1
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Del Canto I, Santamaría L, Genovés P, Such-Miquel L, Arias-Mutis O, Zarzoso M, Soler C, Parra G, Tormos Á, Alberola A, Such L, Chorro FJ. Effects of the Inhibition of Late Sodium Current by GS967 on Stretch-Induced Changes in Cardiac Electrophysiology. Cardiovasc Drugs Ther 2019; 32:413-425. [PMID: 30173392 DOI: 10.1007/s10557-018-6822-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Mechanical stretch increases sodium and calcium entry into myocytes and activates the late sodium current. GS967, a triazolopyridine derivative, is a sodium channel blocker with preferential effects on the late sodium current. The present study evaluates whether GS967 inhibits or modulates the arrhythmogenic electrophysiological effects of myocardial stretch. METHODS Atrial and ventricular refractoriness and ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts (n = 28) using epicardial multiple electrodes and high-resolution mapping techniques under control conditions and during the perfusion of GS967 at different concentrations (0.03, 0.1, and 0.3 μM). RESULTS On comparing ventricular refractoriness, conduction velocity and wavelength obtained before stretch had no significant changes under each GS967 concentration while atrial refractoriness increased under GS967 0.3 μM. Under GS967, the stretch-induced changes were attenuated, and no significant differences were observed between before and during stretch. GS967 0.3 μM diminished the normal stretch-induced changes resulting in longer (less shortened) atrial refractoriness (138 ± 26 ms vs 95 ± 9 ms; p < 0.01), ventricular refractoriness (155 ± 18 ms vs 124 ± 16 ms; p < 0.01) and increments in spectral concentration (23 ± 5% vs 17 ± 2%; p < 0.01), the fifth percentile of ventricular activation intervals (46 ± 8 ms vs 31 ± 3 ms; p < 0.05), and wavelength of ventricular fibrillation (2.5 ±0.5 cm vs 1.7 ± 0.3 cm; p < 0.05) during stretch. The stretch-induced increments in dominant frequency during ventricular fibrillation (control = 38%, 0.03 μM = 33%, 0.1 μM = 33%, 0.3 μM = 14%; p < 0.01) and the stretch-induced increments in arrhythmia complexity index (control = 62%, 0.03μM = 41%, 0.1 μM = 32%, 0.3 μM = 16%; p < 0.05) progressively decreased on increasing the GS967 concentration. CONCLUSIONS GS967 attenuates stretch-induced changes in cardiac electrophysiology.
Collapse
Affiliation(s)
- Irene Del Canto
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Electronics, Universitat Politècnica de València, Valencia, Spain
| | - Laura Santamaría
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | | | - Luis Such-Miquel
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiotherapy, Valencia University - Estudi General, Valencia, Spain
| | | | - Manuel Zarzoso
- Department of Physiotherapy, Valencia University - Estudi General, Valencia, Spain
| | - Carlos Soler
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Germán Parra
- Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Álvaro Tormos
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Electronics, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Alberola
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Luis Such
- CIBER CV. Carlos III Health Institute, Madrid, Spain.,Department of Physiology, Valencia University - Estudi General, Valencia, Spain
| | - Francisco J Chorro
- CIBER CV. Carlos III Health Institute, Madrid, Spain. .,Service of Cardiology, Valencia University Clinic Hospital, INCLIVA, Valencia, Spain. .,Department of Medicine, Valencia University - Estudi General, Valencia, Spain. .,Servicio de Cardiología, Hospital Clínico Universitario, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
3
|
Abstract
Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.
Collapse
|
4
|
del Canto I, Such-Miquel L, Brines L, Soler C, Zarzoso M, Calvo C, Parra G, Tormos Á, Alberola A, Millet J, Such L, Chorro FJ. Effects of JTV-519 on stretch-induced manifestations of mechanoelectric feedback. Clin Exp Pharmacol Physiol 2016; 43:1062-1070. [DOI: 10.1111/1440-1681.12630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Irene del Canto
- Department of Medicine; Valencia University “Estudi General”; Valencia Spain
| | - Luis Such-Miquel
- Department of Physiotherapy; Valencia University “Estudi General”; Valencia Spain
| | - Laia Brines
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Carlos Soler
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Manuel Zarzoso
- Department of Physiotherapy; Valencia University “Estudi General”; Valencia Spain
| | - Conrado Calvo
- Department of Electronic Engineering; Valencia Polytechnic University; Valencia Spain
| | - Germán Parra
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Álvaro Tormos
- Department of Electronic Engineering; Valencia Polytechnic University; Valencia Spain
| | - Antonio Alberola
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - José Millet
- Department of Electronic Engineering; Valencia Polytechnic University; Valencia Spain
| | - Luis Such
- Department of Physiology; Valencia University “Estudi General”; Valencia Spain
| | - Francisco J. Chorro
- Department of Medicine; Valencia University “Estudi General”; Valencia Spain
- Department of Cardiology; Valencia University Clinic Hospital; INCLIVA; Valencia Spain
| |
Collapse
|
5
|
Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:110-22. [PMID: 27208698 PMCID: PMC5067302 DOI: 10.1016/j.pbiomolbio.2016.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
Abstract
Cardiac auto-regulation involves integrated regulatory loops linking electrics and mechanics in the heart. Whereas mechanical activity is usually seen as 'the endpoint' of cardiac auto-regulation, it is important to appreciate that the heart would not function without feed-back from the mechanical environment to cardiac electrical (mechano-electric coupling, MEC) and mechanical (mechano-mechanical coupling, MMC) activity. MEC and MMC contribute to beat-by-beat adaption of cardiac output to physiological demand, and they are involved in various pathological settings, potentially aggravating cardiac dysfunction. Experimental and computational studies using rabbit as a model species have been integral to the development of our current understanding of MEC and MMC. In this paper we review this work, focusing on physiological and pathological implications for cardiac function.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
6
|
Ranolazine Attenuates the Electrophysiological Effects of Myocardial Stretch in Langendorff-Perfused Rabbit Hearts. Cardiovasc Drugs Ther 2016; 29:231-41. [PMID: 26138210 DOI: 10.1007/s10557-015-6587-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Mechanical stretch is an arrhythmogenic factor found in situations of cardiac overload or dyssynchronic contraction. Ranolazine is an antianginal agent that inhibits the late Na (+) current and has been shown to exert a protective effect against arrhythmias. The present study aims to determine whether ranolazine modifies the electrophysiological responses induced by acute mechanical stretch. METHODS The ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts using epicardial multiple electrodes under control conditions (n = 9) or during perfusion of the late Na(+) current blocker ranolazine 5 μM (n = 9). Spectral and mapping techniques were used to establish the ventricular fibrillation dominant frequency, the spectral concentration and the complexity of myocardial activation in three situations: baseline, stretch and post-stretch. RESULTS Ranolazine attenuated the increase in ventricular fibrillation dominant frequency produced by stretch (23.0 vs 40.4 %) (control: baseline =13.6 ± 2.6 Hz, stretch = 19.1 ± 3.1 Hz, p < 0.0001; ranolazine: baseline = 1.4 ± 1.8 Hz, stretch =14.0 ± 2.4 Hz, p < 0.05 vs baseline, p < 0.001 vs control). During stretch, ventricular fibrillation was less complex in the ranolazine than in the control series, as evaluated by the lesser percentage of complex maps and the greater spectral concentration of ventricular fibrillation. These changes were associated to an increase in the fifth percentile of VV intervals during ventricular fibrillation (50 ± 8 vs 38 ± 5 ms, p < .01) and in the wavelength of the activation (2.4 ± 0.3 vs 1.9 ± 0.2 cm, p < 0.001) under ranolazine. CONCLUSIONS The late inward Na(+) current inhibitor ranolazine attenuates the electrophysiological effects responsible for the acceleration and increase in complexity of ventricular fibrillation produced by myocardial stretch.
Collapse
|
7
|
Chorro FJ, Canto ID, Brines L, Such-Miquel L, Calvo C, Soler C, Zarzoso M, Trapero I, Tormos Á, Such L. Estudio experimental de los efectos de EIPA, losartán y BQ-123 sobre las modificaciones electrofisiológicas inducidas por el estiramiento miocárdico. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Chorro FJ, Canto ID, Brines L, Such-Miquel L, Calvo C, Soler C, Zarzoso M, Trapero I, Tormos Á, Such L. Experimental Study of the Effects of EIPA, Losartan, and BQ-123 on Electrophysiological Changes Induced by Myocardial Stretch. ACTA ACUST UNITED AC 2015; 68:1101-10. [PMID: 25985899 DOI: 10.1016/j.rec.2014.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/12/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND OBJECTIVES Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na(+)/H(+) exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. METHODS Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 μM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 μM, n = 9), and during perfusion with the Na(+)/H(+) exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 μM, n = 9). RESULTS EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control=40.4%; losartan=36% [not significant]; BQ-123=46% [not significant]; and EIPA=22% [P<.001]). During stretch, the activation maps were less complex (P<.0001) and the spectral concentration of the arrhythmia was greater (greater regularity) in the EIPA series: control=18 (3%); EIPA = 26 (9%) (P < .02); losartan=18 (5%) (not significant); and BQ-123=18 (4%) (not significant). CONCLUSIONS The Na(+)/H(+) exchanger inhibitor EIPA attenuated the electrophysiological effects responsible for the acceleration and increased complexity of ventricular fibrillation induced by acute myocardial stretch. The angiotensin II receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects.
Collapse
Affiliation(s)
- Francisco J Chorro
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain; Departamento de Medicina, Universidad de Valencia-Estudi General, Valencia, Spain.
| | - Irene Del Canto
- Departamento de Medicina, Universidad de Valencia-Estudi General, Valencia, Spain
| | - Laia Brines
- Departamento de Fisiología, Universidad de Valencia-Estudi General, Valencia, Spain
| | - Luis Such-Miquel
- Departamento de Fisioterapia, Universidad de Valencia-Estudi General, Valencia, Spain
| | - Conrado Calvo
- Departamento de Electrónica, Universidad Politécnica de Valencia, Valencia, Spain
| | - Carlos Soler
- Departamento de Fisiología, Universidad de Valencia-Estudi General, Valencia, Spain
| | - Manuel Zarzoso
- Departamento de Fisioterapia, Universidad de Valencia-Estudi General, Valencia, Spain
| | - Isabel Trapero
- Departamento de Enfermería, Universidad de Valencia-Estudi General, Valencia, Spain
| | - Álvaro Tormos
- Departamento de Electrónica, Universidad Politécnica de Valencia, Valencia, Spain
| | - Luis Such
- Departamento de Fisiología, Universidad de Valencia-Estudi General, Valencia, Spain
| |
Collapse
|
9
|
The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol 2013; 39:25-35. [DOI: 10.1007/s10840-013-9852-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
|
10
|
Such-Miquel L, Chorro FJ, Guerrero J, Trapero I, Brines L, Zarzoso M, Parra G, Soler C, del Canto I, Alberola A, Such L. Evaluación de la complejidad de la activación miocárdica durante la fibrilación ventricular. Estudio experimental. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2012.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Chorro FJ, Ibañez-Catalá X, Trapero I, Such-Miquel L, Pelechano F, Cánoves J, Mainar L, Tormos A, Cerdá JM, Alberola A, Such L. Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 36:286-98. [PMID: 23240900 DOI: 10.1111/pace.12060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 10/14/2012] [Accepted: 10/23/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Selective local acceleration of myocardial activation during ventricular fibrillation (VF) contributes information on the interactions between neighboring zones during the arrhythmia. This study analyzes these interactions, centering the observations on an isthmus of myocardium between two radiofrequency (RF) lesions. METHODS In nine isolated rabbit hearts, a gap of preserved myocardium was established between two RF lesions in the anterolateral left ventricle (LV) wall. Before, during, and after increasing the spatial heterogeneity of VF by local myocardial stretching, VF epicardial recordings were obtained. RESULTS Local stretch in the anterior LV wall decreased the excitable window (17 ± 7 ms vs 26 ± 7 ms; P < 0.05) and increased the dominant frequency (DFr; 18.9 ± 5.0 Hz vs 15.2 ± 3.6 Hz; P < 0.05) in this zone, without changes in the non-stretched posterolateral zone (25 ± 4 ms vs 27 ± 6 ms, ns and 14.1 ± 2.7 Hz vs 14.3 ± 3.0 Hz, ns). The DFr ratio at both sides of the gap was inversely correlated to the excitable window ratio (R = -0.57; P = 0.002). Before (31% vs 26%), during (29% vs 22%), and after stretch suppression (35% vs 25%), the wavefronts passing through the gap from the posterolateral to the anterior LV wall were seen to predominate. The number of wavefronts that passed from the anterior to the posterolateral LV wall was related to the excitable window in this zone (R = 0.41; P = 0.03). CONCLUSIONS The VF acceleration induced in the stretched zone does not increase the flow of wavefronts toward the non-stretched zone in the adjacent gap of preserved myocardium. The absence of significant changes in the electrophysiological parameters of the non-stretched myocardium limits the arrival of wavefronts in this zone.
Collapse
Affiliation(s)
- Francisco J Chorro
- Service of Cardiology, Valencia University Clinic Hospital Incliva, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. ACTA ACUST UNITED AC 2012; 66:177-84. [PMID: 24775451 DOI: 10.1016/j.rec.2012.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND OBJECTIVES An experimental model is used to analyze the characteristics of ventricular fibrillation in situations of variable complexity, establishing relationships among the data produced by different methods for analyzing the arrhythmia. METHODS In 27 isolated rabbit heart preparations studied under the action of drugs (propranolol and KB-R7943) or physical procedures (stretching) that produce different degrees of change in the complexity of myocardial activation during ventricular fibrillation, use was made of spectral, morphological, and mapping techniques to process the recordings obtained with epicardial multielectrodes. RESULTS The complexity of ventricular fibrillation assessed by mapping techniques was related to the dominant frequency, normalized spectral energy, signal regularity index, and their corresponding coefficients of variation, as well as the area of the regions of interest identified on the basis of these parameters. In the multivariate analysis, we used as independent variables the area of the regions of interest related to the spectral energy and the coefficient of variation of the energy (complexity index=-0.005×area of the spectral energy regions -2.234×coefficient of variation of the energy+1.578; P=.0001; r=0.68). CONCLUSIONS The spectral and morphological indicators and, independently, those derived from the analysis of normalized energy regions of interest provide a reliable approach to the evaluation of the complexity of ventricular fibrillation as an alternative to complex mapping techniques.
Collapse
|
13
|
Brines L, Such-Miquel L, Gallego D, Trapero I, del Canto I, Zarzoso M, Soler C, Pelechano F, Cánoves J, Alberola A, Such L, Chorro FJ. Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiol (Oxf) 2012; 206:29-41. [PMID: 22497862 DOI: 10.1111/j.1748-1716.2012.02441.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/16/2011] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
Abstract
AIM Myocardial stretching is an arrhythmogenic factor. Optical techniques and mechanical uncouplers are used to study the mechanoelectric feedback. The aim of this study is to determine whether the mechanical uncouplers 2,3-butanedione monoxime and Blebbistatin hinder or modify the electrophysiological effects of acute mechanical stretch. METHODS The ventricular fibrillation (VF) modifications induced by acute mechanical stretch were studied in 27 Langendorff-perfused rabbit hearts using epicardial multiple electrodes and mapping techniques under control conditions (n = 9) and during the perfusion of 2,3-butanedione monoxime (15 mM) (n = 9) or Blebbistatin (10 μm) (n = 9). RESULTS In the control series, myocardial stretch increased the complexity of the activation maps and the dominant frequency (DF) of VF from 13.1 ± 2.0 Hz to 19.1 ± 3.1 Hz (P < 0.001, 46% increment). At baseline, the activation maps showed less complexity in both the 2,3-butanedione monoxime and Blebbistatin series, and the DF was lower in the 2,3-butanedione monoxime series (11.4 ± 1.2 Hz; P < 0.05). The accelerating effect of mechanical stretch was abolished under 2,3-butanedione monoxime (maximum DF = 11.7 ± 2.4 Hz, 5% increment, ns vs baseline, P < 0.0001 vs. control series) and reduced under Blebbistatin (maximum DF = 12.9 ± 0.7 Hz, 8% increment, P < 0.01 vs. baseline, P < 0.0001 vs. control series). The variations in complexity of the activation maps under stretch were not significant in the 2,3-butanedione monoxime series and were significantly attenuated under Blebbistatin. CONCLUSION The accelerating effect and increased complexity of myocardial activation during VF induced by acute mechanical stretch are abolished under the action of 2,3-butanedione monoxime and reduced under the action of Blebbistatin.
Collapse
Affiliation(s)
- L. Brines
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - L. Such-Miquel
- Department of Physiotherapy; Valencia University, Estudi General; Valencia; Spain
| | - D. Gallego
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - I. Trapero
- Department of Infirmary; Valencia University, Estudi General; Valencia; Spain
| | - I. del Canto
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - M. Zarzoso
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - C. Soler
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - F. Pelechano
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - J. Cánoves
- Service of Cardiology; Valencia University Clinic Hospital; INCLIVA, Valencia; Spain
| | - A. Alberola
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - L. Such
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | | |
Collapse
|
14
|
Chorro FJ, Pelechano F, Trapero I, Ibañez-Catalá X, Such-Miquel L, Tormos A, Guerrero J, Cánoves J, Mainar L, Millet J, Alberola A, Such L. Modifications in ventricular fibrillation and capture capacity induced by a linear radiofrequency lesion. Rev Esp Cardiol 2011; 65:143-51. [PMID: 22177961 DOI: 10.1016/j.recesp.2011.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/08/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION AND OBJECTIVES An analysis was made of the effects of a radiofrequency-induced linear lesion during ventricular fibrillation and the capacity to capture myocardium through high-frequency pacing. METHODS Using multiple epicardial electrodes, ventricular fibrillation was recorded in 22 isolated perfused rabbit hearts, analyzing the activation maps upon applying trains of stimuli at 3 different frequencies close to that of the arrhythmia: a) at baseline; b) after radio-frequency ablation to induce a lesion of the left ventricular free wall (length=10 [1] mm), and c) after lengthening the lesion (length=23 [2] mm). RESULTS Following lesion induction, the regularity of the recorded signals decreased and significant variations in the direction of the activation fronts were observed. On lengthening the lesion, there was a slight increase in the episodes with at least 3 consecutive captures when pacing at cycles 10% longer than the arrhythmia (baseline: 0.6 [0.7]; initial lesion: 1 [1], no significant differences; lengthened lesion: 3 [2.8]; P<.001), while a decrease was observed in those obtained upon pacing at cycles 10% shorter than the arrhythmia. CONCLUSIONS The radio-frequency -induced lesion increases the heterogeneity of myocardial activation during ventricular fibrillation and modifies arrival of the activation fronts in the adjacent zones. High-frequency pacing during ventricular fibrillation produces occasional captures during at least 3 consecutive stimuli. The lengthened lesion in turn slightly increases capture capacity when using cycles slightly longer than the arrhythmia.
Collapse
Affiliation(s)
- Francisco J Chorro
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
New epicardial mapping electrode with warming/cooling function for experimental electrophysiology studies. Med Eng Phys 2011; 33:653-9. [PMID: 21256794 DOI: 10.1016/j.medengphy.2010.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 11/23/2022]
Abstract
Cardiac electrical activity is influenced by temperature. In experimental models, the induction of hypothermia and/or hyperthermia has been used for the study of mechanisms of cardiac arrhythmia. A system that allows for localized, controlled induction, besides simultaneously recording electrical activity in the same induced area, needs to be developed ad hoc. This article describes the construction and application of a new system capable of locally modifying the epicardial temperature of isolated hearts and of carrying out cardiac mapping with sufficient spatial resolution. The system is based on a thermoelectric refrigerator and an array of 128 stainless steel unipolar electrodes in encapsulated epoxy of good thermal conductivity. The surface of the electrode is shaped to match the ventricular curvature. The electrode-device was tested on 7 isolated perfused rabbit hearts following the Langendorff technique. Quality recordings were obtained for the left ventricle at temperatures of 37° C, 22° C and 42° C. The effects of temperature were explored in relation to two electrophysiological parameters: the QT interval during sinus rhythm and the VV interval during ventricular fibrillation. The results indicate that this is a suitable method for creating and analyzing electrophysiological heterogeneities induced by temperature in the experimental model.
Collapse
|
16
|
Venable PW, Taylor TG, Shibayama J, Warren M, Zaitsev AV. Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart. Am J Physiol Heart Circ Physiol 2010; 299:H1405-18. [PMID: 20802138 DOI: 10.1152/ajpheart.00419.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-duration ventricular fibrillation (LDVF) in the globally ischemic heart is a common setting of cardiac arrest. Electrical heterogeneities during LDVF may affect outcomes of defibrillation and resuscitation. Previous studies in large mammalian hearts have investigated the role of Purkinje fibers and electrophysiological gradients between the endocardium (Endo) and epicardium (Epi). Much less is known about gradients between the right ventricle (RV) and left ventricle (LV) and within each chamber during LDVF. We studied the transmural distribution of the VF activation rate (VFR) in the RV and LV and at the junction of RV, LV, and septum (Sep) during LDVF using plunge needle electrodes in opened-chest dogs. We also used optical mapping to analyze the Epi distribution of VFR, action potential duration (APD), and diastolic interval (DI) during LDVF in the RV and LV of isolated hearts. Transmural VFR gradients developed in both the RV and LV, with a faster VFR in Endo. Concurrently, large VFR gradients developed in Epi, with the fastest VFR in the RV-Sep junction, intermediate in the RV, and slowest in the LV. Optical mapping revealed a progressively increasing VFR dispersion within both the LV and RV, with a mosaic presence of fully inexcitable areas after 4-8 min of LDVF. The transmural, interchamber, and intrachamber VFR heterogeneities were of similar magnitude. In both chambers, the inverse of VFR was highly correlated with DI, but not APD, at all time points of LDVF. We conclude that the complex VFR gradients during LDVF in the canine heart cannot be explained solely by the distribution of Purkinje fibers and are related to regional differences in the electrical depression secondary to LDVF.
Collapse
Affiliation(s)
- Paul W Venable
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112-5000, USA
| | | | | | | | | |
Collapse
|
17
|
Chorro FJ, Trapero I, Such-Miquel L, Pelechano F, Mainar L, Cánoves J, Tormos Á, Alberola A, Hove-Madsen L, Cinca J, Such L. Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts. Am J Physiol Heart Circ Physiol 2009; 297:H1860-9. [DOI: 10.1152/ajpheart.00144.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stretch induces modifications in myocardial electrical and mechanical activity. Besides the effects of substances that block the stretch-activated channels, other substances could modulate the effects of stretch through different mechanisms that affect Ca2+ handling by myocytes. Thirty-six Langendorff-perfused rabbit hearts were used to analyze the effects of the Na+/Ca2+ exchanger blocker KB-R7943, propranolol, and the adenosine A2 receptor antagonist SCH-58261 on the acceleration of ventricular fibrillation (VF) produced by acute myocardial stretching. VF recordings were obtained with two epicardial multiple electrodes before, during, and after local stretching in four experimental series: control ( n = 9), KB-R7943 (1 μM, n = 9), propranolol (1 μM, n = 9), and SCH-58261 (1 μM, n = 9). Both the Na+/Ca2+ exchanger blocker KB-R7943 and propranolol induced a significant reduction ( P < 0.001 and P < 0.05, respectively) in the dominant frequency increments produced by stretching with respect to the control and SCH-58261 series (control = 49.9%, SCH-58261 = 52.1%, KB-R7943 = 9.5%, and propranolol = 12.5%). The median of the activation intervals, the functional refractory period, and the wavelength of the activation process during VF decreased significantly under stretch in the control and SCH-58261 series, whereas no significant variations were observed in the propranolol and KB-R7943 series, with the exception of a slight but significant decrease in the median of the fibrillation intervals in the KB-R7943 series. KB-R7943 and propranolol induced a significant reduction in the activation maps complexity increment produced by stretch with respect to the control and SCH-58261 series. In conclusion, the electrophysiological effects responsible for stretch-induced VF acceleration in the rabbit heart are reduced by the Na+/Ca2+ exchanger blocker KB-R7943 and by propranolol but not by the adenosine A2 receptor antagonist SCH-58261.
Collapse
Affiliation(s)
- Francisco J. Chorro
- Service of Cardiology, Valencia University Clinic Hospital, Valencia
- Departments of 2Medicine,
| | | | | | | | - Luis Mainar
- Service of Cardiology, Valencia University Clinic Hospital, Valencia
| | - Joaquín Cánoves
- Service of Cardiology, Valencia University Clinic Hospital, Valencia
| | - Álvaro Tormos
- Department of Electronics, Valencia Polytechnic University, Valencia; and
| | | | - Leif Hove-Madsen
- Cardiology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Juan Cinca
- Cardiology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Luis Such
- Physiology, Valencia University, Valencia
| |
Collapse
|
18
|
Lascano EC, Valle HFD, Negroni JA. Nitroglycerin induces late preconditioning against arrhythmias but not stunning in conscious sheep. SCAND CARDIOVASC J 2009; 41:160-6. [PMID: 17487765 DOI: 10.1080/14017430701329295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Nitroglycerin, a nitric oxide donor, induces late preconditioning against stunning by short ischemia-reperfusion periods. The study purpose was to assess similar nitroglycerin protection against stunning and arrhythmias produced by prolonged reversible ischemia. DESIGN Four groups of conscious sheep were studied, control: 12 minutes ischemia and 2 hour reperfusion; late preconditioning: six periods of 5 min ischemia-5 min reperfusion 24 h before 12 min ischemia and late preconditioning with 120 microg/kg and 600 microg/kg nitroglycerin administered instead of the ischemia-reperfusion periods. RESULTS Although late preconditioning protected against stunning (mean postischemic recovery of wall thickening fraction, control (n=10): 54.8+/-3.2, late preconditioning (n=9): 74.4+/-3.0, p<0.01), nitroglycerin 120 microg/kg (n=6) did not reproduce mechanical protection (50.1+/-3.8), even with a higher concentration of 600 microg/kg (59.1+/-3.7, n=4). However, nitroglycerin decreased arrhythmia severity index (control: 2.3+/-0.6, late preconditioning: 0.5+/-0.4, nitroglycerin 120 microg/kg: 1+/-0.4 and 600 microg/kg: 0.1+/-0.1 (p<0.05 vs. control). CONCLUSIONS Nitroglycerin only has a limited late preconditioning protective effect in conscious animals submitted to a reversible prolonged ischemia since it protects against arrhythmias but not against stunning.
Collapse
Affiliation(s)
- Elena C Lascano
- Department of Physiology, Pharmacology and Biochemistry, Favaloro University, Buenos Aires, Argentina.
| | | | | |
Collapse
|
19
|
Tran TA, Le Guennec JY, Babuty D, Bougnoux P, Tranquart F, Bouakaz A. On the mechanisms of ultrasound contrast agents-induced arrhythmias. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1050-1056. [PMID: 19195768 DOI: 10.1016/j.ultrasmedbio.2008.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/02/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
Recent reports have shown that imaging hard-shelled ultrasound (US) contrast agents at high mechanical indices engenders premature ventricular contractions (PVCs). We have shown that the oscillations of microbubbles next to a cell induce a mechanical pressure on its membrane resulting in the activation of stretch activated channels (SAC). The aim of this study is to demonstrate, in vivo and in vitro, the relationship between PVCs and SAC opening. Five anesthetized rats were used. PVCs were created in vivo with (1) US and a diluted solution of contrast microbubbles injected intravenously through the tail vein at a rate of 0.5 mL per min and (2) a manually induced mechanical stimulus, which consisted of stimulations by a flexible catheter introduced into the rat aorta and pushed until the left ventricle. PVCs were quantified through ECG measurements. In vitro experiments consisted of patch Clamp measurements on HL-1 heart cell line. The stimulation was carried out either manually with a glass rod or with US and microbubbles. For both in vivo and in vitro experiments, US consisted of 40-cycle waveforms at 1 MHz and peak negative pressures up to 300 kPa and exposure time varied from 1 to 2 min. We should emphasize that these parameters are different from those used in diagnostic conditions. In vivo, microbubbles and US at 300 kPa induced modification of rat's ECG while pressures below 300 kPa did not induce any PVC. US alone did not modify the rat's ECG. Similar PVCs were also created when stimulation with a catheter was applied. Regular heart beat rate was recovered immediately after the stimulation was stopped. In vitro, the mechanical stretch induced a cell membrane depolarization due to SAC opening. Similar effect was observed with US and microbubbles. The cell potential returned to its initial value when the stimulation was released. In conclusion, we presume that PVCs are generated through a cascade of events characterized by a mechanical action of oscillating microbubbles, opening of stretch activated ion channels, membrane depolarization and triggering of action potentials.
Collapse
|
20
|
|
21
|
Tormos A, Chorro FJ, Millet J, Such L, Cánoves J, Mainar L, Trapero I, Such-Miquel L, Guill A, Alberola A. Analyzing the electrophysiological effects of local epicardial temperature in experimental studies with isolated hearts. Physiol Meas 2008; 29:711-28. [PMID: 18560056 DOI: 10.1088/0967-3334/29/7/002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As a result of their modulating effects upon myocardial electrophysiology, both hypo- and hyperthermia can be used to study the mechanisms that generate or sustain cardiac arrhythmias. The present study describes an original electrode developed with thick-film technology and capable of controlling regional temperature variations in the epicardium while simultaneously registering its electrical activity. In this way, it is possible to measure electrophysiological parameters of the heart at different temperatures. The results obtained with this device in a study with isolated and perfused rabbit hearts are reported. An exploration has been made of the effects of local temperature changes upon the electrophysiological parameters implicated in myocardial conduction. Likewise, an analysis has been made of the influence of local temperature upon ventricular fibrillation activation frequency. It is concluded that both regional hypo- and hyperthermia exert reversible and opposite effects upon myocardial refractoriness and conduction velocity in the altered zone. The ventricular activation wavelength determined during constant pacing at 250 ms cycles is not significantly modified, however. During ventricular fibrillation, the changes in the fibrillatory frequency do not seem to be transmitted to normal temperature zones.
Collapse
Affiliation(s)
- Alvaro Tormos
- Bioengineering, Electronics and Telemedicine Group, Polytechnic University of Valencia, Camino de Vera 14, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chorro FJ, Guerrero J, Cánoves J, Trapero I, Mainar L, Pelechano F, Blasco E, Such-Miquel L, Ferrero Á, Sanchis J, Bodí V, Cerdá JM, Alberola A, Such L. Modificaciones de las características espectrales de la fibrilación ventricular en las lesiones producidas con radiofrecuencia. Estudio experimental. Rev Esp Cardiol 2008. [DOI: 10.1157/13117731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Li W, Gurev V, McCulloch AD, Trayanova NA. The role of mechanoelectric feedback in vulnerability to electric shock. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:461-78. [PMID: 18374394 DOI: 10.1016/j.pbiomolbio.2008.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Experimental and clinical studies have shown that ventricular dilatation is associated with increased arrhythmogenesis and elevated defibrillation threshold; however, the underlying mechanisms remain poorly understood. The goal of the present study was to test the hypothesis that (1) stretch-activated channel (SAC) recruitment and (2) geometrical deformations in organ shape and fiber architecture lead to increased arrhythmogenesis by electric shocks following acute ventricular dilatation. To elucidate the contribution of these two factors, the study employed, for the first time, a combined electro-mechanical simulation approach. Acute dilatation was simulated in a model of rabbit ventricular mechanics by raising the LV end-diastolic pressure from 0.6 (control) to 4.2 kPa (dilated). The output of the mechanics model was used in the electrophysiological model. Vulnerability to shocks was examined in the control, the dilated ventricles, and in the dilated ventricles that also incorporated currents through SAC as a function of local strain, by constructing vulnerability grids. Results showed that dilatation-induced deformation alone decreased upper limit of vulnerability (ULV) slightly and did not result in increased vulnerability. With SAC recruitment in the dilated ventricles, the number of shock-induced arrhythmia episodes increased by 37% (from 41 to 56) and the lower limit of vulnerability (LLV) decreased from 9 to 7 V/cm, while ULV did not change. The heterogeneous activation of SAC caused by the heterogeneous fiber strain in the ventricular walls was the main reason for increased vulnerability to electric shocks since it caused dispersion of electrophysiological properties in the tissue, resulting in postshock unidirectional block and establishment of reentry.
Collapse
Affiliation(s)
- Weihui Li
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | | | | | | |
Collapse
|
24
|
Trapero I, Chorro FJ, Such-Miquel L, Cánoves J, Tormos Á, Pelechano F, López L, Such L. Efectos de la estreptomicina en las modificaciones de la activación miocárdica durante la fibrilación ventricular inducidas por el estiramiento. Rev Esp Cardiol 2008. [DOI: 10.1157/13116208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Chorro FJ, Guerrero J, Pelechano F, Trapero I, Mainar L, Cánoves J, Such-Miquel L, García-Alberola A, Ferrero Á, Sanchís J, Bodí V, Alberola A, Such L. Influencia del tipo de registro (unipolar o bipolar) en las características espectrales de los registros epicárdicos de la fibrilación ventricular. Estudio experimental. Rev Esp Cardiol 2007; 60:1059-69. [DOI: 10.1157/13111238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Ferrero Á, J. Chorro F, Cánoves J, Mainara L, Blasco E, Such L. Efectos de la flecainida sobre las velocidades de conducción longitudinal y transversal en el miocardio ventricular. Estudio experimental. Rev Esp Cardiol 2007. [DOI: 10.1157/13100285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Chorro FJ, Blasco E, Trapero I, Cánoves J, Ferrero A, Mainar L, Such-Miquel L, Sanchis J, Bodí V, Cerdá JM, Alberola A, Such L. Selective Myocardial Isolation and Ventricular Fibrillation. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2007; 30:359-70. [PMID: 17367355 DOI: 10.1111/j.1540-8159.2007.00676.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Few experimental studies have analyzed the effects of selective radiofrequency (RF) lesions upon ventricular fibrillation (VF). The RF-induced isolation of selected zones would make it possible to determine whether these zones are essential for existence of the arrhythmia. METHODS In 31 Langendorff-perfused rabbit hearts, the characteristics and inducibility of VF were analyzed before and after the induction of RF lesions comprising: (1) the posterior zone of the septum and of the walls of both ventricles (n = 10); (2) the anterior zone of the septum and of the walls of both ventricles (n = 11); and (3) the midseptal zone (n = 10). RESULTS Complete isolation of the zone encompassed by the lesions was obtained in 5, 6, and 5 experiments of series 1, 2, and 3, respectively. In these experiments, the arrhythmia was only induced from within the zone encompassed by the lesions in one experiment belonging to series 2 (P < 0.05 with respect to baseline). In contrast, in all but one of the cases in series 2, VF could be induced from outside the isolated zone (ns vs baseline). Partial isolation was obtained in five experiments of each series. In these experiments, on pacing from within the partially isolated zone, sustained VF was not induced in any experiment (P < 0.05 with respect to baseline), while in all cases VF could be induced on pacing from the external zone (ns vs baseline). CONCLUSION In the experimental model used, the three zones studied were not essential for maintaining VF. In most cases, their partial or total isolation avoided inducibility of the arrhythmia in those zones, though not in the remaining myocardium.
Collapse
Affiliation(s)
- Francisco J Chorro
- Service of Cardiology, Valencia University Clinic Hospital, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chorro FJ, Guerrero J, Trapero I, Such-Miquel L, Mainar L, Cánoves J, Blasco E, Ferrero A, Sanchís J, Bodí V, Such L. [Time-frequency analysis of ventricular fibrillation. An experimental study]. Rev Esp Cardiol 2007; 59:869-78. [PMID: 17020699 DOI: 10.1157/13092794] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES The analysis of frequency variability during ventricular fibrillation has yielded inconsistent results. We used an experimental model of ventricular fibrillation, with a short timescale, to analyze variations in frequency and their associated spatial distribution. METHODS Epicardial recordings of ventricular fibrillation were made in 10 perfused isolated rabbit heart preparations using a multiple electrode system (i.e., 240 unipolar electrodes). Both spectral and time-frequency analysis were used to derive the dominant frequency in the anterolateral wall of the left ventricle. RESULTS Linear regression analysis showed that there was a good correlation between the dominant frequency obtained using the two signal analysis methods: frequency (spectral analysis) = 1.01 x frequency (time-frequency analysis) -- 0.4 (r=0.9; P< .0001; standard error of the estimate, 2.2 Hz). In all cases except one, the dominant frequency exhibited a significant temporal variation on a short timescale (time-frequency analysis); the coefficient of variation was between 0.19 (0.06) and 0.24 (0.07) (NS). In all cases, there were significant differences between regions. The location at which the frequency was highest varied according to the timepoint considered, though it was predominantly in the apical or anterior zone. CONCLUSIONS In the absence of external modulating factors, the frequency of ventricular fibrillation exhibits temporal and spatial variations which can be observed at short timescales. In the free wall of the left ventricle, the dominant frequency is highest in the apical and anterior zones, and the maximum frequencies are most often found in these zones.
Collapse
Affiliation(s)
- Francisco J Chorro
- Servicio de Cardiología, Hospital Clínico Universitario de Valencia y Departamento de Medicina de la Universidad de Valencia, Valencia, España.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|