1
|
Blue mussels of the Mytilus edulis species complex from South America: The application of species delimitation models to DNA sequence variation. PLoS One 2021; 16:e0256961. [PMID: 34473778 PMCID: PMC8412288 DOI: 10.1371/journal.pone.0256961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Smooth-shelled blue mussels, Mytilus spp., have a worldwide antitropical distribution and are ecologically and economically important. Mussels of the Mytilus edulis species complex have been the focus of numerous taxonomic and biogeographical studies, in particular in the Northern hemisphere, but the taxonomic classification of mussels from South America remains unclear. The present study analysed 348 mussels from 20 sites in Argentina, Chile, Uruguay and the Falkland Islands on the Atlantic and Pacific coasts of South America. We sequenced two mitochondrial locus, Cytochrome c Oxidase subunit I (625 bp) and 16S rDNA (443 bp), and one nuclear gene, ribosomal 18S rDNA (1770 bp). Mitochondrial and nuclear loci were analysed separately and in combination using maximum likelihood and Bayesian inference methods to identify the combination of the most informative dataset and model. Species delimitation using five different models (GMYC single, bGMYC, PTP, bPTP and BPP) revealed that the Mytilus edulis complex in South America is represented by three species: native M. chilensis, M. edulis, and introduced Northern Hemisphere M. galloprovincialis. However, all models failed to delimit the putative species Mytilus platensis. In contrast, however, broad spatial scale genetic structure in South America using Geneland software to analyse COI sequence variation revealed a group of native mussels (putatively M. platensis) in central Argentina and the Falkland Islands. We discuss the scope of species delimitation methods and the use of nuclear and mitochondrial genetic data to the recognition of species within the Mytilus edulis complex at regional and global scales.
Collapse
|
2
|
Skazina M, Odintsova N, Maiorova M, Ivanova A, Väinölä R, Strelkov P. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci Rep 2021; 11:5809. [PMID: 33707525 PMCID: PMC7970980 DOI: 10.1038/s41598-021-85098-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Two lineages of bivalve transmissible neoplasia (BTN), BTN1 and BTN2, are known in blue mussels Mytilus. Both lineages derive from the Pacific mussel M. trossulus and are identified primarily by their unique genotypes of the nuclear gene EF1α. BTN1 is found in populations of M. trossulus from the Northeast Pacific, while BTN2 has been detected in populations of other Mytilus species worldwide but not in M. trossulus itself. Here we examined M. trossulus from the Sea of Japan (Northwest Pacific) for the presence of BTN. Using hemocytology and flow cytometry of the hemolymph, we confirmed the presence of disseminated neoplasia in our specimens. Cancerous mussels possessed the BTN2 EF1α genotype and two mitochondrial haplotypes with different recombinant control regions, similar to that of common BTN2 lineages. This is the first report of BTN2 in its original host species M. trossulus. A comparison of all available BTN and M. trossulus COI sequences suggests a common and recent origin of BTN2 diversity in populations of M. trossulus outside the Northeast Pacific, possibly in the Northwest Pacific.
Collapse
Affiliation(s)
- Maria Skazina
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178.
| | - Nelly Odintsova
- National Scientific Center of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Maria Maiorova
- National Scientific Center of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Angelina Ivanova
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland
| | - Petr Strelkov
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178
| |
Collapse
|
3
|
Boissin E, Neglia V, Baksay S, Micu D, Bat L, Topaloglu B, Todorova V, Panayotova M, Kruschel C, Milchakova N, Voutsinas E, Beqiraj S, Nasto I, Aglieri G, Taviani M, Zane L, Planes S. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Sci Rep 2020; 10:21624. [PMID: 33303767 PMCID: PMC7730386 DOI: 10.1038/s41598-020-77742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/16/2020] [Indexed: 11/21/2022] Open
Abstract
To better predict population evolution of invasive species in introduced areas it is critical to identify and understand the mechanisms driving genetic diversity and structure in their native range. Here, we combined analyses of the mitochondrial COI gene and 11 microsatellite markers to investigate both past demographic history and contemporaneous genetic structure in the native area of the gastropod Tritia neritea, using Bayesian skyline plots (BSP), multivariate analyses and Bayesian clustering. The BSP framework revealed population expansions, dated after the last glacial maximum. The haplotype network revealed a strong geographic clustering. Multivariate analyses and Bayesian clustering highlighted the strong genetic structure at all scales, between the Black Sea and the Adriatic Sea, but also within basins. Within basins, a random pattern of genetic patchiness was observed, suggesting a superimposition of processes involving natural biological effects (no larval phase and thus limited larval dispersal) and putative anthropogenic transport of specimens. Contrary to the introduced area, no isolation-by-distance patterns were recovered in the Mediterranean or the Black Seas, highlighting different mechanisms at play on both native and introduced areas, triggering unknown consequences for species’ evolutionary trajectories. These results of Tritia neritea populations on its native range highlight a mixture of ancient and recent processes, with the effects of paleoclimates and life history traits likely tangled with the effects of human-mediated dispersal.
Collapse
Affiliation(s)
- Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Valentina Neglia
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Sandra Baksay
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire Evolution & Diversite Biologique, University TOULOUSE III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Dragos Micu
- Romanian Waters National Authority, 127 Mircea cel Batran Blvd., 900592, Constanţa, Romania
| | - Levent Bat
- Department of Hydrobiology, Sinop University Faculty of Fisheries, 57000, Sinop, Turkey
| | - Bulent Topaloglu
- Faculty of Aquatic Sciences, Istanbul University, Ordu St No: 8, 34134, Istanbul, Turkey
| | - Valentina Todorova
- Institute of Oceanology-BAS (IO-BAS), P.O. Box 152, 9000, Varna, Bulgaria
| | - Marina Panayotova
- Institute of Oceanology-BAS (IO-BAS), P.O. Box 152, 9000, Varna, Bulgaria
| | - Claudia Kruschel
- University of Zadar, Ul. Mihovila Pavlinovića, 23000, Zadar, Croatia
| | - Nataliya Milchakova
- Institute of Biology of the Southern Seas, 2 Nakhimov Ave., Sevastopol, Russia, 299011
| | - Emanuela Voutsinas
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavyssos, Greece
| | - Sajmir Beqiraj
- Faculty of Natural Sciences, Department of Biology, University of Tirana, Bulevardi "Zogu I Parë", 25/1, 1001, Tiranë, Albania
| | - Ina Nasto
- Department of Biology, Faculty of Technical Sciences, Vlora University, 9401, Vlora, Albania
| | - Giorgio Aglieri
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 28, 90123, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy
| | - Marco Taviani
- Institute of Marine Sciences (ISMAR), CNR, via Gobetti 101, 40129, Bologna, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.,Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Lorenzo Zane
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy.,Dipartimento di Biologia, Università di Padova, via U. Bassi/58B, 35121, Padua, Italy
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| |
Collapse
|
4
|
Layton KKS, Carvajal JI, Wilson NG. Mimicry and mitonuclear discordance in nudibranchs: New insights from exon capture phylogenomics. Ecol Evol 2020; 10:11966-11982. [PMID: 33209263 PMCID: PMC7664011 DOI: 10.1002/ece3.6727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Abstract
Phylogenetic inference and species delimitation can be challenging in taxonomic groups that have recently radiated and where introgression produces conflicting gene trees, especially when species delimitation has traditionally relied on mitochondrial data and color pattern. Chromodoris, a genus of colorful and toxic nudibranch in the Indo-Pacific, has been shown to have extraordinary cryptic diversity and mimicry, and has recently radiated, ultimately complicating species delimitation. In these cases, additional genome-wide data can help improve phylogenetic resolution and provide important insights about evolutionary history. Here, we employ a transcriptome-based exon capture approach to resolve Chromodoris phylogeny with data from 2,925 exons and 1,630 genes, derived from 15 nudibranch transcriptomes. We show that some previously identified mimics instead show mitonuclear discordance, likely deriving from introgression or mitochondrial capture, but we confirm one "pure" mimic in Western Australia. Sister-species relationships and species-level entities were recovered with high support in both concatenated maximum likelihood (ML) and summary coalescent phylogenies, but the ML topologies were highly variable while the coalescent topologies were consistent across datasets. Our work also demonstrates the broad phylogenetic utility of 149 genes that were previously identified from eupulmonate gastropods. This study is one of the first to (a) demonstrate the efficacy of exon capture for recovering relationships among recently radiated invertebrate taxa, (b) employ genome-wide nuclear markers to test mimicry hypotheses in nudibranchs and (c) provide evidence for introgression and mitochondrial capture in nudibranchs.
Collapse
Affiliation(s)
- Kara K. S. Layton
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
- School of Biological Sciences, Zoology BuildingUniversity of AberdeenAberdeenUK
| | - Jose I. Carvajal
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| | - Nerida G. Wilson
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| |
Collapse
|
5
|
Laakkonen HM, Hardman M, Strelkov P, Väinölä R. Cycles of trans-Arctic dispersal and vicariance, and diversification of the amphi-boreal marine fauna. J Evol Biol 2020; 34:73-96. [PMID: 32671913 DOI: 10.1111/jeb.13674] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The amphi-boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans-Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter-oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans-Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter-oceanic affinities and dispersal histories. For a general view on the trans-Arctic dynamics and of the roles of potential dispersal-vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi-boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter-oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene-Pleistocene-Holocene time frame. Repeated inter-oceanic exchange was inferred for 23 taxa, and the latest connection was usually post-glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late- or post-glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter-oceanic vicariance scenario underlying amphi-boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region.
Collapse
Affiliation(s)
- Hanna M Laakkonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Michael Hardman
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, Saint Petersburg State University, St. Petersburg, Russia
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J. Trans-Atlantic Distribution and Introgression as Inferred from Single Nucleotide Polymorphism: Mussels Mytilus and Environmental Factors. Genes (Basel) 2020; 11:genes11050530. [PMID: 32397617 PMCID: PMC7288462 DOI: 10.3390/genes11050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Large-scale climate changes influence the geographic distribution of biodiversity. Many taxa have been reported to extend or reduce their geographic range, move poleward or displace other species. However, for closely related species that can hybridize in the natural environment, displacement is not the only effect of changes of environmental variables. Another option is subtler, hidden expansion, which can be found using genetic methods only. The marine blue mussels Mytilus are known to change their geographic distribution despite being sessile animals. In addition to natural dissemination at larval phase—enhanced by intentional or accidental introductions and rafting—they can spread through hybridization and introgression with local congeners, which can create mixed populations sustaining in environmental conditions that are marginal for pure taxa. The Mytilus species have a wide distribution in coastal regions of the Northern and Southern Hemisphere. In this study, we investigated the inter-regional genetic differentiation of the Mytilus species complex at 53 locations in the North Atlantic and adjacent Arctic waters and linked this genetic variability to key local environmental drivers. Of seventy-nine candidate single nucleotide polymorphisms (SNPs), all samples were successfully genotyped with a subset of 54 SNPs. There was a clear interregional separation of Mytilus species. However, all three Mytilus species hybridized in the contact area and created hybrid zones with mixed populations. Boosted regression trees (BRT) models showed that inter-regional variability was important in many allele models but did not prevail over variability in local environmental factors. Local environmental variables described over 40% of variability in about 30% of the allele frequencies of Mytilus spp. For the 30% of alleles, variability in their frequencies was only weakly coupled with local environmental conditions. For most studied alleles the linkages between environmental drivers and the genetic variability of Mytilus spp. were random in respect to “coding” and “non-coding” regions. An analysis of the subset of data involving functional genes only showed that two SNPs at Hsp70 and ATPase genes correlated with environmental variables. Total predictive ability of the highest performing models (r2 between 0.550 and 0.801) were for alleles that discriminated most effectively M. trossulus from M. edulis and M. galloprovincialis, whereas the best performing allele model (BM101A) did the best at discriminating M. galloprovincialis from M. edulis and M. trossulus. Among the local environmental variables, salinity, water temperature, ice cover and chlorophyll a concentration were by far the greatest predictors, but their predictive performance varied among different allele models. In most cases changes in the allele frequencies along these environmental gradients were abrupt and occurred at a very narrow range of environmental variables. In general, regions of change in allele frequencies for M. trossulus occurred at 8–11 psu, 0–10 °C, 60%–70% of ice cover and 0–2 mg m−3 of chlorophyll a, M. edulis at 8–11 and 30–35 psu, 10–14 °C and 60%–70% of ice cover and for M. galloprovincialis at 30–35 psu, 14–20 °C.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
- Correspondence: ; Tel.: +48-58-7311763
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Lis Bach
- Arctic Research Centre, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark;
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Mikhail Gantsevich
- Department of Invertebrate Zoology, Faculty of Biology, Moscow MV Lomonosov State University, 119234 Moscow, Russia;
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Tomasz Kijewski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - John H. McDonald
- Biology Department, Western Washington University, Bellingham, WA 98225, USA;
| | - Kristil Kindem Sundsaasen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Ants Kaasik
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Kristjan Herkül
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| |
Collapse
|
7
|
Popovic I, Matias AMA, Bierne N, Riginos C. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol Appl 2020; 13:515-532. [PMID: 32431733 PMCID: PMC7045716 DOI: 10.1111/eva.12857] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Introduced species can impose profound impacts on the evolution of receiving communities with which they interact. If native and introduced taxa remain reproductively semi-isolated, human-mediated secondary contact may promote genetic exchange across newly created hybrid zones, potentially impacting native genetic diversity and invasive species spread. Here, we investigate the contributions of recent divergence histories and ongoing (post-introduction) gene flow between the invasive marine mussel, Mytilus galloprovincialis, and a morphologically indistinguishable and taxonomically contentious native Australian taxon, Mytilus planulatus. Using transcriptome-wide markers, we demonstrate that two contemporary M. galloprovincialis introductions into south-eastern Australia originate from genetically divergent lineages from its native range in the Mediterranean Sea and Atlantic Europe, where both introductions have led to repeated instances of admixture between introduced and endemic populations. Through increased genome-wide resolution of species relationships, combined with demographic modelling, we validate that mussels sampled in Tasmania are representative of the endemic Australian taxon (M. planulatus), but share strong genetic affinities to M. galloprovincialis. Demographic inferences indicate late-Pleistocene divergence times and historical gene flow between the Tasmanian endemic lineage and northern M. galloprovincialis, suggesting that native and introduced taxa have experienced a period of historical isolation of at least 100,000 years. Our results demonstrate that many genomic loci and sufficient sampling of closely related lineages in both sympatric (e.g. Australian populations) and allopatric (e.g. northern hemisphere Mytilus taxa) ranges are necessary to accurately (a) interpret patterns of intraspecific differentiation and to (b) distinguish contemporary invasive introgression from signatures left by recent divergence histories in high dispersal marine species. More broadly, our study fills a significant gap in systematic knowledge of native Australian biodiversity and sheds light on the intrinsic challenges for invasive species research when native and introduced species boundaries are not well defined.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| | | | - Nicolas Bierne
- Institut des Sciences de l’EvolutionUMR 5554CNRS‐IRD‐EPHE‐UMUniversité de MontpellierMontpellierFrance
| | - Cynthia Riginos
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
8
|
Larraín MA, González P, Pérez C, Araneda C. Comparison between single and multi-locus approaches for specimen identification in Mytilus mussels. Sci Rep 2019; 9:19714. [PMID: 31873129 PMCID: PMC6928075 DOI: 10.1038/s41598-019-55855-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/30/2019] [Indexed: 01/19/2023] Open
Abstract
Mytilus mussels have been the object of much research given their sentinel role in coastal ecosystems and significant value as an aquaculture resource appreciated for both, its flavour and nutritional content. Some of the most-studied Mytilus species are M. edulis, M. galloprovincialis, M. chilensis and M. trossulus. As species identification based on morphological characteristics of Mytilus specimens is difficult, molecular markers are often used. Single-locus markers can give conflicting results when used independently; not all markers differentiate among all species, and the markers target genomic regions with different evolutionary histories. We evaluated the concordance between the PCR-RFLP markers most commonly-used for species identification in mussels within the Mytilus genus (Me15-16, ITS, mac-1, 16S rRNA and COI) when used alone (mono-locus approach) or together (multi-locus approach). In this study, multi-locus strategy outperformed the mono-locus methods, clearly identifying all four species and also showed similar specimen identification performance than a 49 SNPs panel. We hope that these findings will contribute to a better understanding of DNA marker-based analysis of Mytilus taxa. These results support the use of a multi-locus approach when studying this important marine resource, including research on food quality and safety, sustainable production and conservation.
Collapse
Affiliation(s)
- María Angélica Larraín
- Food Quality Research Center, Universidad de Chile, Santiago, Chile.
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Pía González
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
- Programa de Magister en Alimentos. Mención Gestión, Calidad e Inocuidad de los Alimentos. Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudio Pérez
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Cristián Araneda
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Mathiesen SS, Thyrring J, Hemmer-Hansen J, Berge J, Sukhotin A, Leopold P, Bekaert M, Sejr MK, Nielsen EE. Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic. Evol Appl 2016; 10:39-55. [PMID: 28035234 PMCID: PMC5192891 DOI: 10.1111/eva.12415] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/07/2016] [Indexed: 12/20/2022] Open
Abstract
Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels, Mytilus spp., are ecosystem engineers in the coastal zone globally. To improve knowledge of distribution and genetic structure of the Mytilus edulis complex in the Arctic, we analyzed 81 SNPs in 534 Mytilus spp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation of Mytilus mussels in the European Arctic. Mytilus edulis was the most abundant species found with a clear genetic split between populations in Greenland and the Eastern Atlantic. Surprisingly, analyses revealed the presence of Mytilus trossulus in high Arctic NW Greenland (77°N) and Mytilus galloprovincialis or their hybrids in SW Greenland, Svalbard, and the Pechora Sea. Furthermore, a high degree of hybridization and introgression between species was observed. Our study highlights the importance of distinguishing between congener species, which can display local adaptation and suggests that information on dispersal routes and barriers is essential for accurate predictions of regional susceptibility to range expansions or invasions of boreal species in the Arctic.
Collapse
Affiliation(s)
- Sofie Smedegaard Mathiesen
- Department of Bioscience Arctic Research Centre Aarhus University Aarhus C Denmark; Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Jakob Thyrring
- Department of Bioscience Arctic Research Centre Aarhus University Aarhus C Denmark
| | - Jakob Hemmer-Hansen
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Jørgen Berge
- Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway; The University Centre in Svalbard Longyearbyen Norway
| | - Alexey Sukhotin
- White Sea Biological Station Zoological Institute of Russian Academy of Sciences St. Petersburg Russia; Invertebrate Zoology Department St. Petersburg State University St. Petersburg Russia
| | - Peter Leopold
- Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | | | - Mikael Kristian Sejr
- Department of Bioscience Arctic Research Centre Aarhus University Aarhus C Denmark
| | - Einar Eg Nielsen
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| |
Collapse
|
10
|
Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C. A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis. PLoS One 2016; 11:e0151561. [PMID: 26977809 PMCID: PMC4792442 DOI: 10.1371/journal.pone.0151561] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kingdom. Despite their importance in aquaculture and in biology in general, genomic resources from mussels are still scarce. To broaden and increase the genomic knowledge in this family, we carried out a whole-genome sequencing study of the cosmopolitan Mediterranean mussel (Mytilus galloprovincialis). We sequenced its genome (32X depth of coverage) on the Illumina platform using three pair-end libraries with different insert sizes. The large number of contigs obtained pointed out a highly complex genome of 1.6 Gb where repeated elements seem to be widespread (~30% of the genome), a feature that is also shared with other marine molluscs. Notwithstanding the limitations of our genome sequencing, we were able to reconstruct two mitochondrial genomes and predict 10,891 putative genes. A comparative analysis with other molluscs revealed a gene enrichment of gene ontology categories related to multixenobiotic resistance, glutamate biosynthetic process, and the maintenance of ciliary structures.
Collapse
Affiliation(s)
- Maria Murgarella
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
| | - Daniela Puiu
- Center for Computational Biology. McKusick-Nathans, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
| | - Carlos Canchaya
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
11
|
2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes 2015; 3:3-41. [PMID: 28248261 PMCID: PMC5302490 DOI: 10.3390/proteomes3010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) “metabolism”, including antioxidant defence and degradation of xenobiotics; (ii) “genetic information processing”, comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) “cellular processes”, such as cell motility, transport and catabolism; (iv) “environmental information processing”, including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.
Collapse
|
12
|
Zbawicka M, Wenne R, Burzyński A. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol Genet Genomics 2014; 289:1275-87. [PMID: 25079914 PMCID: PMC4236608 DOI: 10.1007/s00438-014-0888-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Recombination in the control region (CR) of Mytilus mitochondrial DNA (mtDNA) was originally reported based on the relatively short, sequenced fragments of mitochondrial genomes. Recombination outside the CR has been reported recently with the suggestion that such processes are common in Mytilus. We have fully sequenced a set of 11 different mitochondrial haplotypes representing the high diversity of paternally inherited mitochondrial genomes of Baltic Sea Mytilus mussels, including the haplotype close to the native Mytilus trossulus mitochondrial genome, which was thought to have been entirely eliminated from this population. Phylogenetic and comparative analysis showed that the recombination is limited to the vicinity of the CR in all sequenced genomes. Coding sequence comparison indicated that all paternally inherited genomes showed increased accumulation of nonsynonymous substitutions, including the genomes which switched their transmission route very recently. The acquisition of certain CR sequences through recombination with highly divergent paternally inherited genomes seems to precede and favor the switch, but it is not a prerequisite for this process. Interspecies hybridization in the Baltic Sea during the recent 10,000 years created conditions for both structural and evolutionary mitochondrial instability which resulted in the observed variation and dynamics of mtDNA in Baltic Sea Mytilus mussels. In conclusion, the data shows that the effects of mitochondrial recombination are limited to the CR of few phylogenetic lineages.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland,
| | | | | |
Collapse
|
13
|
Śmietanka B, Burzyński A, Hummel H, Wenne R. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages. Heredity (Edinb) 2014; 113:250-8. [PMID: 24619178 PMCID: PMC4815643 DOI: 10.1038/hdy.2014.23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 11/09/2022] Open
Abstract
Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.
Collapse
Affiliation(s)
- B Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
| | - A Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
| | - H Hummel
- Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, AC Yerseke, The Netherlands
| | - R Wenne
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland
| |
Collapse
|
14
|
Pérez-García C, Morán P, Pasantes JJ. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters. BMC Genet 2014; 15:84. [PMID: 25023072 PMCID: PMC4106214 DOI: 10.1186/1471-2156-15-84] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/10/2014] [Indexed: 11/17/2022] Open
Abstract
Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae.
Collapse
Affiliation(s)
| | | | - Juan J Pasantes
- Dpto, Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310 Vigo, Spain.
| |
Collapse
|
15
|
Fraïsse C, Roux C, Welch JJ, Bierne N. Gene-flow in a mosaic hybrid zone: is local introgression adaptive? Genetics 2014; 197:939-51. [PMID: 24788603 PMCID: PMC4096372 DOI: 10.1534/genetics.114.161380] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/17/2014] [Indexed: 12/16/2022] Open
Abstract
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Université Montpellier 2, 34095 Montpellier Cedex 5, France CNRS, Institut des Sciences de l'Evolution, ISEM Unité Mixte de Recherche 5554, 34200 SETE, France Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Camille Roux
- Université Montpellier 2, 34095 Montpellier Cedex 5, France CNRS, Institut des Sciences de l'Evolution, ISEM Unité Mixte de Recherche 5554, 34200 SETE, France Department of Ecology and Evolution, Lausanne University, Biophore/Sorge, CH-1015
| | - John J Welch
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Nicolas Bierne
- Université Montpellier 2, 34095 Montpellier Cedex 5, France CNRS, Institut des Sciences de l'Evolution, ISEM Unité Mixte de Recherche 5554, 34200 SETE, France
| |
Collapse
|
16
|
Fly EK, Hilbish TJ. Physiological energetics and biogeographic range limits of three congeneric mussel species. Oecologia 2012; 172:35-46. [PMID: 23064978 DOI: 10.1007/s00442-012-2486-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
Closely related species with different physiological tolerances and distributions make ideal systems for documenting range shifts in response to a changing climate. Mytilus edulis, M. trossulus, and M. galloprovincialis are sibling species of marine mussels with distinct biogeographical ranges that are correlated with sea surface temperatures. We determined the scope for growth of these three species at a range of temperatures to determine if energetics could predict their distributions. Scope for growth (SFG) represents energy available for growth and/or reproduction above that necessary for maintenance requirements. The SFG of M. galloprovincialis, the species known to inhabit the warmest habitats, was shifted towards warmer temperatures compared to the other two species, remaining positive until nearly 30 °C. M. edulis, a cold-temperate species, maintained a positive SFG up to 23 °C. M. trossulus, a boreal species, generally was not able to maintain a positive SFG above 17 °C. The warm end of each species' range correlated strongly with the point at which that species' SFG became negative in summer and fall. Energetics at cold temperatures did not predict the cold end of the species' ranges, as there was no clear SFG advantage to explain the dominance of M. trossulus in cold habitats. As sea surface temperatures continue to warm with climate change, the energetics of these three species provide a basis for developing mechanistic models predicting future distribution and productivity changes in mussel populations.
Collapse
Affiliation(s)
- Elizabeth K Fly
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
17
|
WESTFALL KRISTENM, GARDNER JONATHANPA. Genetic diversity of Southern hemisphere blue mussels (Bivalvia: Mytilidae) and the identification of non-indigenous taxa. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01549.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Arnold ML, Fogarty ND. Reticulate evolution and marine organisms: the final frontier? Int J Mol Sci 2009; 10:3836-3860. [PMID: 19865522 PMCID: PMC2769149 DOI: 10.3390/ijms10093836] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/02/2009] [Indexed: 11/20/2022] Open
Abstract
The role that reticulate evolution (i.e., via lateral transfer, viral recombination and/or introgressive hybridization) has played in the origin and adaptation of individual taxa and even entire clades continues to be tested for all domains of life. Though falsified for some groups, the hypothesis of divergence in the face of gene flow is becoming accepted as a major facilitator of evolutionary change for many microorganisms, plants and animals. Yet, the effect of reticulate evolutionary change in certain assemblages has been doubted, either due to an actual dearth of genetic exchange among the lineages belonging to these clades or because of a lack of appropriate data to test alternative hypotheses. Marine organisms represent such an assemblage. In the past half-century, some evolutionary biologists interested in the origin and trajectory of marine organisms, particularly animals, have posited that horizontal transfer, introgression and hybrid speciation have been rare. In this review, we provide examples of such genetic exchange that have come to light largely as a result of analyses of molecular markers. Comparisons among these markers and between these loci and morphological characters have provided numerous examples of marine microorganisms, plants and animals that possess the signature of mosaic genomes.
Collapse
Affiliation(s)
- Michael L. Arnold
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nicole D. Fogarty
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA; E-Mail: (N.D.F.)
| |
Collapse
|
19
|
GARDNER JONATHANPA, THOMPSON RAYMONDJ. Influence of genotype and geography on shell shape and morphometric trait variation among North Atlantic blue mussel (Mytilus spp.) populations. Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2008.01166.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Slaughter C, McCartney MA, Yund PO. Comparison of gamete compatibility between two blue mussel species in sympatry and in allopatry. THE BIOLOGICAL BULLETIN 2008; 214:57-66. [PMID: 18258776 DOI: 10.2307/25066660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent demonstrations of positive selection on genes controlling gamete compatibility have resulted in a proliferation of hypotheses concerning the sources of selection. We tested a prediction of one prominent hypothesis, selection to avoid hybridization (i.e., reinforcement), by comparing heterospecific gamete compatibility in two Mytilus edulis populations: one population in Cobscook Bay, Maine, in which the close congener, M. trossulus, is abundant (a region of sympatry), and one population in Kittery, Maine, in which M. trossulus is absent (a region of allopatry). Three diagnostic nuclear DNA markers were used to identify mussels to species and to estimate the frequency of both species and their hybrids in the two populations. Controlled crosses were then conducted by combining eggs of M. edulis females with a range of M.edulis and M. trossulus sperm concentrations. Results were not consistent with the reinforcement hypothesis. M. edulis females collected from the region of sympatry were no more incompatible with M. trossulus males than were M. edulis females collected from the region of allopatry. A trend in the opposite direction, toward greater compatibility in sympatry, suggests that introgression of M. trossulus genes that control egg compatibility, such as those encoding receptors for sperm, may influence evolution of gametic isolation in hybridizing populations.
Collapse
Affiliation(s)
- Christin Slaughter
- Department of Biological Sciences, Center for Marine Science, University of North Carolina at Wilmington, 5600 Marvin Moss Lane, Wilmington, North Carolina 28409, USA.
| | | | | |
Collapse
|
21
|
Ort BS, Pogson GH. Molecular population genetics of the male and female mitochondrial DNA molecules of the California sea mussel, Mytilus californianus. Genetics 2007; 177:1087-99. [PMID: 17720935 PMCID: PMC2034615 DOI: 10.1534/genetics.107.072934] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 08/19/2007] [Indexed: 02/06/2023] Open
Abstract
The presence of two gender-associated mitochondrial genomes in marine mussels provides a unique opportunity to investigate the dynamics of mtDNA evolution without complications inherent in interspecific comparisons. Here, we assess the relative importance of selection, mutation, and differential constraint in shaping the patterns of polymorphism within and divergence between the male (M) and female (F) mitochondrial genomes of the California sea mussel, Mytilus californianus. Partial sequences were obtained from homologous regions of four genes (nad2, cox1, atp6, and nad5) totaling 2307 bp in length. The M and F mtDNA molecules of M. californianus exhibited extensive levels of nucleotide polymorphism and were more highly diverged than observed in other mytilids (overall Tamura-Nei distances >40%). Consistent with previous studies, the M molecule had significantly higher levels of silent and replacement polymorphism relative to F. Both genomes possessed large numbers of singleton and low-frequency mutations that gave rise to significantly negative Tajima's D values. Mutation-rate scalars estimated for silent and replacement mutations were elevated in the M genome but were not sufficient to account for its higher level of polymorphism. McDonald-Kreitman tests were highly significant at all loci due to excess numbers of fixed replacement mutations between molecules. Strong purifying selection was evident in both genomes in keeping the majority of replacement mutations at low population frequencies but appeared to be slightly relaxed in M. Our results suggest that a reduction in selective constraint acting on the M genome remains the best explanation for its greater levels of polymorphism and faster rate of evolution.
Collapse
Affiliation(s)
- Brian S Ort
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
22
|
Varela MA, González-Tizón A, Mariñas L, Martínez-Lage A. Genetic Divergence Detected by ISSR Markers and Characterization of Microsatellite Regions in Mytilus Mussels. Biochem Genet 2007; 45:565-78. [PMID: 17549624 DOI: 10.1007/s10528-007-9097-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 03/12/2007] [Indexed: 11/24/2022]
Abstract
The wide distribution of microsatellites in mussels of the Mytilus edulis complex (Mytilidae) enables the analysis of inter-simple-sequence repeat (ISSR) markers. The aim of this investigation was to assess genetic differentiation in six sampling localities distributed along the European Atlantic coast to expose the potential of these markers in genetic studies requiring the detection of low polymorphism and as a source of sequences for developing microsatellite markers. We detected low genetic structuring within each member of the Mytilus edulis complex. Nei and Li distances and AMOVA clustered the individuals studied into two groups. On the basis of these results two sampling localities coming from the M. edulis x M. galloprovincialis mosaic hybrid zone in Western Europe were assigned to one species. On the other hand, mussels of a sampling locality in the Baltic Sea were not significantly different from a pure M. edulis locality supporting an extensive introgression of M. edulis in these individuals. Finally, 148 microsatellites were found in the sequences of 51 ISSR markers, and two polymorphic microsatellite markers were developed.
Collapse
Affiliation(s)
- Miguel A Varela
- Departamento de Biología Celular y Molecular, Facultade de Ciencias, Universidade da Coruña, A Zapateira s/n, Coruña 15071, Spain
| | | | | | | |
Collapse
|
23
|
Burzyński A, Zbawicka M, Skibinski DOF, Wenne R. Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics 2006; 174:1081-94. [PMID: 16951056 PMCID: PMC1667088 DOI: 10.1534/genetics.106.063180] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bivalve species, including mussels of the genus Mytilus, are unusual in having two mtDNA genomes, one inherited maternally (the F genome) and the other inherited paternally (the M genome). The sequence differences between the genomes are usually great, indicating ancient divergence predating speciation events. However, in Mytilus trossulus from the Baltic, both genomes are similar to the F genome from the closely related M. edulis. This study analyzed the mtDNA control region structure in male and female Baltic M. trossulus mussels. We show that a great diversity of structural rearrangements is present in both sexes. Sperm samples are dominated by recombinant haplotypes with M. edulis M-like control region segments, some having large duplications. By contrast, the rearranged haplotypes that dominate in eggs lack segments from this M genome. The rearrangements can be explained by a combination of tandem duplication, deletion, and intermolecular recombination. An evolutionary pathway leading to the recombinant haplotypes is suggested. The data are also considered in relation to the hypothesis that the M. edulis M-like control region sequence is necessary to confer the paternal role on genomes that are otherwise F-like.
Collapse
Affiliation(s)
- Artur Burzyński
- Polish Academy of Sciences, Institute of Oceanology, Department of Genetics and Mariene Biotechnology, Sopot, Poland.
| | | | | | | |
Collapse
|
24
|
Kartavtsev YP, Lee JS. Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Rawson PD. Nonhomologous recombination between the large unassigned region of the male and female mitochondrial genomes in the mussel, Mytilus trossulus. J Mol Evol 2005; 61:717-32. [PMID: 16315104 DOI: 10.1007/s00239-004-0035-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
Doubly uniparental inheritance of mtDNA (DUI) is commonly observed in several genera of bivalves. Under DUI, female offspring inherit mtDNA from their mothers, while male offspring inherit mtDNA from both parents but preferentially transmit the paternally inherited mtDNA to their sons. Several studies have shown that the female- and male-specific mtDNA lineages in blue mussels, Mytilus spp., vary by upward of 20% at the nucleotide level. In addition to high levels of nucleotide substitution, the present study observed substantial gender-based length polymorphism in the presumptive mitochondrial control region (=large unassigned region; LUR) of North American M. trossulus. In this species, female lineage LUR haplotypes are over 2 kb larger than male lineage LUR haplotypes. Analysis of sequence data for these length variants indicates that the F LUR haplotypes of North American M. trossulus contain sequences similar to the F lineage control region in the congeners M. edulis and M. galloprovincialis. Relative to the F LUR in the latter two species, however, the F lineage LUR haplotypes in M. trossulus contain two large sequence insertions, each nearly 1 kb in size. One of these insertions has high sequence similarity to the male lineage LUR of M. trossulus. The tandem arrangement of F and M control region sequences in the F lineage LUR of M. trossulus is most likely the result of nonhomologous recombination between the male and the female mitochondrial genomes in M. trossulus, a finding that has important implications regarding the transmission and evolution of blue mussel mitochondrial genomes.
Collapse
Affiliation(s)
- Paul D Rawson
- School of Marine Sciences, University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA.
| |
Collapse
|
26
|
Chan KMA, Levin SA. LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNA. Evolution 2005. [DOI: 10.1554/04-534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Riginos C, Cunningham CW. INVITED REVIEW: Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol Ecol 2004; 14:381-400. [PMID: 15660932 DOI: 10.1111/j.1365-294x.2004.02379.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and Mytilus galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; Mytilus edulis and Mytilus trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.
Collapse
Affiliation(s)
- C Riginos
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
28
|
Quesada H, Stuckas H, Skibinski DOF. Heteroplasmy suggests paternal co-transmission of multiple genomes and pervasive reversion of maternally into paternally transmitted genomes of mussel (Mytilus) mitochondrial DNA. J Mol Evol 2004; 57 Suppl 1:S138-47. [PMID: 15008410 DOI: 10.1007/s00239-003-0019-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Marine mussels of the genus Mytilus have two types of mitochondrial DNA with separate paternal and maternal inheritance. Females are homoplasmic for an F genome that is transmitted to all offspring, whereas males are heteroplasmic for this F genome and for a highly diverged (> 20%) M genome that is transmitted only to sons. Here we provide phylogenetic evidence based on lrRNA sequence data that most of the paternal genomes in European M. trossulus have an introgressive female M. edulis origin and are nearly indistinguishable in sequence from F types of M. trossulus. This observation is best explained by the hypothesis that introgressed F type molecules have recently invaded the paternal route and have assumed the role of M molecules, then resetting to zero the time of sequence divergence between M and F lineages. European M. trossulus shows a high prevalence of males heteroplasmic for three different mitochondrial DNA types all having the same two paternal types and the same maternal type, consistent with paternal co-transmission of multiple genomes. Co-transmission of the same genomes must apparently operate uninterruptedly for several generations in spite of the very different evolutionary origin of the specific molecules that are transmitted paternally and maternally in European M. trossulus.
Collapse
Affiliation(s)
- Humberto Quesada
- School of Biological Sciences, University of Wales, Swansea, Swansea SA2 8PP, United Kingdom.
| | | | | |
Collapse
|
29
|
Wood AR, Turner G, Skibinski DOF, Beaumont AR. Disruption of doubly uniparental inheritance of mitochondrial DNA in hybrid mussels (Mytilus edulis x M. galloprovincialis). Heredity (Edinb) 2004; 91:354-60. [PMID: 14512950 DOI: 10.1038/sj.hdy.6800345] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Blue mussels of the genus Mytilus have an unusual mode of mitochondrial DNA inheritance termed doubly uniparental inheritance (DUI). Females are homoplasmic for the F mitotype which is inherited maternally, whereas males are heteroplasmic for this and the paternally inherited M mitotype. In areas where species distributions overlap a varying degree of hybridization occurs; yet genetic differences between allopatric populations are maintained. Observations from natural populations and previous laboratory experiments suggest that DUI may be disrupted by hybridization, giving rise to heteroplasmic females and homoplasmic males. We carried out controlled laboratory crosses between Mytilus edulis and M. galloprovincialis to produce pure species and hybrid larvae of known parentage. DNA markers were used to follow the fate of the F and M mitotypes through larval development. Disruption of the mechanism which determines whether the M mitotype is retained or eliminated occurred in an estimated 38% of M. edulis x M. galloprovincialis hybrid larvae, a level double that previously observed in adult mussels from a natural M. edulis x M. galloprovincialis hybrid population. Furthermore, reciprocal hybrid crosses exhibited contrasting types of DUI disruption. The results indicate that disruption of DUI in hybrid mussels may be associated with increased mortality and hence could be a factor in the maintenance of genetic integrity for each species.
Collapse
Affiliation(s)
- A R Wood
- School of Ocean Sciences, University of Wales Bangor, Menai Bridge, Anglesey, Wales LL59 5EY, UK.
| | | | | | | |
Collapse
|
30
|
Riginos C, Hickerson MJ, Henzler CM, Cunningham CW. DIFFERENTIAL PATTERNS OF MALE AND FEMALE MTDNA EXCHANGE ACROSS THE ATLANTIC OCEAN IN THE BLUE MUSSEL, MYTILUS EDULIS. Evolution 2004. [DOI: 10.1554/04-183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Luttikhuizen PC, Drent J, Baker AJ. Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 2003; 12:2215-29. [PMID: 12859640 DOI: 10.1046/j.1365-294x.2003.01872.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA sequence data for 295 individuals of the marine bivalve Macoma balthica (L.) were collected from 10 sites across the European distribution, and from Alaska. The data were used to infer population subdivision history and estimate current levels of gene flow. Inferred historical biogeography was expected to be congruent with colonization of the Atlantic Ocean from the Pacific Ocean after the opening of the Bering Strait 3.5 Ma. In addition, the last glacial maximum, about 18000 years ago, was expected to have been responsible for most of the present-day distribution of molecular variation within Europe, because the area must have been recolonized after confinement to France and the south of the British Isles during the last glacial maximum. Current gene flow was hypothesized to be high, because the larvae of M. balthica spend 2-5 weeks drifting in the water column. The geographical distribution of one highly diverged haplotype clade was found to be disjunct and was encountered exclusively in samples from the Baltic Sea and Alaska. A molecular clock calibration for marine bivalve cytochrome-c-oxidase I dates this clade as having split off from the other haplotypes 9.8-39 Ma. Multiple colonizations of the Atlantic Ocean from the Pacific by M. balthica may explain the strong differences found between Baltic Sea and other European populations of this species. The sympatric occurrence of the highly diverged mitochondrial lineages in western parts of the Baltic Sea points to secondary admixture. With the use of coalescent analysis, population divergence times for French vs. other non-Baltic European populations ('Atlantic population assemblage') were estimated at a minimum of about 110000 years ago, well before the last glacial maximum 18000 years ago. Signatures of population divergence of M. balthica that appear to have originated during the Pleistocene have thus survived the last glacial maximum. Some of the populations within the Atlantic assemblage are currently isolated, while others appear to be connected by gene flow. Apparently, populations of this species can remain highly subdivided in spite of the potential for high gene flow, implying that their population and evolutionary dynamics can be independent.
Collapse
Affiliation(s)
- P C Luttikhuizen
- Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.
| | | | | |
Collapse
|
32
|
Bierne N, Borsa P, Daguin C, Jollivet D, Viard F, Bonhomme F, David P. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol Ecol 2003; 12:447-61. [PMID: 12535095 DOI: 10.1046/j.1365-294x.2003.01730.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hybrid zones are fascinating systems to investigate the structure of genetic barriers. Marine hybrid zones deserve more investigation because of the generally high dispersion potential of planktonic larvae which allows migration on scales unrivalled by terrestrial species. Here we analyse the genetic structure of the mosaic hybrid zone between the marine mussels Mytilus edulis and M. galloprovincialis, using three length-polymorphic PCR loci as neutral and diagnostic markers on 32 samples along the Atlantic coast of Europe. Instead of a single genetic gradient from M. galloprovincialis on the Iberian Peninsula to M. edulis populations in the North Sea, three successive transitions were observed in France. From South to North, the frequency of alleles typical of M. galloprovincialis first decreases in the southern Bay of Biscay, remains low in Charente, then increases in South Brittany, remains high in most of Brittany, and finally decreases again in South Normandy. The two enclosed patches observed in the midst of the mosaic hybrid zone in Charente and Brittany, although predominantly M. edulis-like and M. galloprovincialis-like, respectively, are genetically original in two respects. First, considering only the various alleles typical of one species, the patches show differentiated frequencies compared to the reference external populations. Second, each patch is partly introgressed by alleles of the other species. When introgression is taken into account, linkage disequilibria appear close to their maximum possible values, indicating a strong genetic barrier within all transition zones. Some pre- or postzygotic isolation mechanisms (habitat specialization, spawning asynchrony, assortative fertilization and hybrid depression) have been documented in previous studies, although their relative importance remains to be evaluated. We also provided evidence for a recent migratory 'short-cut' connecting M. edulis-like populations of the Charente patch to an external M. edulis population in Normandy and thought to reflect artificial transfer of spat for aquaculture.
Collapse
Affiliation(s)
- N Bierne
- Laboratoire Génome, Populations, Interactions, CNRS-UMR5000 - Station Méditerranéenne de l'Environnement Littoral, 1 Quai de la Daurade, 34200 Sète, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Martínez-Lage A, Rodríguez F, González-Tizón A, Prats E, Cornudella L, Méndez J. Comparative analysis of different satellite DNAs in four Mytilus species. Genome 2002; 45:922-9. [PMID: 12416625 DOI: 10.1139/g02-056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the characterization of three satellite DNAs in four species of mussel: Mytilus edulis, Mytilus galloprovincialis, Mytilus trossulus, and Mytilus californianus. The monomers of the Apa I satellite DNAs were 173, 161, and 166 bp long. These satellite monomers were used to construct phylogenetic trees to infer relationships among these species. The topologies obtained clearly indicate that M. californianus is the most divergent species with respect to the other three. Furthermore, localization of satellite DNAs on metaphase chromosomes was performed using fluorescent in situ hybridization (FISH). Fluorescent signals revealed a different organization and distribution of these three satellite DNAs.
Collapse
Affiliation(s)
- A Martínez-Lage
- Dept. Biología Celular y Molecular, Universidade de Coruña, La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Riginos C, Sukhdeo K, Cunningham CW. Evidence for selection at multiple allozyme loci across a mussel hybrid zone. Mol Biol Evol 2002; 19:347-51. [PMID: 11861894 DOI: 10.1093/oxfordjournals.molbev.a004088] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Hoeh WR, Stewart DT, Guttman SI. HIGH FIDELITY OF MITOCHONDRIAL GENOME TRANSMISSION UNDER THE DOUBLY UNIPARENTAL MODE OF INHERITANCE IN FRESHWATER MUSSELS (BIVALVIA: UNIONOIDEA). Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[2252:hfomgt]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Daguin C, Bonhomme F, Borsa P. The zone of sympatry and hybridization of Mytilus edulis and M. galloprovincialis, as described by intron length polymorphism at locus mac-1. Heredity (Edinb) 2001; 86:342-54. [PMID: 11488971 DOI: 10.1046/j.1365-2540.2001.00832.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intron-size variation at the actin gene locus mac-1 was used to characterize mussel, Mytilus spp., populations in the approximately 2000-km wide zone of contact and hybridization ('hybrid zone') between M. edulis and M. galloprovincialis in western Europe. Twenty-five samples were collected in 1995-99 in locations within the hybrid zone and from reference populations of each species. We used correspondence analysis on the matrix of allelic frequencies to determine which alleles are characteristic of each species, and to characterize samples along the genetic gradient between M. edulis and M. galloprovincialis. In the hybrid zone, some samples exhibited mac-1 allele frequencies that were typical of M. edulis; other samples were distributed along the M. edulis/M. galloprovincialis gradient and displayed variable levels of intergradation that were not correlated with geography. Some of the latter samples exhibited significant heterozygote deficiencies. The simple admixture hypothesis (Wahlund effect) could not be rejected for two-fifths of the samples. The hybrid zone thus appeared as a mosaic of populations which are either pure M. edulis, or hybrid between M. galloprovincialis and M. edulis, or a mixture of the foregoing with M. galloprovincialis individuals. These results were consistent with published allozyme data, suggesting that they can be extended to the entire nuclear genome. M. edulis mac-1 alleles were present at moderate frequency in Atlantic M. galloprovincialis, and at significantly lower frequency in some Mediterranean samples. This pattern was homogeneous over a broad geographical range within each basin. It was not evident that introgression of M. edulis into M. galloprovincialis presently occurs south of the zone of contact. We propose that the distinctness of the Atlantic M. galloprovincialis population results from past introgression by M. edulis alleles.
Collapse
Affiliation(s)
- C Daguin
- Laboratoire Génome Populations Interactions and IRD, UMR 5000 CNRS, Station Méditerranéenne de l'Environnement Littoral, 1 Quai de la Daurade, 34200 Sète, France
| | | | | |
Collapse
|