1
|
Xiong T, Mallet J. On the impermanence of species: The collapse of genetic incompatibilities in hybridizing populations. Evolution 2022; 76:2498-2512. [PMID: 36097352 PMCID: PMC9827863 DOI: 10.1111/evo.14626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Species pairs often become genetically incompatible during divergence, which is an important source of reproductive isolation. An idealized picture is often painted where incompatibility alleles accumulate and fix between diverging species. However, recent studies have shown both that incompatibilities can collapse with ongoing hybridization, and that incompatibility loci can be polymorphic within species. This paper suggests some general rules for the behavior of incompatibilities under hybridization. In particular, we argue that redundancy of genetic pathways can strongly affect the dynamics of intrinsic incompatibilities. Since fitness in genetically redundant systems is unaffected by introducing a few foreign alleles, higher redundancy decreases the stability of incompatibilities during hybridization, but also increases tolerance of incompatibility polymorphism within species. We use simulations and theories to show that this principle leads to two types of collapse: in redundant systems, exemplified by classical Dobzhansky-Muller incompatibilities, collapse is continuous and approaches a quasi-neutral polymorphism between broadly sympatric species, often as a result of isolation-by-distance. In nonredundant systems, exemplified by co-evolution among genetic elements, incompatibilities are often stable, but can collapse abruptly with spatial traveling waves. As both types are common, the proposed principle may be useful in understanding the abundance of genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| | - James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
2
|
Whiteman NK. Evolution in small steps and giant leaps. Evolution 2022; 76:67-77. [PMID: 35040122 PMCID: PMC9387839 DOI: 10.1111/evo.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."
Collapse
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
3
|
Turelli M, Barton NH. Why did the
Wolbachia
transinfection cross the road? drift, deterministic dynamics, and disease control. Evol Lett 2022; 6:92-105. [DOI: 10.1002/evl3.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michael Turelli
- Department of Evolution and Ecology University of California, Davis Davis California 95616
| | - Nicholas H. Barton
- Institute of Science and Technology Austria Klosterneuburg A‐3400 Austria
| |
Collapse
|
4
|
Rapid Divergence of Key Spermatogenesis Genes in nasuta-Subgroup of Drosophila. J Mol Evol 2021; 90:2-16. [PMID: 34807291 DOI: 10.1007/s00239-021-10037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The crosses between closely related Drosophila species usually produce sterile hybrid males with spermatogenesis disrupted at post-meiotic phase, especially in sperm individualization stage than the pre-meiotic stage. This is possibly due to the rapid interspecies divergence of male sex and reproduction-related genes. Here we annotated 11 key spermatogenesis genes in 35 strains of species belonging to nasuta-subgroup of Drosophila, where many interspecies crosses produce sterile males. We characterized the divergence and polymorphism in the protein coding regions by employing gene-wide, codon-wide, and lineage-specific selection analysis to test the mode and strength of selection acting on these genes. Our analysis showed signature of positive selection at bag of marbles (bam) and benign gonial cell neoplasma (bgcn) despite the selection constrains and the absence of endosymbiont infection which could potentially drive rapid divergence due to an arms race while roughex (rux) showed lineage-specific rapid divergence in frontal sheen complex of nasuta-subgroup. cookie monster (comr) showed rapid divergence consistent with the possibility of meiotic arrest observed in sterile hybrids of Drosophila species. Rapid divergence observed at don juan (dj) and Mst98Ca-like was consistent with fused sperm-tail abnormality observed in the hybrids of Drosophila nasuta and Drosophila albomicans. These findings highlight the potential role of rapid nucleotide divergence in bringing about hybrid incompatibility in the form of male sterility; however, additional genetic manipulation studies can widen our understanding of hybrid incompatibilities. Furthermore, our study emphasizes the importance of young species belonging to nasuta-subgroup of Drosophila in studying post-zygotic reproductive isolation mechanisms.
Collapse
|
5
|
Abstract
A well-known property of sexual selection combined with a cross-sex genetic correlation (rmf) is that it can facilitate a peak shift on the adaptive landscape. How do these diversifying effects of sexual selection + rmf balance with the constraints imposed by such sexual antagonism, to affect the macroevolution of sexual dimorphism? Here, I extend existing quantitative genetic models of evolution on complex adaptive landscapes. Beyond recovering classical predictions for the conditions promoting a peak shift, I show that when rmf is moderate to strong, relatively weak sexual selection is required to induce a peak shift in males only. Increasing the strength of sexual selection leads to a sexually concordant peak shift, suggesting that macroevolutionary rates of sexual dimorphism may be largely decoupled from the strength of within-population sexual selection. Accounting explicitly for demography further reveals that sex-specific peak shifts may be more likely to be successful than concordant shifts in the face of extinction, especially when natural selection is strong. An overarching conclusion is that macroevolutionary patterns of sexual dimorphism are unlikely to be readily explained by within-population estimates of selection or constraint alone.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Evolutionary Ecology Unit, Department of Biology, Lund University, Sölvegatan 37 223 62, Lund, Sweden
| |
Collapse
|
6
|
Sato Y, Fujiwara S, Egas M, Matsuda T, Gotoh T. Patterns of reproductive isolation in a haplodiploid mite, Amphitetranychus viennensis: prezygotic isolation, hybrid inviability and hybrid sterility. BMC Ecol Evol 2021; 21:177. [PMID: 34551724 PMCID: PMC8459536 DOI: 10.1186/s12862-021-01896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher). RESULTS We sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0-99.9% barrier) at genetic distances of 0.475-0.657, 0.150-0.209 and 0.145-0.210, respectively. Besides, we found asymmetries in reproductive isolation. CONCLUSIONS The prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15-0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.
Collapse
Affiliation(s)
- Yukie Sato
- Faculty of Life and Environmental Science/Mountain Science Center, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoshi Fujiwara
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Tomoko Matsuda
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan.,Nihon BioData Corporation, Kawasaki, Kanagawa, 213-0012, Japan
| | - Tetsuo Gotoh
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan. .,Faculty of Economics, Ryutsu Keizai University, Ryugasaki, Ibaraki, 301-8555, Japan.
| |
Collapse
|
7
|
Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. Proc Natl Acad Sci U S A 2021; 118:2103963118. [PMID: 34465621 DOI: 10.1073/pnas.2103963118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.
Collapse
|
8
|
Ågren JA. Sewall Wright's criticism of the gene's-eye view of evolution. Evolution 2021; 75:2326-2334. [PMID: 34435358 DOI: 10.1111/evo.14334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/27/2022]
Abstract
The gene's-eye view of evolution has played a central but contentious role in evolutionary biology for the past half-century. By envisioning evolutionary history as a struggle between competing selfish genes, it accelerated the shift from organism-centric to gene-centric explanations that began with the emergence population genetics a century ago. At the forefront of this shift were George C. Williams and Richard Dawkins, who advocated an approach to thinking about evolution first introduced by R. A. Fisher. In this Perspective, I discuss the criticism of the gene's-eye view developed by another architect of population genetics, Sewall Wright, whose "On genic and organismic selection" was published in Evolution in 1980. I start by outlining the history of the gene's-eye view and then show how some long-standing differences in opinion over its value can be traced back to disagreements between Fisher and Wright, especially over Fisher's concept of genetic variance and the importance of epistasis. I end with some reflections on the role of genes and organisms in evolutionary explanations.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138.,Current Address: Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Tadeo E, Rull J. Hybridization, Behavioral Patterns, and Pre- and Postzygotic Isolation Between Two Recently Derived Species of Walnut-Infesting Rhagoletis Fruit Flies in the Highlands of Mexico. NEOTROPICAL ENTOMOLOGY 2021; 50:505-514. [PMID: 33765250 DOI: 10.1007/s13744-021-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Episodes of isolation and secondary contact among populations of insects of Nearctic origin during Pleistocene glacial/postglacial climatic cycles had a strong evolutionary influence on the diversity of flies in the genus Rhagoletis in mountainous areas of Mexico. As a series of experiments undertaken to gather support for phylogenetic hypotheses on the origin of three walnut-infesting species in the suavis group, we examined pre- and postzygotic isolation between Rhagoletis completa Cresson, 1929 and R. ramosae Hernández-Ortiz, 1985. Despite morphological, biological, and behavioral differences, these two species were found to be capable of hybridization. Mating experiments in large enclosures revealed asymmetric sexual isolation. There were notable differences in male sexual behavior. While R. ramosae males mated exclusively on host fruit, R. completa males used fruit and alternative mating locations. During fruit-guarding and male-male contests, R. completa and R. ramosae males adopted markedly different wing postures. R. completa females were more reluctant to copulate with heterospecific males than R. ramosae females. During no choice crosses in small enclosures, there was a reduction of egg hatch for the hybrid cross of R. completa males × R. ramosae females. Our results and previous studies on reproductive isolation between other species pairs in the suavis group support a clade in which R. ramosae, R. zoqui Bush, 1966, and R. completa are close relatives all still capable of hybridizing.
Collapse
Affiliation(s)
- Eduardo Tadeo
- Instituto de Neuroetología, Universidad Veracruzana, Veracruz, Mexico
| | - Juan Rull
- LIEMEN-División Control Biológico de Plagas, PROIMI Biotecnología-CONICET, Tucumán, Argentina.
| |
Collapse
|
10
|
Technow F, Podlich D, Cooper M. Back to the future: Implications of genetic complexity for the structure of hybrid breeding programs. G3 (BETHESDA, MD.) 2021; 11:6265599. [PMID: 33950172 PMCID: PMC8495936 DOI: 10.1093/g3journal/jkab153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022]
Abstract
Commercial hybrid breeding operations can be described as decentralized networks of smaller, more or less isolated breeding programs. There is further a tendency for the disproportionate use of successful inbred lines for generating the next generation of recombinants, which has led to a series of significant bottlenecks, particularly in the history of the North American and European maize germplasm. Both the decentralization and the disproportionate contribution of inbred lines reduce effective population size and constrain the accessible genetic space. Under these conditions, long-term response to selection is not expected to be optimal under the classical infinitesimal model of quantitative genetics. In this study, we therefore aim to propose a rationale for the success of large breeding operations in the context of genetic complexity arising from the structure and properties of interactive genetic networks. For this, we use simulations based on the NK model of genetic architecture. We indeed found that constraining genetic space through program decentralization and disproportionate contribution of parental inbred lines, is required to expose additive genetic variation and thus facilitate heritable genetic gains under high levels of genetic complexity. These results introduce new insights into why the historically grown structure of hybrid breeding programs was successful in improving the yield potential of hybrid crops over the last century. We also hope that a renewed appreciation for “why things worked” in the past can guide the adoption of novel technologies and the design of future breeding strategies for navigating biological complexity.
Collapse
Affiliation(s)
- Frank Technow
- Plant Breeding, Corteva Agriscience, Tavistock, ON, N0B 2R0, Canada
| | - Dean Podlich
- Systems and Innovation for Breeding and Seed Products, Corteva Agriscience, Johnston, IA, 50131, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4067, Australia
| |
Collapse
|
11
|
Szép E, Sachdeva H, Barton NH. Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model. Evolution 2021; 75:1030-1045. [PMID: 33742441 PMCID: PMC8251656 DOI: 10.1111/evo.14210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
This article analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.
Collapse
Affiliation(s)
- Enikő Szép
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Himani Sachdeva
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
- Department of MathematicsUniversity of ViennaVienna1090Austria
| | - Nicholas H. Barton
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| |
Collapse
|
12
|
Ecology shapes epistasis in a genotype-phenotype-fitness map for stick insect colour. Nat Ecol Evol 2020; 4:1673-1684. [PMID: 32929238 DOI: 10.1038/s41559-020-01305-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
Genetic interactions such as epistasis are widespread in nature and can shape evolutionary dynamics. Epistasis occurs due to nonlinearity in biological systems, which can arise via cellular processes that convert genotype to phenotype and via selective processes that connect phenotype to fitness. Few studies in nature have connected genotype to phenotype to fitness for multiple potentially interacting genetic variants. Thus, the causes of epistasis in the wild remain poorly understood. Here, we show that epistasis for fitness is an emergent and predictable property of nonlinear selective processes. We do so by measuring the genetic basis of cryptic colouration and survival in a field experiment with stick insects. We find that colouration shows a largely additive genetic basis but with some effects of epistasis that enhance differentiation between colour morphs. In terms of fitness, different combinations of loci affecting colouration confer high survival in one host-plant treatment. Specifically, nonlinear correlational selection for specific combinations of colour traits in this treatment drives the emergence of pairwise and higher-order epistasis for fitness at loci underlying colour. In turn, this results in a rugged fitness landscape for genotypes. In contrast, fitness epistasis was dampened in another treatment, where selection was weaker. Patterns of epistasis that are shaped by ecologically based selection could be common and central to understanding fitness landscapes, the dynamics of evolution and potentially other complex systems.
Collapse
|
13
|
Quilodrán CS, Montoya-Burgos JI, Currat M. Harmonizing hybridization dissonance in conservation. Commun Biol 2020; 3:391. [PMID: 32694629 PMCID: PMC7374702 DOI: 10.1038/s42003-020-1116-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
A dramatic increase in the hybridization between historically allopatric species has been induced by human activities. However, the notion of hybridization seems to lack consistency in two respects. On the one hand, it is inconsistent with the biological species concept, which does not allow for interbreeding between species, and on the other hand, it is considered either as an evolutionary process leading to the emergence of new biodiversity or as a cause of biodiversity loss, with conservation implications. In the first case, we argue that conservation biology should avoid the discussion around the species concept and delimit priorities of conservation units based on the impact on biodiversity if taxa are lost. In the second case, we show that this is not a paradox but an intrinsic property of hybridization, which should be considered in conservation programmes. We propose a novel view of conservation guidelines, in which human-induced hybridization may also be a tool to enhance the likelihood of adaptation to changing environmental conditions or to increase the genetic diversity of taxa affected by inbreeding depression. The conservation guidelines presented here represent a guide for the development of programmes aimed at protecting biodiversity as a dynamic evolutionary system.
Collapse
Affiliation(s)
- Claudio S Quilodrán
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
- Laboratory of Anthropology, Genetics and Peopling History, Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Juan I Montoya-Burgos
- Laboratory of Vertebrate Evolution, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| |
Collapse
|
14
|
Barua A, Mikheyev AS. Toxin expression in snake venom evolves rapidly with constant shifts in evolutionary rates. Proc Biol Sci 2020; 287:20200613. [PMID: 32345154 PMCID: PMC7282918 DOI: 10.1098/rspb.2020.0613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Key innovations provide ecological opportunity by enabling access to new resources, colonization of new environments, and are associated with adaptive radiation. The most well-known pattern associated with adaptive radiation is an early burst of phenotypic diversification. Venoms facilitate prey capture and are widely believed to be key innovations leading to adaptive radiation. However, few studies have estimated their evolutionary rate dynamics. Here, we test for patterns of adaptive evolution in venom gene expression data from 52 venomous snake species. By identifying shifts in tempo and mode of evolution along with models of phenotypic evolution, we show that snake venom exhibits the macroevolutionary dynamics expected of key innovations. Namely, all toxin families undergo shifts in their rates of evolution, likely in response to changes in adaptive optima. Furthermore, we show that rapid-pulsed evolution modelled as a Lévy process better fits snake venom evolution than conventional early burst or Ornstein-Uhlenbeck models. While our results support the idea of snake venom being a key innovation, the innovation of venom chemistry lacks clear mechanisms that would lead to reproductive isolation and thus adaptive radiation. Therefore, the extent to which venom directly influences the diversification process is still a matter of contention.
Collapse
Affiliation(s)
- Agneesh Barua
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
| | - Alexander S. Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan
- Evolutionary genomics group, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
15
|
Barth JMI, Gubili C, Matschiner M, Tørresen OK, Watanabe S, Egger B, Han YS, Feunteun E, Sommaruga R, Jehle R, Schabetsberger R. Stable species boundaries despite ten million years of hybridization in tropical eels. Nat Commun 2020; 11:1433. [PMID: 32188850 PMCID: PMC7080837 DOI: 10.1038/s41467-020-15099-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/07/2020] [Indexed: 02/01/2023] Open
Abstract
Genomic evidence is increasingly underpinning that hybridization between taxa is commonplace, challenging our views on the mechanisms that maintain their boundaries. Here, we focus on seven catadromous eel species (genus Anguilla) and use genome-wide sequence data from more than 450 individuals sampled across the tropical Indo-Pacific, morphological information, and three newly assembled draft genomes to compare contemporary patterns of hybridization with signatures of past introgression across a time-calibrated phylogeny. We show that the seven species have remained distinct for up to 10 million years and find that the current frequencies of hybridization across species pairs contrast with genomic signatures of past introgression. Based on near-complete asymmetry in the directionality of hybridization and decreasing frequencies of later-generation hybrids, we suggest cytonuclear incompatibilities, hybrid breakdown, and purifying selection as mechanisms that can support species cohesion even when hybridization has been pervasive throughout the evolutionary history of clades.
Collapse
Affiliation(s)
- Julia M I Barth
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Chrysoula Gubili
- Fisheries Research Institute, Hellenic Agricultural Organisation-DEMETER, Nea Peramos, 64 007, Kavala, Greece
| | - Michael Matschiner
- Department of Palaeontology and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway.
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Shun Watanabe
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Feunteun
- Laboratoire Biologie des Organismes et Écosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, Université de Caen Normandie, Université des Antilles, IRD, 61 Rue Buffon, CP 53, 75231, Paris Cedex 05, France
- MNHN-Station Marine de Dinard, Centre de Recherche et d'Enseignement Sur les Systèmes Côtiers (CRESCO), 38 Rue du Port Blanc, 35800, Dinard, France
| | - Ruben Sommaruga
- Department of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, Salford Crescent, Salford, M5 4WT, UK.
| | - Robert Schabetsberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
16
|
Babiychuk E, Teixeira JG, Tyski L, Guimaraes JTF, Romeiro LA, da Silva EF, Dos Santos JF, Vasconcelos S, da Silva DF, Castilho A, Siqueira JO, Fonseca VLI, Kushnir S. Geography is essential for reproductive isolation between florally diversified morning glory species from Amazon canga savannahs. Sci Rep 2019; 9:18052. [PMID: 31792228 PMCID: PMC6889514 DOI: 10.1038/s41598-019-53853-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The variety, relative importance and eco-evolutionary stability of reproductive barriers are critical to understanding the processes of speciation and species persistence. Here we evaluated the strength of the biotic prezygotic and postzygotic isolation barriers between closely related morning glory species from Amazon canga savannahs. The flower geometry and flower visitor assemblage analyses supported pollination by the bees in lavender-flowered Ipomoea marabaensis and recruitment of hummingbirds as pollinators in red-flowered Ipomoea cavalcantei. Nevertheless, native bee species and alien honeybees foraged on flowers of both species. Real-time interspecific hybridization underscored functionality of the overlap in flower visitor assemblages, questioning the strength of prezygotic isolation underpinned by diversification in flower colour and geometry. Interspecific hybrids were fertile and produced offspring in nature. No significant asymmetry in interspecific hybridization and hybrid incompatibilities among offspring were found, indicating weak postmating and postzygotic isolation. The results suggested that despite floral diversification, the insular-type geographic isolation remains a major barrier to gene flow. Findings set a framework for the future analysis of contemporary evolution of plant-pollinator networks at the population, community, and ecosystem levels in tropical ecosystems that are known to be distinct from the more familiar temperate climate models.
Collapse
Affiliation(s)
- Elena Babiychuk
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil.
| | | | - Lourival Tyski
- Parque Zoobotânico Vale, VALE S.A., Rod. Raimundo Mascarenhas, Km 26, S/N., Núcleo Urbano de Carajás, CEP 68516-000, Parauapebas, Pará, Brazil
| | | | - Luiza Araújo Romeiro
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil
| | | | | | - Santelmo Vasconcelos
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil
| | - Delmo Fonseca da Silva
- Parque Zoobotânico Vale, VALE S.A., Rod. Raimundo Mascarenhas, Km 26, S/N., Núcleo Urbano de Carajás, CEP 68516-000, Parauapebas, Pará, Brazil
| | - Alexandre Castilho
- Gerência de Meio Ambiente, Departamento de Ferrosos Corredor Norte, Vale S.A., Rua Guamá n 60, Núcleo Urbano, CEP 68516-000, Parauapebas, Pará, Brazil
| | - José Oswaldo Siqueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil
| | | | - Sergei Kushnir
- Unaffiliated, Belém, Pará, Brazil.,Teagasc, Crop Science Department, Oak Park, Carlow, R93 XE12, Ireland
| |
Collapse
|
17
|
Abstract
Speciation-the origin of new species-has been one of the most active areas of research in evolutionary biology, both during, and since the Modern Synthesis. While the Modern Synthesis certainly shaped research on speciation in significant ways, providing a core framework, and set of categories and methods to work with, the history of work on speciation since the mid-twentieth century is a history of divergence and diversification. This piece traces this divergence, through both theoretical advances, and empirical insights into how different lineages, with different genetics and ecological conditions, are shaped by very different modes of diversification.
Collapse
|
18
|
Roux C, Pannell JR. The opposing effects of genetic drift and Haldane's sieve on floral-morph frequencies in tristylous metapopulations. THE NEW PHYTOLOGIST 2019; 224:1229-1240. [PMID: 31505031 PMCID: PMC6856859 DOI: 10.1111/nph.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Tristyly is a genetic floral polymorphism in which three floral morphs are maintained at equal frequencies by negative frequency-dependent selection on alleles at two interacting loci. Because dominant alleles at these loci are maintained at a lower frequency than their recessive counterparts, they are more likely to be lost by founder events and genetic drift. Here we examine the hypothesis that dominant alleles under negative frequency-dependent selection should also be more likely to re-invade populations than recessive alleles, due to Haldane's Sieve, because recessive alleles not expressed in a heterozygote state cannot benefit from positive selection when rare. We used computer simulations of tristylous metapopulations to verify that Haldane's Sieve acting on migrants into occupied demes can indeed reverse the bias in allele frequencies expected for small single tristylous populations, particularly in situations of rapid population growth following colonisation. This effect is manifest both locally and at the metapopulation level. Our study illustrates the potential effect of Haldane's Sieve in the novel context of an iconic plant sexual-system polymorphism under the influence of metapopulation dynamics.
Collapse
Affiliation(s)
- Camille Roux
- CNRSUMR 8198 – Evo‐Eco‐PaleoUniv. LilleLilleF‐59000France
| | - John R. Pannell
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
| |
Collapse
|
19
|
Cultural bistability and connectedness in a subdivided population. Theor Popul Biol 2019; 129:103-117. [DOI: 10.1016/j.tpb.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
|
20
|
Bull JJ, Remien CH, Krone SM. Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating. EVOLUTION MEDICINE AND PUBLIC HEALTH 2019; 2019:66-81. [PMID: 31191905 PMCID: PMC6556056 DOI: 10.1093/emph/eoz014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/18/2019] [Indexed: 11/12/2022]
Abstract
Background and objectives Genetic engineering combined with CRISPR technology has developed to the point that gene drives can, in theory, be engineered to cause extinction in countless species. Success of extinction programs now rests on the possibility of resistance evolution, which is largely unknown. Depending on the gene-drive technology, resistance may take many forms, from mutations in the nuclease target sequence (e.g. for CRISPR) to specific types of non-random population structures that limit the drive (that may block potentially any gene-drive technology). Methodology We develop mathematical models of various deviations from random mating to consider escapes from extinction-causing gene drives. A main emphasis here is sib mating in the face of recessive-lethal and Y-chromosome drives. Results Sib mating easily evolves in response to both kinds of gene drives and maintains mean fitness above 0, with equilibrium fitness depending on the level of inbreeding depression. Environmental determination of sib mating (as might stem from population density crashes) can also maintain mean fitness above 0. A version of Maynard Smith’s haystack model shows that pre-existing population structure can enable drive-free subpopulations to be maintained against gene drives. Conclusions and implications Translation of mean fitness into population size depends on ecological details, so understanding mean fitness evolution and dynamics is merely the first step in predicting extinction. Nonetheless, these results point to possible escapes from gene-drive-mediated extinctions that lie beyond the control of genome engineering. Lay summary Recent gene drive technologies promise to suppress and even eradicate pests and disease vectors. Simple models of gene-drive evolution in structured populations show that extinction-causing gene drives can be thwarted both through the evolution of sib mating as well as from purely demographic processes that cluster drive-free individuals.
Collapse
Affiliation(s)
- James J Bull
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | | | - Stephen M Krone
- Department of Mathematics, University of Idaho, Moscow, ID, USA
| |
Collapse
|
21
|
Knief U, Bossu CM, Saino N, Hansson B, Poelstra J, Vijay N, Weissensteiner M, Wolf JBW. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. Nat Ecol Evol 2019; 3:570-576. [PMID: 30911146 PMCID: PMC6445362 DOI: 10.1038/s41559-019-0847-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
The evolution of genetic barriers opposing inter-specific gene flow is key to the origin of new species. Drawing from information of over 400 admixed genomes sourced from replicate transects across the European hybrid zone between all-black carrion crows and grey-coated hooded crows, we decipher the interplay between phenotypic divergence and selection at the molecular level. Over 68% of plumage variation was explained by epistasis between the gene NDP and a ~2.8 Mb region on chromosome 18 with suppressed recombination. Both pigmentation loci showed evidence for divergent selection resisting introgression. This study reveals how few, large-effect loci can govern prezygotic isolation and shield phenotypic divergence from gene flow.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christen M Bossu
- Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden.,Institute of the Environment and Sustainability, Center for Tropical Research, University of California, Los Angeles, CA, USA
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Jelmer Poelstra
- Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Biology Department, Duke University, Durham, NC, USA
| | - Nagarjun Vijay
- Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Matthias Weissensteiner
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munich, Germany.,Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munich, Germany. .,Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Armstrong A, Anderson NW, Blackmon H. Inferring the potentially complex genetic architectures of adaptation, sexual dimorphism and genotype by environment interactions by partitioning of mean phenotypes. J Evol Biol 2019; 32:369-379. [PMID: 30698300 DOI: 10.1111/jeb.13421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/23/2018] [Accepted: 01/23/2019] [Indexed: 01/18/2023]
Abstract
Genetic architecture fundamentally affects the way that traits evolve. However, the mapping of genotype to phenotype includes complex interactions with the environment or even the sex of an organism that can modulate the expressed phenotype. Line-cross analysis is a powerful quantitative genetics method to infer genetic architecture by analysing the mean phenotype value of two diverged strains and a series of subsequent crosses and backcrosses. However, it has been difficult to account for complex interactions with the environment or sex within this framework. We have developed extensions to line-cross analysis that allow for gene by environment and gene by sex interactions. Using extensive simulation studies and reanalysis of empirical data, we show that our approach can account for both unintended environmental variation when crosses cannot be reared in a common garden and can be used to test for the presence of gene by environment or gene by sex interactions. In analyses that fail to account for environmental variation between crosses, we find that line-cross analysis has low power and high false-positive rates. However, we illustrate that accounting for environmental variation allows for the inference of adaptive divergence, and that accounting for sex differences in phenotypes allows practitioners to infer the genetic architecture of sexual dimorphism.
Collapse
Affiliation(s)
- Andrew Armstrong
- Department of Mathematics, Texas A&M University, College Station, Texas
| | - Nathan W Anderson
- Department of Mathematics, Texas A&M University, College Station, Texas
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
24
|
Marks P, Gerrits L, Marx J. How to use fitness landscape models for the analysis of collective decision-making: a case of theory-transfer and its limitations. BIOLOGY & PHILOSOPHY 2019; 34:7. [PMID: 30930512 PMCID: PMC6404423 DOI: 10.1007/s10539-018-9669-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
There is considerable correspondence between theories and models used in biology and the social sciences. One type of model that is in use in both biology and the social sciences is the fitness landscape model. The properties of the fitness landscape model have been applied rather freely in the social domain. This is partly due to the versatility of the model, but it is also due to the difficulties of transferring a model to another domain. We will demonstrate that in order to transfer the biological fitness landscape model to the social science it needs to be substantially modified. We argue that the syntactic structure of the model can remain unaltered, whilst the semantic dimension requires considerable modification in order to fit the specific phenomena in the social sciences. We will first discuss the origin as well as the basic properties of the model. Subsequently, we will demonstrate the considerations and modifications pertaining to such a transfer by showing how and why we altered the model to analyse collective decision-making processes. We will demonstrate that the properties of the target domain allow for a transfer of the syntactic structure but don't tolerate the semantic transfer.
Collapse
Affiliation(s)
- Peter Marks
- Department of Public Administration and Sociology, Erasmus University Rotterdam, Room T17-03, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Nosil P, Soria-Carrasco V, Feder JL, Flaxman SM, Gompert Z. Local and system-wide adaptation is influenced by population connectivity. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Obolski U, Ram Y, Hadany L. Key issues review: evolution on rugged adaptive landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:012602. [PMID: 29051394 DOI: 10.1088/1361-6633/aa94d4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adaptive landscapes represent a mapping between genotype and fitness. Rugged adaptive landscapes contain two or more adaptive peaks: allele combinations with higher fitness than any of their neighbors in the genetic space. How do populations evolve on such rugged landscapes? Evolutionary biologists have struggled with this question since it was first introduced in the 1930s by Sewall Wright. Discoveries in the fields of genetics and biochemistry inspired various mathematical models of adaptive landscapes. The development of landscape models led to numerous theoretical studies analyzing evolution on rugged landscapes under different biological conditions. The large body of theoretical work suggests that adaptive landscapes are major determinants of the progress and outcome of evolutionary processes. Recent technological advances in molecular biology and microbiology allow experimenters to measure adaptive values of large sets of allele combinations and construct empirical adaptive landscapes for the first time. Such empirical landscapes have already been generated in bacteria, yeast, viruses, and fungi, and are contributing to new insights about evolution on adaptive landscapes. In this Key Issues Review we will: (i) introduce the concept of adaptive landscapes; (ii) review the major theoretical studies of evolution on rugged landscapes; (iii) review some of the recently obtained empirical adaptive landscapes; (iv) discuss recent mathematical and statistical analyses motivated by empirical adaptive landscapes, as well as provide the reader with instructions and source code to implement simulations of evolution on adaptive landscapes; and (v) discuss possible future directions for this exciting field.
Collapse
|
28
|
Abstract
Phylogeography and landscape genetics have arisen within the past 30 y. Phylogeography is said to be the bridge between population genetics and systematics, and landscape genetics the bridge between landscape ecology and population genetics. Both fields can be considered as simply the amalgamation of classic biogeography with genetics and genomics; however, they differ in the temporal, spatial, and organismal scales addressed and the methodology used. I begin by briefly summarizing the history and purview of each field and suggest that, even though landscape genetics is a younger field (coined in 2003) than phylogeography (coined in 1987), early studies by Dobzhansky on the "microgeographic races" of Linanthus parryae in the Mojave Desert of California and Drosophila pseudoobscura across the western United States presaged the fields by over 40 y. Recent advances in theory, models, and methods have allowed researchers to better synthesize ecological and evolutionary processes in their quest to answer some of the most basic questions in biology. I highlight a few of these novel studies and emphasize three major areas ripe for investigation using spatially explicit genomic-scale data: the biogeography of speciation, lineage divergence and species delimitation, and understanding adaptation through time and space. Examples of areas in need of study are highlighted, and I end by advocating a union of phylogeography and landscape genetics under the more general field: biogeography.
Collapse
|
29
|
Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. Nat Commun 2017; 8:1593. [PMID: 29150608 PMCID: PMC5693900 DOI: 10.1038/s41467-017-01761-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
Abstract
Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence. The evolution of new sex chromosomes potentially generates reproductive isolation. Here, Bracewell et al. combine crossing experiments with population and functional genomics to characterize neo-sex chromosome evolution and incipient speciation in the mountain pine beetle, Dendroctonus ponderosae.
Collapse
|
30
|
van Heerwaarden B, Sgrò CM. The quantitative genetic basis of clinal divergence in phenotypic plasticity. Evolution 2017; 71:2618-2633. [PMID: 28857153 DOI: 10.1111/evo.13342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023]
Abstract
Phenotypic plasticity is thought to be an important mechanism for adapting to environmental heterogeneity. Nonetheless, the genetic basis of plasticity is still not well understood. In Drosophila melanogaster and D. simulans, body size and thermal stress resistance show clinal patterns along the east coast of Australia, and exhibit plastic responses to different developmental temperatures. The genetic basis of thermal plasticity, and whether the genetic effects underlying clinal variation in traits and their plasticity are similar, remains unknown. Here, we use line-cross analyses between a tropical and temperate population of Drosophila melanogaster and D. simulans developed at three constant temperatures (18°C, 25°C, and 29°C) to investigate the quantitative genetic basis of clinal divergence in mean thermal response (elevation) and plasticity (slope and curvature) for thermal stress and body size traits. Generally, the genetic effects underlying divergence in mean response and plasticity differed, suggesting that different genetic models may be required to understand the evolution of trait means and plasticity. Furthermore, our results suggest that nonadditive genetic effects, in particular epistasis, may commonly underlie plastic responses, indicating that current models that ignore epistasis may be insufficient to understand and predict evolutionary responses to environmental change.
Collapse
Affiliation(s)
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
31
|
Pál C, Papp B. Evolution of complex adaptations in molecular systems. Nat Ecol Evol 2017; 1:1084-1092. [PMID: 28782044 PMCID: PMC5540182 DOI: 10.1038/s41559-017-0228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular 'springboards', such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths.
Collapse
Affiliation(s)
- Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary
| |
Collapse
|
32
|
Obolski U, Lewin-Epstein O, Even-Tov E, Ram Y, Hadany L. With a little help from my friends: cooperation can accelerate the rate of adaptive valley crossing. BMC Evol Biol 2017. [PMID: 28623896 PMCID: PMC5473968 DOI: 10.1186/s12862-017-0983-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Natural selection favors changes that lead to genotypes possessing high fitness. A conflict arises when several mutations are required for adaptation, but each mutation is separately deleterious. The process of a population evolving from a genotype encoding for a local fitness maximum to a higher fitness genotype is termed an adaptive peak shift. Results Here we suggest cooperative behavior as a factor that can facilitate adaptive peak shifts. We model cooperation in a public goods scenario, wherein each individual contributes resources that are later equally redistributed among all cooperating individuals. We use mathematical modeling and stochastic simulations to study the effect of cooperation on peak shifts in both panmictic and structured populations. Our results show that cooperation can substantially affect the rate of complex adaptation. Furthermore, we show that cooperation increases the population diversity throughout the peak shift process, thus increasing the robustness of the population to sudden environmental changes. Conclusions We provide a new explanation to adaptive valley crossing in natural populations and suggest that the long term evolution of a species depends on its social behavior. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0983-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Uri Obolski
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 6997801, Tel Aviv, Israel.,Current address: Department of Zoology, University of Oxford, Oxford, UK
| | - Ohad Lewin-Epstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 6997801, Tel Aviv, Israel
| | - Eran Even-Tov
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 6997801, Tel Aviv, Israel.,Present Address: Department of Biology, Stanford University, Stanford, CA, USA
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
33
|
Affiliation(s)
- Michael Ruse
- Department of Philosophy; University of Guelph; 50 Stone Rd. East, Guelph Ontario NIG 2W1 Canada
| |
Collapse
|
34
|
Wade MJ, Goodnight CJ. PERSPECTIVE: THE THEORIES OF FISHER AND WRIGHT IN THE CONTEXT OF METAPOPULATIONS: WHEN NATURE DOES MANY SMALL EXPERIMENTS. Evolution 2017; 52:1537-1553. [PMID: 28565332 DOI: 10.1111/j.1558-5646.1998.tb02235.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1997] [Accepted: 09/08/1998] [Indexed: 11/30/2022]
Affiliation(s)
- Michael J. Wade
- Department of Biology Indiana University Bloomington Indiana 47405
| | - Charles J. Goodnight
- Department of Biology, 115 Marsh Life Science Building University of Vermont, Burlington Vermont 05405‐0086
| |
Collapse
|
35
|
Knowles LL, Levy A, McNellis JM, Greene KP, Futuyma DJ. TESTS OF INBREEDING EFFECTS ON HOST-SHIFT POTENTIAL IN THE PHYTOPHAGOUS BEETLE OPHRAELLA COMMUNA. Evolution 2017; 53:561-567. [PMID: 28565413 DOI: 10.1111/j.1558-5646.1999.tb03791.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1998] [Accepted: 10/30/1998] [Indexed: 11/30/2022]
Abstract
Although inbreeding, on average, decreases additive genetic variance, some inbred populations may show an increase in phenotypic variance for some characters. In those populations with increased phenotypic variance, character changes by peak shifts may occur because of the effects of the higher variance on the adaptive landscape. A population's increased phenotypic variance may place it in the domain of attraction of a new adaptive peak or increase the likelihood of a selection-driven peak shift as the landscape of mean fitness flattens. The focus of this study was to test for increased variance, in inbred populations, in a behavioral character involved in adaptive diversification and probably speciation. We examined the effect of inbreeding on feeding responses of the leaf beetle Ophraella communa in a series of inbred lineages across a range of levels of inbreeding (f = 0.25, 0.375, 0.5). We measured the feeding response of inbred lineages of O. communa on its normal host, Ambrosia artemisiifolia, and on two novel plants, Chrysopsis villosa and Iva frutescens, that are the hosts of other Ophraella species. The results show that feeding responses on the different plants are not correlated, indicating that the feeding responses to the different plants are to some degree genetically independent. Despite apparent genetic variation in lineage feeding responses, we could not statistically demonstrate increases in phenotypic variance within the lineages. Thus, the experimental results do not support the idea that host shifts in this beetle evolved by peak shifts in bottlenecked populations.
Collapse
Affiliation(s)
- L Lacey Knowles
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, 11794-5245
| | - André Levy
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, 11794-5245
| | - Jason M McNellis
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, 11794-5245
| | - Kimberly P Greene
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, 11794-5245
| | - Douglas J Futuyma
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, 11794-5245
| |
Collapse
|
36
|
Shoemaker DD, Jaenike J. HABITAT CONTINUITY AND THE GENETIC STRUCTURE OF DROSOPHILA POPULATIONS. Evolution 2017; 51:1326-1332. [PMID: 28565482 DOI: 10.1111/j.1558-5646.1997.tb03981.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1996] [Accepted: 03/13/1997] [Indexed: 11/27/2022]
Affiliation(s)
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, New York, 14627
| |
Collapse
|
37
|
Rosales A. Theories that narrate the world: Ronald A. Fisher's mass selection and Sewall Wright's shifting balance. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2017; 62:22-30. [PMID: 28583356 DOI: 10.1016/j.shpsa.2017.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Theories are composed of multiple interacting components. I argue that some theories have narratives as essential components, and that narratives function as integrative devices of the mathematical components of theories. Narratives represent complex processes unfolding in time as a sequence of stages, and hold the mathematical elements together as pieces in the investigation of a given process. I present two case studies from population genetics: R. A. Fisher's "mas selection" theory, and Sewall Wright's shifting balance theory. I apply my analysis to an early episode of the "R. A. Fisher - Sewall Wright controversy."
Collapse
Affiliation(s)
- Alirio Rosales
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC V6T 1Z4, Canada; Management and Information System Division, The Sauder School of Business, 2053 Main Mall, Vancouver, BC V6T 1Z2, Canada.
| |
Collapse
|
38
|
Abstract
The study of fitness landscapes, which aims at mapping genotypes to fitness, is receiving ever-increasing attention. Novel experimental approaches combined with next-generation sequencing (NGS) methods enable accurate and extensive studies of the fitness effects of mutations, allowing us to test theoretical predictions and improve our understanding of the shape of the true underlying fitness landscape and its implications for the predictability and repeatability of evolution. Here, we present a uniquely large multiallelic fitness landscape comprising 640 engineered mutants that represent all possible combinations of 13 amino acid-changing mutations at 6 sites in the heat-shock protein Hsp90 in Saccharomyces cerevisiae under elevated salinity. Despite a prevalent pattern of negative epistasis in the landscape, we find that the global fitness peak is reached via four positively epistatic mutations. Combining traditional and extending recently proposed theoretical and statistical approaches, we quantify features of the global multiallelic fitness landscape. Using subsets of the data, we demonstrate that extrapolation beyond a known part of the landscape is difficult owing to both local ruggedness and amino acid-specific epistatic hotspots and that inference is additionally confounded by the nonrandom choice of mutations for experimental fitness landscapes.
Collapse
|
39
|
Szappanos B, Fritzemeier J, Csörgő B, Lázár V, Lu X, Fekete G, Bálint B, Herczeg R, Nagy I, Notebaart RA, Lercher MJ, Pál C, Papp B. Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nat Commun 2016; 7:11607. [PMID: 27197754 PMCID: PMC5411730 DOI: 10.1038/ncomms11607] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes.
Collapse
Affiliation(s)
- Balázs Szappanos
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Jonathan Fritzemeier
- Department for Computer Science, Heinrich Heine University, Universitätsstraße 1, Düsseldorf D-40221, Germany
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Xiaowen Lu
- Department of Bioinformatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26–28, Nijmegen 6525 GA, The Netherlands
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Balázs Bálint
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, Mórahalom H-6782, Hungary
| | - Róbert Herczeg
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, Mórahalom H-6782, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, Mórahalom H-6782, Hungary
- Sequencing Platform, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Richard A. Notebaart
- Department of Bioinformatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26–28, Nijmegen 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen 6525 GA, The Netherlands
| | - Martin J. Lercher
- Department for Computer Science, Heinrich Heine University, Universitätsstraße 1, Düsseldorf D-40221, Germany
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
40
|
Peterson T, Müller GB. Phenotypic Novelty in EvoDevo: The Distinction Between Continuous and Discontinuous Variation and Its Importance in Evolutionary Theory. Evol Biol 2016; 43:314-335. [PMID: 27512237 PMCID: PMC4960286 DOI: 10.1007/s11692-016-9372-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/29/2016] [Indexed: 10/25/2022]
Abstract
The introduction of novel phenotypic structures is one of the most significant aspects of organismal evolution. Yet the concept of evolutionary novelty is used with drastically different connotations in various fields of research, and debate exists about whether novelties represent features that are distinct from standard forms of phenotypic variation. This article contrasts four separate uses for novelty in genetics, population genetics, morphology, and behavioral science, before establishing how novelties are used in evolutionary developmental biology (EvoDevo). In particular, it is detailed how an EvoDevo-specific research approach to novelty produces insight distinct from other fields, gives the concept explanatory power with predictive capacities, and brings new consequences to evolutionary theory. This includes the outlining of research strategies that draw attention to productive areas of inquiry, such as threshold dynamics in development. It is argued that an EvoDevo-based approach to novelty is inherently mechanistic, treats the phenotype as an agent with generative potential, and prompts a distinction between continuous and discontinuous variation in evolutionary theory.
Collapse
Affiliation(s)
- Tim Peterson
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Gerd B. Müller
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- The KLI Institute, Martinstrasse 12, 3400 Klosterneuburg, Austria
| |
Collapse
|
41
|
Abstract
The role of gene interactions in the evolutionary process has long been controversial. Although some argue that they are not of importance, because most variation is additive, others claim that their effect in the long term can be substantial. Here, we focus on the long-term effects of genetic interactions under directional selection assuming no mutation or dominance, and that epistasis is symmetrical overall. We ask by how much the mean of a complex trait can be increased by selection and analyze two extreme regimes, in which either drift or selection dominate the dynamics of allele frequencies. In both scenarios, epistatic interactions affect the long-term response to selection by modulating the additive genetic variance. When drift dominates, we extend Robertson's [Robertson A (1960)Proc R Soc Lond B Biol Sci153(951):234-249] argument to show that, for any form of epistasis, the total response of a haploid population is proportional to the initial total genotypic variance. In contrast, the total response of a diploid population is increased by epistasis, for a given initial genotypic variance. When selection dominates, we show that the total selection response can only be increased by epistasis when some initially deleterious alleles become favored as the genetic background changes. We find a simple approximation for this effect and show that, in this regime, it is the structure of the genotype-phenotype map that matters and not the variance components of the population.
Collapse
|
42
|
|
43
|
Schluter D. Speciation, Ecological Opportunity, and Latitude (American Society of Naturalists Address). Am Nat 2016; 187:1-18. [PMID: 26814593 DOI: 10.1086/684193] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Evolutionary hypotheses to explain the greater numbers of species in the tropics than the temperate zone include greater age and area, higher temperature and metabolic rates, and greater ecological opportunity. These ideas make contrasting predictions about the relationship between speciation processes and latitude, which I elaborate and evaluate. Available data suggest that per capita speciation rates are currently highest in the temperate zone and that diversification rates (speciation minus extinction) are similar between latitudes. In contrast, clades whose oldest analyzed dates precede the Eocene thermal maximum, when the extent of the tropics was much greater than today, tend to show highest speciation and diversification rates in the tropics. These findings are consistent with age and area, which is alone among hypotheses in predicting a time trend. Higher recent speciation rates in the temperate zone than the tropics suggest an additional response to high ecological opportunity associated with low species diversity. These broad patterns are compelling but provide limited insights into underlying mechanisms, arguing that studies of speciation processes along the latitudinal gradient will be vital. Using threespine stickleback in depauperate northern lakes as an example, I show how high ecological opportunity can lead to rapid speciation. The results support a role for ecological opportunity in speciation, but its importance in the evolution of the latitudinal gradient remains uncertain. I conclude that per capita evolutionary rates are no longer higher in the tropics than the temperate zone. Nevertheless, the vast numbers of species that have already accumulated in the tropics ensure that total rate of species production remains highest there. Thus, tropical evolutionary momentum helps to perpetuate the steep latitudinal biodiversity gradient.
Collapse
|
44
|
Lagator M, Igler C, Moreno AB, Guet CC, Bollback JP. Epistatic Interactions in the Arabinose Cis-Regulatory Element. Mol Biol Evol 2015; 33:761-9. [PMID: 26589997 PMCID: PMC4760080 DOI: 10.1093/molbev/msv269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Changes in gene expression are an important mode of evolution; however, the proximate mechanism of these changes is poorly understood. In particular, little is known about the effects of mutations within cis binding sites for transcription factors, or the nature of epistatic interactions between these mutations. Here, we tested the effects of single and double mutants in two cis binding sites involved in the transcriptional regulation of the Escherichia coli araBAD operon, a component of arabinose metabolism, using a synthetic system. This system decouples transcriptional control from any posttranslational effects on fitness, allowing a precise estimate of the effect of single and double mutations, and hence epistasis, on gene expression. We found that epistatic interactions between mutations in the araBAD cis-regulatory element are common, and that the predominant form of epistasis is negative. The magnitude of the interactions depended on whether the mutations are located in the same or in different operator sites. Importantly, these epistatic interactions were dependent on the presence of arabinose, a native inducer of the araBAD operon in vivo, with some interactions changing in sign (e.g., from negative to positive) in its presence. This study thus reveals that mutations in even relatively simple cis-regulatory elements interact in complex ways such that selection on the level of gene expression in one environment might perturb regulation in the other environment in an unpredictable and uncorrelated manner.
Collapse
|
45
|
|
46
|
Ostrowski EA, Ofria C, Lenski RE. Genetically integrated traits and rugged adaptive landscapes in digital organisms. BMC Evol Biol 2015; 15:83. [PMID: 25963618 PMCID: PMC4428022 DOI: 10.1186/s12862-015-0361-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/24/2015] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND When overlapping sets of genes encode multiple traits, those traits may not be able to evolve independently, resulting in constraints on adaptation. We examined the evolution of genetically integrated traits in digital organisms-self-replicating computer programs that mutate, compete, adapt, and evolve in a virtual world. We assessed whether overlap in the encoding of two traits - here, the ability to perform different logic functions - constrained adaptation. We also examined whether strong opposing selection could separate otherwise entangled traits, allowing them to be independently optimized. RESULTS Correlated responses were often asymmetric. That is, selection to increase one function produced a correlated response in the other function, while selection to increase the second function caused a complete loss of the ability to perform the first function. Nevertheless, most pairs of genetically integrated traits could be successfully disentangled when opposing selection was applied to break them apart. In an interesting exception to this pattern, the logic function AND evolved counter to its optimum in some populations owing to selection on the EQU function. Moreover, the EQU function showed the strongest response to selection only after it was disentangled from AND, such that the ability to perform AND was lost. Subsequent analyses indicated that selection against AND had altered the local adaptive landscape such that populations could cross what would otherwise have been an adaptive valley and thereby reach a higher fitness peak. CONCLUSIONS Correlated responses to selection can sometimes constrain adaptation. However, in our study, even strongly overlapping genes were usually insufficient to impose long-lasting constraints, given the input of new mutations that fueled selective responses. We also showed that detailed information about the adaptive landscape was useful for predicting the outcome of selection on correlated traits. Finally, our results illustrate the richness of evolutionary dynamics in digital systems and highlight their utility for studying processes thought to be important in biological systems, but which are difficult to investigate in those systems.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| | - Charles Ofria
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.
| | - Richard E Lenski
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
47
|
A tortoise-hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria. Proc Natl Acad Sci U S A 2015; 112:7530-5. [PMID: 25964348 DOI: 10.1073/pnas.1410631112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the context of Wright's adaptive landscape, genetic epistasis can yield a multipeaked or "rugged" topography. In an unstructured population, a lineage with selective access to multiple peaks is expected to fix rapidly on one, which may not be the highest peak. In a spatially structured population, on the other hand, beneficial mutations take longer to spread. This slowdown allows distant parts of the population to explore the landscape semiindependently. Such a population can simultaneously discover multiple peaks, and the genotype at the highest discovered peak is expected to dominate eventually. Thus, structured populations sacrifice initial speed of adaptation for breadth of search. As in the fable of the tortoise and the hare, the structured population (tortoise) starts relatively slow but eventually surpasses the unstructured population (hare) in average fitness. In contrast, on single-peak landscapes that lack epistasis, all uphill paths converge. Given such "smooth" topography, breadth of search is devalued and a structured population only lags behind an unstructured population in average fitness (ultimately converging). Thus, the tortoise-hare pattern is an indicator of ruggedness. After verifying these predictions in simulated populations where ruggedness is manipulable, we explore average fitness in metapopulations of Escherichia coli. Consistent with a rugged landscape topography, we find a tortoise-hare pattern. Further, we find that structured populations accumulate more mutations, suggesting that distant peaks are higher. This approach can be used to unveil landscape topography in other systems, and we discuss its application for antibiotic resistance, engineering problems, and elements of Wright's shifting balance process.
Collapse
|
48
|
Futuyma DJ. Can Modern Evolutionary Theory Explain Macroevolution? INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-15045-1_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Lima TG. Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nat Commun 2014; 5:4743. [DOI: 10.1038/ncomms5743] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
|
50
|
Quantifying the role of population subdivision in evolution on rugged fitness landscapes. PLoS Comput Biol 2014; 10:e1003778. [PMID: 25122220 PMCID: PMC4133052 DOI: 10.1371/journal.pcbi.1003778] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/29/2014] [Indexed: 11/22/2022] Open
Abstract
Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes only population subdivision into equivalent demes connected by global migration, and does not require significant size changes of the demes, environmental heterogeneity or specific geographic structure. We determine the optimal speedup of valley or plateau crossing that can be gained by subdivision, if the process is driven by the deme that crosses fastest. We show that isolated demes have to be in the sequential fixation regime for subdivision to significantly accelerate crossing. Using Markov chain theory, we obtain analytical expressions for the conditions under which optimal speedup is achieved: valley or plateau crossing by the subdivided population is then as fast as that of its fastest deme. We verify our analytical predictions through stochastic simulations. We demonstrate that subdivision can substantially accelerate the crossing of fitness valleys and plateaus in a wide range of parameters extending beyond the optimal window. We study the effect of varying the degree of subdivision of a population, and investigate the trade-off between the magnitude of the optimal speedup and the width of the parameter range over which it occurs. Our results, obtained for fitness valleys and plateaus, also hold for weakly beneficial intermediate mutations. Finally, we extend our work to the case of a population connected by migration to one or several smaller islands. Our results demonstrate that subdivision with migration alone can significantly accelerate the crossing of fitness valleys and plateaus, and shed light onto the quantitative conditions necessary for this to occur. Experimental evidence has recently been accumulating to suggest that fitness landscape ruggedness is common in a variety of organisms. Rugged landscapes arise from interactions between genetic variants, called epistasis, which can lead to fitness valleys or plateaus. The time needed to cross such fitness valleys or plateaus exhibits a rich dependence on population size, since stochastic effects have higher importance in small populations, increasing the probability of fixation of neutral or deleterious mutants. This may lead to an advantage of population subdivision, a possibility which has been strongly debated for nearly one hundred years. In this work, we quantitatively determine when, and to what extent, population subdivision accelerates valley and plateau crossing. Using the simple model of an asexual population subdivided into identical demes connected by gobal migration, we derive the conditions under which crossing by a subdivided population is driven by its fastest deme, thus giving rise to the maximal speedup. Our analytical predictions are verified using stochastic simulations. We investigate the effect of varying the degree of subdivision of a population. We generalize our results to weakly beneficial intermediates and to different population structures. We discuss the magnitude and robustness of the effect for realistic parameter values.
Collapse
|