrin activation, stable platelet adhesion, aggregation, and degranulation. Apart from thrombotic events, thrombo-inflammation contributes to organ damage and dysfunction in CVDs and is mediated by platelets and inflammatory cells. Therefore, in the past, many efforts have been made to investigate specific signaling pathways in platelets to identify innovative and promising approaches for novel antithrombotic and anti-thrombo-inflammatory strategies that do not interfere with hemostasis. In this review, we focus on some of the most recent data reported on different platelet receptors, including GPIb-vWF interactions, GPVI activation, platelet chemokine receptors, regulation of integrin signaling, and channel homeostasis of NMDAR and PANX1.
Collapse
|
8
|
Millington-Burgess SL, Bonna AM, Rahman T, Harper MT. Ethaninidothioic acid (R5421) is not a selective inhibitor of platelet phospholipid scramblase activity. Br J Pharmacol 2020; 177:4007-4020. [PMID: 32496597 PMCID: PMC7429475 DOI: 10.1111/bph.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor. Experimental Approach Human platelet activation was measured following pretreatment with R5421 and stimulation with a range of agonists. Phosphatidylserine exposure was measured using annexin V binding. Integrin αIIbβ3 activation and α‐granule release were measured by flow cytometry. Cytosolic Ca2+ signals were measured using Cal520 fluorescence. An in silico ligand‐based screen identified 16 compounds which were tested in these assays. Key Results R5421 inhibited A23187‐induced phosphatidylserine exposure in a time‐ and temperature‐dependent manner. R5421 inhibited Ca2+ signalling from the PAR1, PAR4 and glycoprotein VI receptors as well as platelet αIIbβ3 integrin activation and α‐granule release. R5421 is therefore not a selective inhibitor of platelet scramblase activity. An in silico screen identified the pesticide thiodicarb as similar to R5421. It also inhibited platelet phosphatidylserine exposure, Ca2+ signalling from the PAR1 and glycoprotein VI, αIIbβ3 activation and α‐granule release. Thiodicarb additionally disrupted Ca2+ homeostasis in unstimulated platelets. Conclusion and Implications R5421 is not a selective inhibitor of platelet scramblase activity. We have identified the pesticide thiodicarb, which had similar effects on platelet function to R5421 as well as additional disruption of Ca2+ signalling which may underlie some of thiodicarb's toxicity.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Wei H, Davies JE, Harper MT. 2-Aminoethoxydiphenylborate (2-APB) inhibits release of phosphatidylserine-exposing extracellular vesicles from platelets. Cell Death Discov 2020; 6:10. [PMID: 32140260 PMCID: PMC7051957 DOI: 10.1038/s41420-020-0244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Activated, procoagulant platelets shed phosphatidylserine (PS)-exposing extracellular vesicles (EVs) from their surface in a Ca2+- and calpain-dependent manner. These PS-exposing EVs are prothrombotic and proinflammatory and are found at elevated levels in many cardiovascular and metabolic diseases. How PS-exposing EVs are shed is not fully understood. A clearer understanding of this process may aid the development of drugs to selectively block their release. In this study we report that 2-aminoethoxydiphenylborate (2-APB) significantly inhibits the release of PS-exposing EVs from platelets stimulated with the Ca2+ ionophore, A23187, or the pore-forming toxin, streptolysin-O. Two analogues of 2-APB, diphenylboronic anhydride (DPBA) and 3-(diphenylphosphino)-1-propylamine (DP3A), inhibited PS-exposing EV release with similar potency. Although 2-APB and DPBA weakly inhibited platelet PS exposure and calpain activity, this was not seen with DP3A despite inhibiting PS-exposing EV release. These data suggest that there is a further target of 2-APB, independent of cytosolic Ca2+ signalling, PS exposure and calpain activity, that is required for PS-exposing EV release. DP3A is likely to inhibit the same target, without these other effects. Identifying the target of 2-APB, DPBA and DP3A may provide a new way to inhibit PS-exposing EV release from activated platelets and inhibit their contribution to thrombosis and inflammation.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
10
|
Guo WH, Wang X, Shang MS, Chen Z, Guo Q, Li L, Wang HY, Yu RH, Ma CS. Crosstalk between PKC and MAPK pathway activation in cardiac fibroblasts in a rat model of atrial fibrillation. Biotechnol Lett 2020; 42:1219-1227. [PMID: 32095918 DOI: 10.1007/s10529-020-02843-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atrial fibrillation (AF) is the most frequent form of cardiac arrhythmia and major cause of cardiac ischemia. Defective calcium homeostasis due to anomalous expression of ryanodine receptor type 2 (RyR2) or its hyperactivation by phosphorylation by serine threonine kinases has been implicated as a central mechanism of AF pathogenesis. Given the role of protein kinase C (PKC) isoforms in cardiac function we investigated role of PKC in AF using a rat model. RESULTS PMA induced global increase in protein synthesis in cardiac fibroblasts isolated from AF rats, but not healthy controls, and the increase was inhibited by PKC inhibition. PMA mediated activation of both PKC and ERK and either inhibition of PKC by Go6983 or ERK by the MEK inhibitor Trametinib attenuated both P-ERK and P-PKC in both cardiac fibroblasts isolated from AF rats or from healthy rats but transduced with PKC-delta. The PKC and ERK mediated induction of global protein synthesis was found to be mediated by increased phosphorylation of the ribosomal protein S6. CONCLUSION Our findings provide a foundation for future testing of PKC and MEK inhibitors to treat AF in pre-clinical models. It also needs to be determined if PKC and MAPK pathway activation is functioning via RyR2 or some yet undefined substrates.
Collapse
Affiliation(s)
- Wei-Hua Guo
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xian Wang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mei-Sheng Shang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Zhe Chen
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Qi Guo
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Li Li
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Hai-Ying Wang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Rong-Hui Yu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Chang-Sheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
11
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
12
|
Increased expression of ryanodine receptor type-2 during atrial fibrillation by miR-106-25 cluster independent mechanism. Exp Cell Res 2019; 375:113-117. [DOI: 10.1016/j.yexcr.2018.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 11/23/2022]
|
13
|
Sowton AP, Millington-Burgess SL, Murray AJ, Harper MT. Rapid kinetics of changes in oxygen consumption rate in thrombin-stimulated platelets measured by high-resolution respirometry. Biochem Biophys Res Commun 2018; 503:2721-2727. [PMID: 30093113 PMCID: PMC6142173 DOI: 10.1016/j.bbrc.2018.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Platelet activation plays a key role in normal haemostasis and pathological thrombosis. Platelet activation is rapid; within minutes of stimulation, platelets generate bioactive phospholipids, secrete their granule contents, activate integrins and aggregate together to form a haemostatic plug. These events are dependent on ATP synthesis. Mitochondrial function in platelets from healthy volunteers and patients with a range of diseases indicate an important role for oxygen consumption in oxidative phosphorylation in normal and pathological function. Platelets also consume oxygen during oxidation reactions, such as cyclooxygenase-dependent thromboxane A2 synthesis. In this study, we used high-resolution respirometry to investigate rapid changes in oxygen consumption during platelet activation. We demonstrated a rapid, transient increase in oxygen consumption rate within minutes of platelet stimulation by the physiological activator, thrombin. This was partly inhibited by aspirin and by oligomycin. This shows that high resolution respirometry can provide information regarding rapid and dynamic changes in oxygen consumption during platelet activation. High resolution respirometry can be used to investigate the rapid kinetics of changes in platelet oxygen consumption rate. Thrombin triggers a rapid, transient increase in platelet oxygen consumption rate. Aspirin and oligomycin partially inhibit the increased oxygen consumption rate.
Collapse
Affiliation(s)
- Alice P Sowton
- Department of Pharmacology, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | | |
Collapse
|
14
|
Mitrugno A, Rigg RA, Laschober NB, Ngo AT, Pang J, Williams CD, Aslan JE, McCarty OJ. Potentiation of TRAP-6-induced platelet dense granule release by blockade of P2Y 12 signaling with MRS2395. Platelets 2018; 29:383-394. [PMID: 28523947 PMCID: PMC6155984 DOI: 10.1080/09537104.2017.1316482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 12/30/2022]
Abstract
The release of ADP from platelet dense granules and its binding to platelet P2Y12 receptors is key to amplifying the initial hemostatic response and propagating thrombus formation. P2Y12 has thus emerged as a therapeutic target to safely and effectively prevent secondary thrombotic events in patients with acute coronary syndrome or a history of myocardial infarction. Pharmacological inhibition of P2Y12 receptors represents a useful approach to better understand the signaling mediated by these receptors and to elucidate the role of these receptors in a multitude of platelet hemostatic and thrombotic responses. The present work examined and compared the effects of four different P2Y12 inhibitors (MRS2395, ticagrelor, PSB 0739, and AR-C 66096) on platelet function in a series of in vitro studies of platelet dense granule secretion and trafficking, calcium generation, and protein phosphorylation. Our results show that in platelets activated with the PAR-1 agonist TRAP-6 (thrombin receptor-activating peptide), inhibition of P2Y12 with the antagonist MRS2395, but not ticagrelor, PSB 0739 or AR-C 66096, potentiated human platelet dense granule trafficking to the plasma membrane and release into the extracellular space, cytosolic Ca2+ influx, and phosphorylation of GSK3β-Ser9 through a PKC-dependent pathway. These results suggest that inhibition of P2Y12 with MRS2395 may act in concert with PAR-1 signaling and result in the aberrant release of ADP by platelet dense granules, thus reducing or counteracting the anticipated anti-platelet efficacy of this inhibitor.
Collapse
Affiliation(s)
- Annachiara Mitrugno
- Department of Biomedical Engineering,Oregon Health & Science University, Portland, OR, USA
- Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology and Oregon Health & Science University, Portland, OR,
USA
| | - Rachel A. Rigg
- Department of Biomedical Engineering,Oregon Health & Science University, Portland, OR, USA
| | - Nicole B. Laschober
- Department of Biomedical Engineering,Oregon Health & Science University, Portland, OR, USA
| | - Anh T.P. Ngo
- Department of Biomedical Engineering,Oregon Health & Science University, Portland, OR, USA
| | - Jiaqing Pang
- Department of Biomedical Engineering,Oregon Health & Science University, Portland, OR, USA
| | | | - Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR,
USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering,Oregon Health & Science University, Portland, OR, USA
- Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology and Oregon Health & Science University, Portland, OR,
USA
| |
Collapse
|
15
|
Stefanini L, Bergmeier W. Negative regulators of platelet activation and adhesion. J Thromb Haemost 2018; 16:220-230. [PMID: 29193689 PMCID: PMC5809258 DOI: 10.1111/jth.13910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Platelets are small anucleated cells that constantly patrol the cardiovascular system to preserve its integrity and prevent excessive blood loss where the vessel lining is breached. Their key challenge is to form a hemostatic plug under conditions of high shear forces. To do so, platelets have evolved a molecular machinery that enables them to sense trace amounts of signals at the site of damage and to rapidly shift from a non-adhesive to a pro-adhesive state. However, this highly efficient molecular machinery can also lead to unintended platelet activation and cause clinical complications such as thrombocytopenia and thrombosis. Thus, several checkpoints are in place to tightly control platelet activation and adhesiveness in space and time. In this review, we will discuss select negative regulators of platelet activation, which are critical to maintain patrolling platelets in a quiescent, non-adhesive state and/or to limit platelet adhesion to sites of injury.
Collapse
Affiliation(s)
- L Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - W Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
PKCδ silencing alleviates saturated fatty acid induced ER stress by enhancing SERCA activity. Biosci Rep 2017; 37:BSR20170869. [PMID: 29046367 PMCID: PMC5700272 DOI: 10.1042/bsr20170869] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C δ (PKCδ) plays an important role in nonalcoholic fatty liver disease (NAFLD), however, the mechanism remains unknown. The present study explored the role of PKCδ in NAFLD development and investigated the relationships between PKCδ, calcium homeostasis, and endoplasmic reticulum (ER) stress (ERS). Hepatic steatosis cell model was induced by palmitic acid (PA) in L02 cells. Lipid accretion was evaluated using Oil Red O staining and a triglyceride (TG) detection kit. PKCδ was down-regulated by siRNA. RT-PCR and Western blotting were used to detect the expression of ERS markers. The fluorescence of Ca2+ influx was recorded using confocal microscopy. Sarco-ER Ca2+-ATPase (SERCA) activity was measured by ultramicro-ATP enzyme test kit. PA treatment induced lipid accretion in L02 cells, destroyed the ER structure, and increased PKCδ activation in a time-dependent manner. Further, PA treatment significantly increased the expression of ERS markers, Ig heavy chain binding protein (Bip), and homologous proteins of CCAAT-enhancer binding proteins (CHOP). PKCδ silencing down-regulated Bip and CHOP expression, indicating a successful alleviation of ERS. The increased calcium storage induced by PA stimulation was significantly decreased in L02 cells treated with PKCδ siRNA compared with the negative control. Moreover, diminished SERCA activity caused by PA was recovered in PKCδ siRNA transfected cells. To the best of our knowledge, this is the first report demonstrating that the inhibition of PKCδ alleviates ERS by enhancing SERCA activity and stabilizing calcium homeostasis.
Collapse
|
17
|
Li W, Yang X, Peng M, Li C, Mu G, Chen F. Inhibitory effects of ethyl pyruvate on platelet aggregation and phosphatidylserine exposure. Biochem Biophys Res Commun 2017; 487:560-566. [PMID: 28427942 DOI: 10.1016/j.bbrc.2017.04.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Ethyl pyruvate (EP) is a stable lipophilic pyruvate derivative. Studies demonstrated that EP shows potent anti-oxidation, anti-inflammatory and anti-coagulant effects. Inflammation and coagulation are closely interacted with platelet activation. However, it is unclear whether EP has anti-platelet effects. Therefore, we investigated the anti-platelet effect of EP in this study in vitro. We found that EP inhibited agonists induced platelets aggregation, ATP release and adhesion to collagen. Flow cytometric analysis revealed that EP inhibited agonist induced platelets PAC-1 binding, as well as P-selectin and CD40L expression. The underlying mechanism of action may involve the inhibition of platelet PI3K/Akt and Protein Kinase C (PKC) signaling pathways. Additionally, EP dose dependently inhibited platelet PS exposure induced by high concentration thrombin. Lactate dehydrogenase (LDH) activity assay and mice platelet count implied that EP may have no toxic effect on platelets. Therefore, we are the first to report that EP has potent anti-platelet activity and attenuates platelet PS exposure in vitro, suggesting that the inhibitory effects of EP on platelets may also play important roles in improvement of inflammation and coagulation disorder in related animal models.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xinyu Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Minyuan Peng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Can Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Guangfu Mu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
18
|
Lever RA, Hussain A, Sun BB, Sage SO, Harper AGS. Conventional protein kinase C isoforms differentially regulate ADP- and thrombin-evoked Ca²⁺ signalling in human platelets. Cell Calcium 2015; 58:577-88. [PMID: 26434503 DOI: 10.1016/j.ceca.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
Abstract
Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange. The intracellular store Ca(2+) concentration ([Ca(2+)]st) was monitored using Fluo-5N, the extracellular Ca(2+) concentration ([Ca(2+)]ext) was monitored using Fluo-4 whilst [Ca(2+)]cyt and [Na(+)]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca(2+)]cyt in the absence of extracellular Ca(2+). PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca(2+) release and Ca(2+) removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca(2+)]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na(+)]cyt which would be expected to reduce Ca(2+) removal via the Na(+)/Ca(2+) exchanger (NCX). Thrombin-evoked rises in [Na(+)]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn(2+) quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca(2+)]cyt following SERCA inhibition and either removal of extracellular Na(+) or inhibition of Na(+)/K(+)-ATPase activity by removal of extracellular K(+) or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca(2+)]cyt by acceleration of SERCA activity, whilst rises in [Ca(2+)]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na(+)/K(+)-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na(+)]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca(2+) signalling.
Collapse
Affiliation(s)
- Robert A Lever
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Azhar Hussain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Benjamin B Sun
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Stewart O Sage
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Alan G S Harper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom; Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
19
|
Sveshnikova AN, Ataullakhanov FI, Panteleev MA. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. MOLECULAR BIOSYSTEMS 2015; 11:1052-60. [DOI: 10.1039/c4mb00667d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A computational model of PAR1-stimulated platelet calcium signaling is developed to analyze the formation of platelet subpopulations. This occurs via a mitochondria-dependent decision-making mechanism. This is a stochastic phenomenon caused by a small number of PARs.
Collapse
Affiliation(s)
- Anastasia N. Sveshnikova
- Physics Department
- Moscow State University
- Moscow
- Russia
- Center for Theoretical Problems of Physicochemical Pharmacology
| | - Fazoil I. Ataullakhanov
- Physics Department
- Moscow State University
- Moscow
- Russia
- Center for Theoretical Problems of Physicochemical Pharmacology
| | - Mikhail A. Panteleev
- Physics Department
- Moscow State University
- Moscow
- Russia
- Center for Theoretical Problems of Physicochemical Pharmacology
| |
Collapse
|
20
|
Shaturnyĭ VI, Shakhidzhanov SS, Sveshnikova AN, Panteleev MA. [Activators, receptors and signal transduction pathways of blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:182-200. [PMID: 24837309 DOI: 10.18097/pbmc20146002182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.
Collapse
|
21
|
Boknäs N, Faxälv L, Sanchez Centellas D, Wallstedt M, Ramström S, Grenegård M, Lindahl TL. Thrombin-induced platelet activation via PAR4: pivotal role for exosite II. Thromb Haemost 2014; 112:558-65. [PMID: 24990072 DOI: 10.1160/th13-12-1013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/20/2014] [Indexed: 01/22/2023]
Abstract
Thrombin-induced platelet activation via PAR1 and PAR4 is an important event in haemostasis. Although the underlying mechanisms responsible for ensuring efficient PAR1 activation by thrombin have been extensively studied, the potential involvement of recognitions sites outside the active site of the protease in thrombin-induced PAR4 activation is largely unknown. In this study, we developed a new assay to assess the importance of exosite I and II for PAR4 activation with α - and γ-thrombin. Surprisingly, we found that exosite II is critical for activation of PAR4. We also show that this dependency on exosite II likely represents a new mechanism, as it is unaffected by blockage of the previously known interaction between thrombin and glycoprotein Ibα.
Collapse
Affiliation(s)
| | | | | | | | | | | | - T L Lindahl
- Tomas Lindahl, Department of Clinical and Experimental Medicine, Linköping University, SE-51885 Linköping, Sweden, Tel.: +46 101033227, Fax: +46 101033240, E-mail:
| |
Collapse
|
22
|
Judge HM, Jennings LK, Moliterno DJ, Hord E, Ecob R, Tricoci P, Rorick T, Kotha J, Storey RF. PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact. Platelets 2014; 26:236-42. [DOI: 10.3109/09537104.2014.902924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Zhou S, Xiao W, Pan X, Zhu M, Yang Z, Zhang F, Zheng C. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-κB-independent pathways. Cell Biol Int 2014; 38:747-56. [PMID: 24523227 DOI: 10.1002/cbin.10264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
Acute and chronic respiratory diseases are associated with abnormal coagulation regulation and fibrolysis. However, the detailed mechanism by which coagulation regulation and fibrolysis affect the occurrence and development of lung diseases remain to be elucidated. Protease activated receptor-1 (PAR-1), a major high-affinity thrombin receptor, and nuclear factor kappa B (NF-κB), a transcription factor, are involved in cell survival, differentiation, and proliferation. We have investigated the potential mechanism of thrombin-induced fibroblast proliferation and roles of PAR-1 and NF-κB signalling in this process. The effect of thrombin on proliferation of human pulmonary fibroblasts (HPF) was assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation assay. The expression of PAR1 and NF-κB subunit p65 protein was detected by Western blot. Nuclear translocation of p65 was examined by laser scanning confocal microscopy. We show that thrombin significantly increased proliferation of HPF as determined by induction of BrdU-positive incorporation ratio. Induced PAR1 protein expression was also seen in HPF cells treated with thrombin. However, thrombin had no significant effect on expression and translocation of NF-κB p65 in HPF cells. The results indicate that, by increasing protein expression and interacting with PAR1, thrombin promotes HPF proliferation. NF-κB signalling appears to play no role in this process.
Collapse
Affiliation(s)
- Shengyu Zhou
- Department of Clinical Teaching and Research, School of Nursing, Shandong University, Shandong, Jinan, 250012, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Goggs R, Harper MT, Pope RJ, Savage JS, Williams CM, Mundell SJ, Heesom KJ, Bass M, Mellor H, Poole AW. RhoG protein regulates platelet granule secretion and thrombus formation in mice. J Biol Chem 2013; 288:34217-34229. [PMID: 24106270 PMCID: PMC3837162 DOI: 10.1074/jbc.m113.504100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Robert J Pope
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stuart J Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Mark Bass
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
25
|
Bai K, Wang K, Li X, Wang J, Zhang J, Song L, Wang J, Zhang S, Lau WB, Ma X, Liu H. Autoantibody against angiotensin AT1 receptor from preeclamptic patients enhances collagen-induced human platelet aggregation. Acta Biochim Biophys Sin (Shanghai) 2013; 45:749-55. [PMID: 23681235 DOI: 10.1093/abbs/gmt059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.
Collapse
Affiliation(s)
- Kehua Bai
- Department of Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Harper MT, Londono JEC, Quick K, Londono JC, Flockerzi V, Philipp SE, Birnbaumer L, Freichel M, Poole AW. Transient Receptor Potential Channels Function as a Coincidence Signal Detector Mediating Phosphatidylserine Exposure. Sci Signal 2013; 6:ra50. [DOI: 10.1126/scisignal.2003701] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Arachiche A, de la Fuente M, Nieman MT. Calcium mobilization and protein kinase C activation downstream of protease activated receptor 4 (PAR4) is negatively regulated by PAR3 in mouse platelets. PLoS One 2013; 8:e55740. [PMID: 23405206 PMCID: PMC3566007 DOI: 10.1371/journal.pone.0055740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/29/2012] [Indexed: 12/17/2022] Open
Abstract
Thrombin activates platelets through protease activated receptors (PARs). Mouse platelets express PAR3 and PAR4. PAR3 does not signal in platelets. However, PAR4 is a relatively poor thrombin substrate and requires PAR3 as a cofactor at low thrombin concentrations. In this study we show that PAR3 also regulates PAR4 signaling. In response to thrombin (30–100 nM) or PAR4 activating peptide (AYPGKF), platelets from PAR3−/− mice had increased Gq signaling compared to wild type mice as demonstrated by a 1.6-fold increase in the maximum intracellular calcium (Ca2+) mobilization, an increase in phosphorylation level of protein kinase C (PKC) substrates, and a 2-fold increase of Ca2+ release from intracellular stores. Moreover, platelets from heterozygous mice (PAR3+/−) had an intermediate increase in maximum Ca2+ mobilization. Treatment of PAR3−/− mice platelets with P2Y12 antagonist (2MeSAMP) did not affect Ca2+ mobilization from PAR4 in response to thrombin or AYPGKF. The activation of RhoA-GTP downstream G12/13 signaling in response to thrombin was not significantly different between wild type and PAR3−/− mice. Since PAR3 influenced PAR4 signaling independent of agonist, we examined the direct interaction between PAR3 and PAR4 with bioluminescence resonance energy transfer (BRET). PAR3 and PAR4 form constitutive homodimers and heterodimers. In summary, our results demonstrate that in addition to enhancing PAR4 activation at low thrombin concentrations, PAR3 negatively regulates PAR4-mediated maximum Ca2+ mobilization and PKC activation in mouse platelets by physical interaction.
Collapse
Affiliation(s)
- Amal Arachiche
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - María de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Duvernay M, Young S, Gailani D, Schoenecker J, Hamm HE, Hamm H. Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets. Mol Pharmacol 2013; 83:781-92. [PMID: 23307185 DOI: 10.1124/mol.112.083477] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
With the recent interest of protease-activated receptors (PAR) 1 and PAR4 as possible targets for the treatment of thrombotic disorders, we compared the efficacy of protease-activated receptor (PAR)1 and PAR4 in the generation of procoagulant phenotypes on platelet membranes. PAR4-activating peptide (AP)-stimulated platelets promoted thrombin generation in plasma up to 5 minutes earlier than PAR1-AP-stimulated platelets. PAR4-AP-mediated factor V (FV) association with the platelet surface was 1.6-fold greater than for PAR1-AP. Moreover, PAR4 stimulation resulted in a 3-fold greater release of microparticles, compared with PAR1 stimulation. More robust FV secretion and microparticle generation with PAR4-AP was attributable to stronger and more sustained phosphorylation of myosin light chain at serine 19 and threonine 18. Inhibition of Rho-kinase reduced PAR4-AP-mediated FV secretion and microparticle generation to PAR1-AP-mediated levels. Thrombin generation assays measuring prothrombinase complex activity demonstrated 1.5-fold higher peak thrombin levels on PAR4-AP-stimulated platelets, compared with PAR1-AP-stimulated platelets. Rho-kinase inhibition reduced PAR4-AP-mediated peak thrombin generation by 25% but had no significant effect on PAR1-AP-mediated thrombin generation. In conclusion, stimulation of PAR4 on platelets leads to faster and more robust thrombin generation, compared with PAR1 stimulation. The greater procoagulant potential is related to more efficient FV release from intracellular stores and microparticle production driven by stronger and more sustained myosin light chain phosphorylation. These data have implications about the role of PAR4 during hemostasis and are clinically relevant in light of recent efforts to develop PAR antagonists to treat thrombotic disorders.
Collapse
Affiliation(s)
- Matthew Duvernay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
29
|
Heemskerk JWM, Mattheij NJA, Cosemans JMEM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013; 11:2-16. [PMID: 23106920 DOI: 10.1111/jth.12045] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets in a thrombus interact with (anti)coagulation factors and support blood coagulation. In the concept of cell-based control of coagulation, three different roles of platelets can be distinguished: control of thrombin generation, support of fibrin formation, and regulation of fibrin clot retraction. Here, we postulate that different populations of platelets with distinct surface properties are involved in these coagulant functions. Platelets with elevated Ca(2+) and exposed phosphatidylserine control thrombin and fibrin generation, while platelets with activated α(IIb) β(3) regulate clot retraction. We review how coagulation factor binding depends on the platelet activation state. Furthermore, we discuss the ligands, platelet receptors and downstream intracellular signaling pathways implicated in these coagulant functions. These insights lead to an adapted model of platelet-based coagulation.
Collapse
Affiliation(s)
- J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | | | | |
Collapse
|
30
|
Schlagenhauf A, Kozma N, Leschnik B, Wagner T, Muntean W. Thrombin receptor levels in platelet concentrates during storage and their impact on platelet functionality. Transfusion 2012; 52:1253-9. [PMID: 22233332 DOI: 10.1111/j.1537-2995.2011.03475.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quality control of platelet (PLT) concentrates is challenging, due to PLT lesions, which are difficult to detect with routine methods. The search for reliable PLT lesion biomarkers is focused on the role of PLTs in primary hemostasis. PLT transfusions also have a significant impact on secondary hemostasis. In this phase, responsiveness of PLTs to small amounts of thrombin is crucial. PAR1 and PAR4 are protease-activated receptors and are responsible for thrombin reactivity of human PLTs. This study should elucidate if levels of those two receptors are changing in PLT concentrates during storage and if those changes have an impact on PLT aggregation and support of thrombin generation. STUDY DESIGN AND METHODS PLT concentrates from buffy coat preparations were stored in SSP+ solution for 9 days at 22±2°C on a horizontal flatbed agitator, and samples were taken daily for analysis. PAR1 and PAR4 levels were evaluated using Western blot analysis. PLT aggregation was measured using Born aggregometry and specific PAR1 or PAR4 agonists. Thrombin generation was measured using calibrated automated thrombography. RESULTS Levels of both receptors (PAR1 and PAR4) started to decrease after 5 days of storage. PAR1-mediated PLT aggregation remained constant, whereas PAR4-mediated PLT aggregation decreased with storage time. Rate of thrombin generation was accelerated after 5 days of storage. CONCLUSION Decreasing levels of PARs in PLT concentrates after 5 days of storage influenced PAR4-mediated, but not PAR1-mediated, aggregation. Thrombin generation with senescent PLTs was increased, which may be attributed to other mechanisms promoting increased phosphatidylserine exposure.
Collapse
Affiliation(s)
- Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|