1
|
Liakoni E, Dempsey DA, Meyers M, Murphy NG, Fiorentino D, Havel C, Haller C, Benowitz NL. Effect of γ-hydroxybutyrate (GHB) on driving as measured by a driving simulator. Psychopharmacology (Berl) 2018; 235:3223-3232. [PMID: 30232528 PMCID: PMC6457903 DOI: 10.1007/s00213-018-5025-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE Gamma-hydroxybutyrate acid (GHB), a GABAB receptor agonist approved for treatment of narcolepsy, impairs driving ability, but little is known about doses and plasma concentrations associated with impairment and time course of recovery. OBJECTIVE To assess effects of oral GHB (Xyrem®) upon driving as measured by a driving simulator, and to determine plasma concentrations associated with impairment and the time course of recovery. METHODS Randomized, double-blind, two-arm crossover study, during which 16 participants received GHB 50 mg/kg orally or placebo. GHB blood samples were collected prior to and at 1, 3, and 6 h post dosing. Driving simulator sessions occurred immediately after blood sampling. RESULTS Plasma GHB was not detectable at baseline or 6 h post dosing. Median GHB concentrations at 1 and 3 h were 83.1 mg/L (range 54-110) and 24.4 mg/L (range 7.2-49.7), respectively. Compared to placebo, at 1 h post GHB dosing, significant differences were seen for the life-threatening outcome collisions (p < 0.001) and off-road accidents (p = 0.018). Although driving was not faster, there was significantly more weaving and erratic driving with GHB as measured by speed deviation (p = 0.002) and lane position deviation (p = 0.004). No significant impairment regarding driving outcomes was found in the GHB group at 3 and 6 h post dose. CONCLUSION GHB in doses used to treat narcolepsy resulted in severe driving impairment at 1 h post dosing. After 3 to 6 h, there was full recovery indicating that safe driving is expected the next morning after bedtime therapeutic GHB use in the absence of other substances.
Collapse
Affiliation(s)
- Evangelia Liakoni
- Departments of Medicine and Bioengineering & Therapeutic Sciences: The University of California San Francisco, San Francisco CA
| | - Delia A Dempsey
- Departments of Medicine and Bioengineering & Therapeutic Sciences: The University of California San Francisco, San Francisco CA
| | - Matthew Meyers
- Department of Pediatrics, Division of Adolescent Medicine: The University of California San Francisco, San Francisco, CA
| | - Nancy G Murphy
- Department of Emergency Medicine: Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Christopher Havel
- Departments of Medicine and Bioengineering & Therapeutic Sciences: The University of California San Francisco, San Francisco CA
| | | | - Neal L Benowitz
- Departments of Medicine and Bioengineering & Therapeutic Sciences, The University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Morse BL, Chadha GS, Felmlee MA, Follman KE, Morris ME. Effect of chronic γ-hydroxybutyrate (GHB) administration on GHB toxicokinetics and GHB-induced respiratory depression. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:686-693. [PMID: 28662343 DOI: 10.1080/00952990.2017.1339055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND γ-hydroxybutyrate (GHB) has a high potential for illicit use; overdose of this compound results in sedation, respiratory depression and death. Tolerance to the hypnotic/sedative and electroencephalogram effects of GHB occurs with chronic GHB administration; however, tolerance to respiratory depression has not been evaluated. GHB toxicodynamic effects are mediated predominantly by GABAB receptors. Chronic treatment may affect monocarboxylate transporters (MCTs) and alter the absorption, renal clearance and brain uptake of GHB. OBJECTIVES To determine effects of chronic GHB dosing on GHB toxicokinetics, GHB-induced respiratory depression, and MCT expression. METHODS Rats were administered GHB 600 mg/kg intravenously daily for 5 days. Plasma, urine and tissue samples and respiratory measurements were obtained on days 1 and 5. Plasma and urine were analyzed for GHB by LC/MS/MS and tissue samples for expression of MCT1, 2 and 4 and their accessory proteins by QRT-PCR. RESULTS No differences in GHB pharmacokinetics or respiratory depression were observed between days 1 and 5. Opposing changes in MCT1 and MCT4 mRNA expression were observed in kidney samples on day 5 compared to GHB-naïve animals, and MCT4 expression was increased in the intestine. CONCLUSIONS The lack of tolerance observed with GHB-induced respiratory depression, in contrast to the tolerance reported for the sedative/hypnotic and electroencephalogram effects, suggests that different GABAB receptor subtypes may be involved in different GABAB-mediated toxicodynamic effects of GHB. Chronic or binge users of GHB may be at no less risk for fatality from respiratory arrest with a GHB overdose than with a single dose of GHB.
Collapse
Affiliation(s)
- Bridget L Morse
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Investigative Drug Disposition, Transporters & Pharmacogenomics , Eli Lilly and Company , Indianapolis , IN , USA
| | - Gurkishan S Chadha
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,c School of Pharmacy , University of New England , Biddeford , ME , USA
| | - Melanie A Felmlee
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,d Department of Pharmaceutics & Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| | - Kristin E Follman
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Marilyn E Morris
- a Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
3
|
Kamal RM, van Noorden MS, Wannet W, Beurmanjer H, Dijkstra BAG, Schellekens A. Pharmacological Treatment in γ-Hydroxybutyrate (GHB) and γ-Butyrolactone (GBL) Dependence: Detoxification and Relapse Prevention. CNS Drugs 2017; 31:51-64. [PMID: 28004314 DOI: 10.1007/s40263-016-0402-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The misuse of γ-hydroxybutyrate (GHB) for recreational purposes has resulted in an increase in GHB-related problems such as intoxications, dependence and withdrawal in several countries in Europe, Australia and the US over the last decade. However, prevalence rates of misuse of GHB and its precursor, γ-butyrolactone (GBL), are still relatively low. In this qualitative review paper, after a short introduction on the pharmacology of GHB/GBL, followed by a summary of the epidemiology of GHB abuse, an overview of GHB dependence syndrome and GHB/GBL withdrawal syndrome is provided. Finally, the existing literature on management of GHB detoxification, both planned and unplanned, as well as the available management of GHB withdrawal syndrome, is summarized. Although no systematic studies on detoxification and management of withdrawal have been performed to date, general recommendations are given on pharmacological treatment and preferred treatment setting.
Collapse
Affiliation(s)
- Rama M Kamal
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands.
- Novadic-Kentron Addiction Care Network, Hogedwarsstraat 3, PO Box 243, 5260 AE, Vught, The Netherlands.
| | | | - Wim Wannet
- Scientific Research Committee IrisZorg, Kronenburgsingel 545, 6831 GM, Arnhem, The Netherlands
| | - Harmen Beurmanjer
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands
- Novadic-Kentron Addiction Care Network, Hogedwarsstraat 3, PO Box 243, 5260 AE, Vught, The Netherlands
| | - Boukje A G Dijkstra
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands
| | - Arnt Schellekens
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Zepf FD, Holtmann M, Duketis E, Maier J, Radeloff D, Schirman S, Wagner A, Poustka F, Wöckel L. [Withdrawal syndrome after abuse of GHB (Gamma-Hydroxybutyrate) and its physiological precursors - its relevance for child and adolescent psychiatrists]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2009; 37:413-20. [PMID: 19739059 DOI: 10.1024/1422-4917.37.5.413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The chronic abuse of Gamma-Hydroxybutyrate (GHB) as a designer drug as well as it's physiological precursors Gamma-Butyrolactone (GBL) and 1,4-Butandiole (1,4-BD) confronts child and adolescent psychiatrists with new challenges. The acute withdrawal of GHB with its cardiovascular and delirant symptoms is of particular importance for child and adolescent psychiatrists. METHODS In the present paper theoretical and biological aspects of acute GHB-/GBL-/1,4-BD-withdrawal syndrome are presented, and selected cases are discussed as regards potential treatment. RESULTS High dose treatment with benzodiazepines was successful in some cases of acute GHB-/GBL-/1,4-BD-withdrawal syndrome. Complications were severe dystonia under neuroleptic treatment, and also side-effects of treatment with benzodiazepines. Further problems were vegetative symptoms, electrocardiographic changes, rhabdomyolysis, acute renal failure, and death. CONCLUSION Acute GHB-withdrawal syndrome is a life-threatening condition which requires immediate intensive care treatment along with continuous monitoring of vital parameters. As acute GHB-withdrawal syndrome can present with symptoms close to psychotic episodes or acute alcohol withdrawal this condition is relevant for child and adolescent psychiatrists.
Collapse
Affiliation(s)
- Florian D Zepf
- Klinik für Kinder- und Jugendpsychiatrie und -psychotherapie, RWTH Universität Aachen, Aachen.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
van Nieuwenhuijzen PS, McGregor IS. Sedative and hypothermic effects of gamma-hydroxybutyrate (GHB) in rats alone and in combination with other drugs: assessment using biotelemetry. Drug Alcohol Depend 2009; 103:137-47. [PMID: 19446408 DOI: 10.1016/j.drugalcdep.2009.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/22/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
The recreational drug gamma-hydroxybutyrate (GHB) has euphoric effects and can induce sedation and body temperature changes. GHB is frequently combined with other recreational drugs although these interactions are not well characterised. The present study used biotelemetry to provide a fine-grained analysis of the effects of GHB on body temperature and locomotor activity in freely moving rats, and investigated interactions between GHB and 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH) and various antagonist drugs. GHB (1000mg/kg) caused profound sedation for more than 2h and a complex triphasic effect on body temperature: an initial hypothermia (5-40min), followed by hyperthermia (40-140min), followed again by hypothermia (140-360min). A lower GHB dose (500mg/kg) also caused sedation but only a hypothermic effect that lasted up to 6h. The dopamine D(1) receptor antagonist SCH 23390 (1mg/kg), the opioid antagonist naltrexone (1mg/kg), the benzodiazepine antagonist flumazenil (10mg/kg), and the 5-HT(2A/2C) receptor antagonist ritanserin (1mg/kg) did not prevent the overall sedative or body temperature effects of GHB (1000mg/kg). However the GABA(B) antagonist SCH 50911 (50mg/kg) prevented the hyperthermia induced by GHB (1000mg/kg). Repeated daily administration of GHB (1000mg/kg) produced tolerance to the sedative and hyperthermic effects of the drug and cross-tolerance to the sedative effects of the GABA(B) receptor agonist baclofen (10mg/kg). A high ambient temperature of 28 degrees C prevented the hypothermia obtained with GHB (500mg/kg) at 20 degrees C, while GHB (500mg/kg) reduced the hyperthermia and hyperactivity produced by co-administered doses of MDMA (5mg/kg) or METH (1mg/kg) at 28 degrees C. These results further confirm a role for GABA(B) receptors in the hypothermic and sedative effects of GHB and show an interaction between GHB and MDMA, and GHB and METH, that may be relevant to the experience of recreational users who mix these drugs.
Collapse
|
6
|
Carter LP, Koek W, France CP. Behavioral analyses of GHB: receptor mechanisms. Pharmacol Ther 2008; 121:100-14. [PMID: 19010351 DOI: 10.1016/j.pharmthera.2008.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022]
Abstract
GHB is used therapeutically and recreationally, although the precise mechanism of action responsible for its different behavioral effects is not entirely clear. The purpose of this review is to summarize how behavioral procedures, especially drug discrimination procedures, have been used to study the mechanism of action of GHB. More specifically, we will review several different drug discrimination procedures and discuss how they have been used to qualitatively and quantitatively study different components of the complex mechanism of action of GHB. A growing number of studies have provided evidence that the behavioral effects of GHB are mediated predominantly by GABAB receptors. However, there is also evidence that the mechanisms mediating the effects of GHB and the prototypical GABAB receptor agonist baclofen are not identical, and that other mechanisms such as GHB receptors and subtypes of GABAA and GABAB receptors might contribute to the effects of GHB. These findings are consistent with the different behavioral profile, abuse liability, and therapeutic indications of GHB and baclofen. A better understanding of the similarities and differences between GHB and baclofen, as well as the pharmacological mechanisms of action underlying the recreational and therapeutic effects of GHB, could lead to more effective medications with fewer adverse effects.
Collapse
|
7
|
Smith MA, Gergans SR, Lyle MA. The motor-impairing effects of GABA(A) and GABA(B) agonists in gamma-hydroxybutyrate (GHB)-treated rats: cross-tolerance to baclofen but not flunitrazepam. Eur J Pharmacol 2006; 552:83-9. [PMID: 17026996 DOI: 10.1016/j.ejphar.2006.08.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 11/27/2022]
Abstract
gamma-Hydroxybutyrate (GHB) is believed to function as a neurotransmitter in the mammalian brain by binding to a GHB-specific binding site. In addition, GHB may also indirectly enhance the neuroinhibitory actions of gamma-aminobutyric acid (GABA) by converting to GABA at neuronal synapses. The purpose of the present study was to examine the effects of representative GABA(A) and GABA(B) receptor agonists in rats treated chronically with GHB. Using a rotorod apparatus, the motor-impairing effects of GHB, the indirect GABA(A) receptor agonist, flunitrazepam, and the direct GABA(B) receptor agonist, baclofen, were examined before, during and after chronic treatment with 1000 mg/kg GHB, b.i.d. Prior to chronic treatment, all three drugs produced dose-dependent decreases in motor performance at low (8 rpm) and high (32 rpm) rotational speeds. Chronic treatment with GHB significantly decreased the potency of baclofen at both speeds, but did not alter the potency of either GHB or flunitrazepam. Following termination of chronic treatment, the potency of baclofen increased significantly at both speeds and returned to that observed prior to chronic treatment. These data indicate that chronic treatment with GHB confers tolerance to a GABA(B) receptor agonist under conditions in which tolerance is not conferred to a GABA(A) receptor agonist. These findings are consistent with the in vivo behavioral profile of GHB, which reveals a greater role for GABA(B) receptors than for GABA(A) receptors in its behavioral effects.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC 28035-7037, USA.
| | | | | |
Collapse
|
8
|
Bhattacharya I, Raybon JJ, Boje KMK. Alterations in neuronal transport but not blood-brain barrier transport are observed during gamma-hydroxybutyrate (GHB) sedative/hypnotic tolerance. Pharm Res 2006; 23:2067-77. [PMID: 16952000 DOI: 10.1007/s11095-006-9066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/16/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate if gamma-Hydroxybutyrate (GHB) tolerance is mediated by alterations in GHB systemic pharmacokinetics, transport (blood brain barrier (BBB) and neuronal) or membrane fluidity. MATERIALS AND METHODS GHB tolerance in rats was attained by repeated GHB administration (5.31 mmol/kg, s.c., QD for 5 days). GHB sedative/hypnotic effects were measured daily. GHB pharmacokinetics were determined on day 5. In separate groups, on day 6, in situ brain perfusion was performed to assess BBB transport alterations; or in vitro studies were performed (fluorescence polarization measurements of neuronal membrane fluidity or [3H]GABA neuronal accumulation). RESULTS GHB sedative/hypnotic tolerance was observed by day 5. No significant GHB pharmacokinetic or BBB transport differences were observed between treated and control rats. Neuronal membrane preparations from GHB tolerant rats showed a significant decrease in fluorescence polarization (treated-0.320 +/- 0.009, n = 5; control-0.299 +/- 0.009, n = 5; p < 0.05). [3H]GABA neuronal transport Vmax was significantly increased in tolerant rats (2,110.66 +/- 91.06 pmol/mg protein/min vs control (1,612.68 +/- 176.03 pmol/mg protein/min; n = 7 p < 0.05). CONCLUSIONS Short term GHB administration at moderate doses results in the development of tolerance which is not due to altered systemic pharmacokinetics or altered BBB transport, but might be due to enhanced membrane rigidity and increased GABA reuptake.
Collapse
Affiliation(s)
- Indranil Bhattacharya
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, H517 Cooke-Hochstetter, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
9
|
Abstract
Drug- and toxin-associated seizures (DTS) may result from exposure to a wide variety of agents. Most DTS can be managed with supportive care. First-line anticonvulsant therapy should include benzodiazepines, unless agents require a specific antidote. Phenytoin is generally not expected to be useful for DTS and in some instances may be harmful. In this article the authors discuss the pathophysiology of DTS, the potential differential diagnosis, and the clinical presentation. They also review selected agents that cause DTS and provide an overview of how the clinician should approach the management of patients who have DTS.
Collapse
|
10
|
Ren X, Mody I. γ-Hydroxybutyrate induces cyclic AMP-responsive element-binding protein phosphorylation in mouse hippocampus: An involvement of GABAB receptors and cAMP-dependent protein kinase activation. Neuroscience 2006; 141:269-75. [PMID: 16675135 DOI: 10.1016/j.neuroscience.2006.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
gamma-Hydroxybutyrate is a widely used recreational drug. Its abuse has been associated with cognitive impairments and development of tolerance and dependence. However, the neural mechanisms underlying these effects remain unclear. In the present study we investigated the possible cellular signaling mechanisms that might mediate gamma-hydroxybutyrate's action. Acute administration of gamma-hydroxybutyrate (500 mg/kg, i.p.) was found to cause a rapid and long-lasting increase in the phosphorylation level of the cAMP-responsive element-binding protein in mouse (C57/BL6) hippocampus. Pretreatment with the specific GABA(B) receptor antagonist [3-[1-(R)-[(3-cyclohexylmethyl)hydroxyphosphinyl]-2-(S)-hydroxy-propyl]amino]ethyl]-benzoic acid (20 mg/kg, i.p.) prevented the action of gamma-hydroxybutyrate, confirming a GABA(B) receptor-mediated mechanism. In addition, acute gamma-hydroxybutyrate administration induced a significant increase in cytosolic cAMP-dependent protein kinase activity in the hippocampus, and pretreatment with the cAMP-dependent protein kinase inhibitor H-89 could prevent the effect of gamma-hydroxybutyrate on cAMP-responsive element-binding protein phosphorylation, indicating a direct involvement of cAMP-dependent protein kinase in gamma-hydroxybutyrate-induced cAMP-responsive element-binding protein phosphorylation. On the other hand, the increased expression of phosphorylated cAMP-responsive element-binding protein was not observed in the hippocampus of mice subjected to repeated gamma-hydroxybutyrate exposure, suggesting the development of a gamma-hydroxybutyrate-induced desensitization of the signaling pathway leading to cAMP-responsive element-binding protein activation. Since cAMP-responsive element-binding protein activation has been implicated in a variety of neural plasticities, our findings may have revealed a new mechanism underlying gamma-hydroxybutyrate-induced neuroadaptations.
Collapse
Affiliation(s)
- X Ren
- Department of Neurology, the David Geffen School of Medicine at UCLA, Neuroscience Research Building, Room 575D, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | |
Collapse
|
11
|
Abstract
Drug- and toxin-associated seizures may result from exposure to a wide variety of agents. Obtaining a comprehensive history behind the exposure is generally more helpful than diagnostic testing. Most DTS may be managed with supportive care, including benzodiazepines, except in the case of agents that require a specific intervention or antidote.
Collapse
Affiliation(s)
- Brandon Wills
- Department of Emergency Medicine, University of Illinois, Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
12
|
Dimitrijevic N, Dzitoyeva S, Satta R, Imbesi M, Yildiz S, Manev H. Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB). Eur J Pharmacol 2005; 519:246-52. [PMID: 16129424 DOI: 10.1016/j.ejphar.2005.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/11/2005] [Accepted: 07/19/2005] [Indexed: 02/02/2023]
Abstract
Gamma-hydroxybutyric acid (GHB) can be synthesized in the brain but is also a known drug of abuse. Although putative GHB receptors have been cloned, it has been proposed that, similar to the behavior-impairing effects of ethanol, the in vivo effects of pharmacological GHB may involve metabotropic gamma-aminobutyric acid (GABA) GABA(B) receptors. We developed a fruitfly (Drosophila melanogater) model to investigate the role of these receptors in the behavioral effects of exogenous GHB. Injecting GHB into male flies produced a dose-dependent motor impairment (measured with a computer-assisted automated system), which was greater in ethanol-sensitive cheapdate mutants than in wild-type flies. These effects of pharmacological concentrations of GHB require the presence and activation of GABA(B) receptors. The evidence for this was obtained by pharmacological antagonism of GABA(B) receptors with CGP54626 and by RNA interference (RNAi)-induced knockdown of the GABA(B(1)) receptor subtype. Both procedures inhibited the behavioral effects of GHB. GHB pretreatment diminished the behavioral response to subsequent GHB injections; i.e., it triggered GHB tolerance, but did not produce ethanol tolerance. On the other hand, ethanol pretreatment produced both ethanol and GHB tolerance. It appears that in spite of many similarities between ethanol and GHB, the primary sites of their action may differ and that recently cloned putative GHB receptors may participate in actions of GHB that are not mediated by GABA(B) receptors. These receptors do not have a Drosophila orthologue. Whether Drosophila express a different GHB receptor should be explored.
Collapse
Affiliation(s)
- Nikola Dimitrijevic
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, MC912, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
13
|
Weerts EM, Goodwin AK, Griffiths RR, Brown PR, Froestl W, Jakobs C, Gibson KM. Spontaneous and precipitated withdrawal after chronic intragastric administration of gamma-hydroxybutyrate (GHB) in baboons. Psychopharmacology (Berl) 2005; 179:678-87. [PMID: 15645222 DOI: 10.1007/s00213-004-2079-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 10/13/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE gamma-Hydroxybuyrate (GHB) is a current drug of abuse that may produce physical dependence. OBJECTIVES The present study characterized the behavioral effects of chronic GHB in baboons (n = 4), and evaluated whether signs of withdrawal occurred (1) after administration of the GABA-B antagonist CGP36742 during chronic GHB administration (precipitated withdrawal) and (2) following discontinuation of chronic GHB administration (spontaneous withdrawal). METHODS Water (vehicle) and then GHB was continuously infused via intragastric (IG) catheters. GHB administration was initiated at 350 mg/kg per day, and the dose was increased by 100 mg/kg over 4 days to 750 mg/kg per day. Food pellets were available 20 h/day under a fixed ratio (FR5 or 10) schedule of reinforcement. Observation sessions and a 2-min fine motor task were conducted during vehicle and GHB administration. CGP36742 (32 and 56 mg/kg, IM) was administered during vehicle and chronic GHB administration. After a total of 32-36 days GHB administration was abruptly discontinued. Blood samples were collected during all interventions and analyzed for GHB content. RESULTS Chronic GHB decreased food-maintained behavior, disrupted performance of the fine motor task, and produced ataxia, muscle relaxation, tremors and jerks. At the end of GHB administration, plasma levels of GHB ranged from 486 to 2080 micromol/L. Administration of CGP36742 during chronic GHB administration produced increases in aggression, self-directed behaviors, vomit/retch, tremors and/or jerks, which is consistent with a precipitated withdrawal syndrome. Similar signs were observed when GHB administration was discontinued. Seizures were not observed. CONCLUSIONS These data indicate that chronic GHB administration produced physical dependence and that activation of the GABA-B receptor may be important for GHB physical dependence.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wong CGT, Gibson KM, Snead OC. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci 2004; 25:29-34. [PMID: 14723976 DOI: 10.1016/j.tips.2003.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
gamma-Hydroxybutyric acid (GHB) is a short-chain fatty acid that occurs naturally in the mammalian brain and is formed primarily from the precursor gamma-aminobutyric acid (GABA). The properties of GHB suggest that it has a neuromodulatory role in the brain and has the ability to induce several pharmacological and behavioral effects. GHB has been used clinically as an anesthetic and to treat alcoholism and narcolepsy. Furthermore, GHB has emerged recently as a major recreational drug of abuse. GHB appears to have dual mechanisms of action in the brain. Biochemical data suggest that the intrinsic neurobiological activity of GHB might be mediated through the GHB receptor, which is separate and distinct from the GABA(B) receptor. However, many of the pharmacological and clinical effects of exogenously administered GHB, including the properties of addiction, tolerance, withdrawal and intoxication, are probably mediated via the GABA(B) receptor, where GHB might act both directly as a partial agonist and indirectly through GHB-derived GABA.
Collapse
Affiliation(s)
- C Guin Ting Wong
- Institute of Medical Sciences, and Brain and Behavior Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
15
|
Eckermann KA, Koek W, France CP. Chronic 1,4-butanediol treatment in rats: cross-tolerance to γ-hydroxybutyrate and (±)-baclofen. Eur J Pharmacol 2004; 484:259-62. [PMID: 14744611 DOI: 10.1016/j.ejphar.2003.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of 1,4-butanediol, gamma-hydroxybutyrate (GHB), and (+/-)-baclofen on food-maintained responding in rats were assessed before, during, and after chronic treatment with 1,4-butanediol. Six weeks of treatment with 1,4-butanediol (twice daily, 320 mg/kg for 3 weeks followed by 560 mg/kg for 3 weeks) decreased sensitivity to the rate-decreasing effects of (+/-)-baclofen and GHB without changing sensitivity to 1,4-butanediol. Sensitivity to (+/-)-baclofen and GHB returned to control values 2-3 weeks after discontinuation of treatment. These data suggest that tolerance to the effects of GHB or its precursors might result from changes in GABA(B) mechanisms.
Collapse
Affiliation(s)
- Kary A Eckermann
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|