1
|
Winker K, Withrow JJ, Gibson DD, Pruett CL. Beringia as a high-latitude engine of avian speciation. Biol Rev Camb Philos Soc 2023; 98:1081-1099. [PMID: 36879465 DOI: 10.1111/brv.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Beringia is a biogeographically dynamic region that extends from northeastern Asia into northwestern North America. This region has affected avian divergence and speciation in three important ways: (i) by serving as a route for intercontinental colonisation between Asia and the Americas; (ii) by cyclically splitting (and often reuniting) populations, subspecies, and species between these continents; and (iii) by providing isolated refugia through glacial cycles. The effects of these processes can be seen in taxonomic splits of shallow to increasing depths and in the presence of regional endemics. We review the taxa involved in the latter two processes (splitting-reuniting and isolation), with a focus on three research topics: avian diversity, time estimates of the generation of that diversity, and the regions within Beringia that might have been especially important. We find that these processes have generated substantial amounts of avian diversity, including 49 pairs of avian subspecies or species whose breeding distributions largely replace one another across the divide between the Old World and the New World in Beringia, and 103 avian species and subspecies endemic to this region. Among endemics, about one in three is recognised as a full biological species. Endemic taxa in the orders Charadriiformes (shorebirds, alcids, gulls, and terns) and Passeriformes (perching birds) are particularly well represented, although they show very different levels of diversity through evolutionary time. Endemic Beringian Charadriiformes have a 1.31:1 ratio of species to subspecies. In Passeriformes, endemic taxa have a 0.09:1 species-to-subspecies ratio, suggesting that passerine (and thus terrestrial) endemism might be more prone to long-term extinction in this region, although such 'losses' could occur through their being reconnected with wider continental populations during favourable climatic cycles (e.g. subspecies reintegration with other populations). Genetic evidence suggests that most Beringian avian taxa originated over the past 3 million years, confirming the importance of Quaternary processes. There seems to be no obvious clustering in their formation through time, although there might be temporal gaps with lower rates of diversity generation. For at least 62 species, taxonomically undifferentiated populations occupy this region, providing ample potential for future evolutionary diversification.
Collapse
Affiliation(s)
- Kevin Winker
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Jack J Withrow
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Daniel D Gibson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Christin L Pruett
- Department of Biology, Ouachita Baptist University, 410 Ouachita St, Arkadelphia, AR, 71998, USA
| |
Collapse
|
2
|
Zhang C, Bzikadze AV, Safonova Y, Mirarab S. A scalable model for simulating multi-round antibody evolution and benchmarking of clonal tree reconstruction methods. Front Immunol 2022; 13:1014439. [PMID: 36618367 PMCID: PMC9815712 DOI: 10.3389/fimmu.2022.1014439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Affinity maturation (AM) of B cells through somatic hypermutations (SHMs) enables the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the formation of clonal lineages of antibody-secreting b cells that have evolved from a common naïve B cell. Advances in high-throughput sequencing have enabled deep scans of B cell receptor repertoires, paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture microevolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these methods, partially because evaluation is challenging. Benchmarking the performance of existing methods and developing better methods would both benefit from realistic models of clonal lineage evolution specifically designed for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal lineage evolution and use this model to benchmark several existing clonal tree reconstruction methods. Our model, designed to be extensible, has several features: by evolving the clonal tree and sequences simultaneously, it allows modeling selective pressure due to changes in affinity binding; it enables scalable simulations of large numbers of cells; it enables several rounds of infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest a set of metrics for comparing clonal trees and measuring their properties. Our results show that while maximum likelihood phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if applied naively, a simple post-processing of their results, where short branches are contracted, leads to inferences that are better than alternative methods.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Andrey V. Bzikadze
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, San Diego, CA, United States
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Lecoy J, Sachin Ranade S, Rosario García-Gil M. Analysis of the ASR and LP3 homologous gene families reveal positive selection acting on LP3-3 gene. Gene 2022; 850:146935. [DOI: 10.1016/j.gene.2022.146935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
|
4
|
Vázquez-Miranda H, Barker FK. Autosomal, sex-linked and mitochondrial loci resolve evolutionary relationships among wrens in the genus Campylorhynchus. Mol Phylogenet Evol 2021; 163:107242. [PMID: 34224849 DOI: 10.1016/j.ympev.2021.107242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023]
Abstract
Although there is general consensus that sampling of multiple genetic loci is critical in accurate reconstruction of species trees, the exact numbers and the best types of molecular markers remain an open question. In particular, the phylogenetic utility of sex-linked loci is underexplored. Here, we sample all species and 70% of the named diversity of the New World wren genus Campylorhynchus using sequences from 23 loci, to evaluate the effects of linkage on efficiency in recovering a well-supported tree for the group. At a tree-wide level, we found that most loci supported fewer than half the possible clades and that sex-linked loci produced similar resolution to slower-coalescing autosomal markers, controlling for locus length. By contrast, we did find evidence that linkage affected the efficiency of recovery of individual relationships; as few as two sex-linked loci were necessary to resolve a selection of clades with long to medium subtending branches, whereas 4-6 autosomal loci were necessary to achieve comparable results. These results support an expanded role for sampling of the avian Z chromosome in phylogenetic studies, including target enrichment approaches. Our concatenated and species tree analyses represent significant improvements in our understanding of diversification in Campylorhynchus, and suggest a relatively complex scenario for its radiation across the Miocene/Pliocene boundary, with multiple invasions of South America.
Collapse
Affiliation(s)
- Hernán Vázquez-Miranda
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - F Keith Barker
- Department of Ecology, Evolution and Behavior, Bell Museum of Natural History, University of Minnesota, 40 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
5
|
Steenwyk JL, Buida TJ, Labella AL, Li Y, Shen XX, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics 2021; 37:2325-2331. [PMID: 33560364 PMCID: PMC8388027 DOI: 10.1093/bioinformatics/btab096] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogenetic trees to evaluate their information content, infer evolutionary events and processes, and predict gene function. However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill this gap, we introduce PhyKIT, a toolkit for the UNIX shell environment with 30 functions that process MSAs and trees, including but not limited to estimation of mutation rate, evaluation of sequence composition biases, calculation of the degree of violation of a molecular clock, and collapsing bipartitions (internal branches) with low support. RESULTS To demonstrate the utility of PhyKIT, we detail three use cases: (1) summarizing information content in MSAs and phylogenetic trees for diagnosing potential biases in sequence or tree data; (2) evaluating gene-gene covariation of evolutionary rates to identify functional relationships, including novel ones, among genes; and (3) identify lack of resolution events or polytomies in phylogenetic trees, which are suggestive of rapid radiation events or lack of data. We anticipate PhyKIT will be useful for processing, examining, and deriving biological meaning from increasingly large phylogenomic datasets. AVAILABILITY PhyKIT is freely available on GitHub (https://github.com/JLSteenwyk/PhyKIT), PyPi (https://pypi.org/project/phykit/), and the Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under the MIT license with extensive documentation and user tutorials (https://jlsteenwyk.com/PhyKIT). SUPPLEMENTARY INFORMATION Supplementary data are available on figshare (doi: 10.6084/m9.figshare.13118600) and are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Thomas J Buida
- 9 City Place #312, Nashville, TN, 37209, United States of America
| | - Abigail L Labella
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| |
Collapse
|
6
|
Swimming through the sands of the Sahara and Arabian deserts: Phylogeny of sandfish skinks (Scincidae, Scincus) reveals a recent and rapid diversification. Mol Phylogenet Evol 2020; 155:107012. [PMID: 33217580 DOI: 10.1016/j.ympev.2020.107012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Large parts of the Sahara Desert and Arabia are covered by sand seas and sand dunes, which are inhabited by specialized animal communities. For example, many lizards have developed adaptations to life in loose sand, including sand-swimming behavior. The best-known sand swimmers of the Saharo-Arabia are the sandfish skinks (genus Scincus). Although there are currently only four Scincus species recognized, their phylogenetic relationships have not yet been addressed in detail. We use eight genetic markers (three mitochondrial, five nuclear) and a complete sampling of species to infer the relationships within the genus. We employ multiple phylogenetic approaches to reconstruct the evolutionary history of these skinks and to assess the level of reticulation at the onset of their radiation. Our results indicate the presence of five strongly supported species-level lineages, four represented by the currently recognized species and the fifth by S. scincus conirostris, which does not form a clade with S. scincus. Based on these results we elevate the Iranian and northern Arabian S. conirostris to the species level. The two Saharan species, S. albifasciatus and S. scincus, are sister in all analyses. Deeper relationships within the genus, however, remained largely unresolved despite the extensive genetic data set. This basal polytomy, together with the fact that we detected no sign of hybridization in the history of the genus, indicates that the diversification of the five Scincus species was rapid, burst-like, and not followed by secondary hybridization events. Divergence time estimations show a Middle Pliocene crown radiation of the genus (3.3 Mya). We hypothesize that the aridification of the Saharo-Arabia that began in the Late Miocene triggered the initial diversification of Scincus, and that the subsequent expansion of sand deserts enabled their dispersal over the large Saharan and Arabian range. We discuss the evolution of body form in sand swimming lizards and ponder how Scincus retained their fully limbed morphology despite being sand swimmers that are typically limbless.
Collapse
|
7
|
Zhang C, Dinh VU, Matsen FA. Nonbifurcating Phylogenetic Tree Inference via the Adaptive LASSO. J Am Stat Assoc 2020; 116:858-873. [PMID: 34305211 DOI: 10.1080/01621459.2020.1778481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phylogenetic tree inference using deep DNA sequencing is reshaping our understanding of rapidly evolving systems, such as the within-host battle between viruses and the immune system. Densely sampled phylogenetic trees can contain special features, including sampled ancestors in which we sequence a genotype along with its direct descendants, and polytomies in which multiple descendants arise simultaneously. These features are apparent after identifying zero-length branches in the tree. However, current maximum-likelihood based approaches are not capable of revealing such zero-length branches. In this paper, we find these zero-length branches by introducing adaptive-LASSO-type regularization estimators for the branch lengths of phylogenetic trees, deriving their properties, and showing regularization to be a practically useful approach for phylogenetics.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Mathematical Sciences and Center for Statistical Science, Peking University
| | - V U Dinh
- Department of Mathematical Sciences, University of Delaware
| | | |
Collapse
|
8
|
Abstract
The early radiation of Neoaves has been hypothesized to be an intractable “hard polytomy”. We explore the fundamental properties of insertion/deletion alleles (indels), an under-utilized form of genomic data with the potential to help solve this. We scored >5 million indels from >7000 pan-genomic intronic and ultraconserved element (UCE) loci in 48 representatives of all neoavian orders. We found that intronic and UCE indels exhibited less homoplasy than nucleotide (nt) data. Gene trees estimated using indel data were less resolved than those estimated using nt data. Nevertheless, Accurate Species TRee Algorithm (ASTRAL) species trees estimated using indels were generally similar to nt-based ASTRAL trees, albeit with lower support. However, the power of indel gene trees became clear when we combined them with nt gene trees, including a striking result for UCEs. The individual UCE indel and nt ASTRAL trees were incongruent with each other and with the intron ASTRAL trees; however, the combined indel+nt ASTRAL tree was much more congruent with the intronic trees. Finally, combining indel and nt data for both introns and UCEs provided sufficient power to reduce the scope of the polytomy that was previously proposed for several supraordinal lineages of Neoaves.
Collapse
|
9
|
Rankin AM, Wilke T, Lucid M, Leonard W, Espíndola A, Smith ML, Carstens BC, Sullivan J. Complex interplay of ancient vicariance and recent patterns of geographical speciation in north-western North American temperate rainforests explains the phylogeny of jumping slugs (Hemphillia spp.). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractThe history of the currently disjunct temperate rainforests of the Pacific Northwest of North America has shaped the evolution and diversity of endemics. This study focuses on how geological and climatic perturbations have driven speciation in the area by isolating lineages. We investigated the phylogenetic relationships and historical biogeography of the endemic jumping slugs (genus Hemphillia) using a multi-locus phylogeny. We evaluated the spatial distribution and divergence times of major lineages, generated ancestral area probabilities and inferred the biogeographical history of the genus. Our study revealed eight genetic lineages that formed three clades: one clade consisting of two Coast/Cascade lineages, and two reciprocally monophyletic clades that each contain a Coast/Cascade and two Rocky Mountains taxa. The results of the biogeographical analysis suggest that the ancestral range of the genus occupied Coast/Cascade habitats and then spread across into Northern Rocky Mountain interior habitats with subsequent fragmentations isolating coastal and inland lineages. Finally, there have been more recent speciation events among three lineage pairs that have shaped shallow structures of all clades. We add to our knowledge of the biogeographical history of the region in that we discovered diversification and speciation events that have occurred in ways more complex than previously thought.
Collapse
Affiliation(s)
- Andrew M Rankin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas Wilke
- Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring (IFZ), Giessen, Germany
| | - Michael Lucid
- Idaho Department of Fish and Game, Coeur d’Alene, ID, USA
| | | | - Anahí Espíndola
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Megan L Smith
- Department of Evolution, Ecology, & Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bryan C Carstens
- Department of Evolution, Ecology, & Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
10
|
Schrago CG, Seuánez HN. Large ancestral effective population size explains the difficult phylogenetic placement of owl monkeys. Am J Primatol 2019; 81:e22955. [PMID: 30779198 DOI: 10.1002/ajp.22955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 11/07/2022]
Abstract
The phylogenetic position of owl monkeys, grouped in the genus Aotus, has been a controversial issue for understanding Neotropical primate evolution. Explanations of the difficult phylogenetic assignment of owl monkeys have been elusive, frequently relying on insufficient data (stochastic error) or scenarios of rapid speciation (adaptive radiation) events. Using a coalescent-based approach, we explored the population-level mechanisms likely explaining these topological discrepancies. We examined the topological variance of 2,192 orthologous genes shared between representatives of the three major Cebidae lineages and the outgroup. By employing a methodological framework that allows for reticulated tree topologies, our analysis explicitly tested for non-dichotomous evolutionary processes impacting the finding of the position of owl monkeys in the cebid phylogeny. Our findings indicated that Aotus is a sister lineage of the callitrichines. Most gene trees (>50%) failed to recover the species tree topology, although the distribution of gene trees mismatching the true species topology followed the standard expectation of the multispecies coalescent without reticulation. We showed that the large effective population size of the common ancestor of Aotus and callitrichines was the most likely factor responsible for generating phylogenetic uncertainty. On the other hand, fast speciation scenarios or introgression played minor roles. We propose that the difficult phylogenetic placement of Aotus is explained by population-level processes associated with the large ancestral effective size. These results shed light on the biogeography of the early cebid diversification in the Miocene, highlighting the relevance of evaluating phylogenetic relationships employing population-aware approaches.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hector N Seuánez
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Genetics, National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Schrago CG, Aguiar BO, Mello B. Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data. J Evol Biol 2018; 31:1477-1484. [DOI: 10.1111/jeb.13344] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Carlos G. Schrago
- Department of Genetics; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Barbara O. Aguiar
- Department of Genetics; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Beatriz Mello
- Department of Genetics; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
12
|
Sayyari E, Mirarab S. Testing for Polytomies in Phylogenetic Species Trees Using Quartet Frequencies. Genes (Basel) 2018; 9:E132. [PMID: 29495636 PMCID: PMC5867853 DOI: 10.3390/genes9030132] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Phylogenetic species trees typically represent the speciation history as a bifurcating tree. Speciation events that simultaneously create more than two descendants, thereby creating polytomies in the phylogeny, are possible. Moreover, the inability to resolve relationships is often shown as a (soft) polytomy. Both types of polytomies have been traditionally studied in the context of gene tree reconstruction from sequence data. However, polytomies in the species tree cannot be detected or ruled out without considering gene tree discordance. In this paper, we describe a statistical test based on properties of the multi-species coalescent model to test the null hypothesis that a branch in an estimated species tree should be replaced by a polytomy. On both simulated and biological datasets, we show that the null hypothesis is rejected for all but the shortest branches, and in most cases, it is retained for true polytomies. The test, available as part of the Accurate Species TRee ALgorithm (ASTRAL) package, can help systematists decide whether their datasets are sufficient to resolve specific relationships of interest.
Collapse
Affiliation(s)
- Erfan Sayyari
- Department of Electrical and Computer Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Suchan T, Espíndola A, Rutschmann S, Emerson BC, Gori K, Dessimoz C, Arrigo N, Ronikier M, Alvarez N. Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study. Mol Phylogenet Evol 2017. [DOI: 10.1016/j.ympev.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Dillenberger MS, Kadereit JW. Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia s.l., Caryophyllaceae) revealed by genotyping-by-sequencing. Mol Phylogenet Evol 2017; 112:23-35. [PMID: 28433621 DOI: 10.1016/j.ympev.2017.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022]
Abstract
Understanding the relative importance of different mechanisms of speciation in a given lineage requires fully resolved interspecific relationships. Using Facchinia, a genus of seven species centred in the European Alps, we explore whether the polytomy found by Sanger sequencing analyses of standard nuclear (ITS) and plastid markers (trnQ-rps16) is a hard or soft polytomy by substantially increasing the amount of DNA sequence data, generated by genotyping-by-sequencing. In comparison to 142 phylogenetically informative sites in the Sanger sequences the GBS sequences yielded 3363 phylogenetically informative sites after exclusion of apparently oversaturated SNPs. Maximum parsimony, maximum likelihood, NeighborNet, SVDquartets and Astral-II analyses all resulted in phylogenetic trees (and networks) in which interspecific relationships were largely unresolved. After excluding incomplete lineage sorting, hybridisation and oversaturation of characters as possible causes for lack of phylogenetic resolution, we conclude that the polytomy obtained most likely represents a hard polytomy. We hypothesize that diversification of Facchinia is best interpreted as the result of multiple simultaneous vicariance in response to climatic changes during the Early Quaternary.
Collapse
Affiliation(s)
- Markus S Dillenberger
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
15
|
Kornilios P. Polytomies, signal and noise: revisiting the mitochondrial phylogeny and phylogeography of the Eurasian blindsnake species complex (Typhlopidae, Squamata). ZOOL SCR 2017. [DOI: 10.1111/zsc.12243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Panagiotis Kornilios
- Section of Animal Biology; Department of Biology; School of Natural Sciences; University of Patras; GR-26500 Patras Greece
| |
Collapse
|
16
|
Suh A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. ZOOL SCR 2016. [DOI: 10.1111/zsc.12213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University SE ‐ 752 36 Uppsala Sweden
| |
Collapse
|
17
|
Mechanisms of global diversification in the marine species Madeiran Storm-petrel Oceanodroma castro and Monteiro’s Storm-petrel O. monteiroi: Insights from a multi-locus approach. Mol Phylogenet Evol 2016; 98:314-23. [DOI: 10.1016/j.ympev.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 02/07/2016] [Accepted: 02/18/2016] [Indexed: 01/19/2023]
|
18
|
Zhang L, Wu W, Yan HF, Ge XJ. Phylotranscriptomic Analysis Based on Coalescence was Less Influenced by the Evolving Rates and the Number of Genes: A Case Study in Ericales. Evol Bioinform Online 2016; 11:81-91. [PMID: 26819541 PMCID: PMC4718149 DOI: 10.4137/ebo.s22448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in high-throughput sequencing have generated a vast amount of transcriptomic data that are being increasingly used in phylogenetic reconstruction. However, processing the vast datasets for a huge number of genes and even identifying optimal analytical methodology are challenging. Through de novo sequenced and retrieved data from public databases, we identified 221 orthologous protein-coding genes to reconstruct the phylogeny of Ericales, an order characterized by rapid ancient radiation. Seven species representing different families in Ericales were used as in-groups. Both concatenation and coalescence methods yielded the same well-supported topology as previous studies, with only two nodes conflicting with previously reported relationships. The results revealed that a partitioning strategy could improve the traditional concatenation methodology. Rapidly evolving genes negatively affected the concatenation analysis, while slowly evolving genes slightly affected the coalescence analysis. The coalescence methods usually accommodated rate heterogeneity better and required fewer genes to yield well-supported topologies than the concatenation methods with both real and simulated data.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Meyer BS, Matschiner M, Salzburger W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Mol Phylogenet Evol 2015; 83:56-71. [PMID: 25433288 PMCID: PMC4334724 DOI: 10.1016/j.ympev.2014.10.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 10/05/2014] [Accepted: 10/08/2014] [Indexed: 11/14/2022]
Abstract
The species-flocks of cichlid fishes in the East African Great Lakes Victoria, Malawi and Tanganyika constitute the most diverse extant adaptive radiations in vertebrates. Lake Tanganyika, the oldest of the lakes, harbors the morphologically and genetically most diverse assemblage of cichlids and contains the highest number of endemic cichlid genera of all African lakes. Based on morphological grounds, the Tanganyikan cichlid species have been grouped into 12-16 distinct lineages, so-called tribes. While the monophyly of most of the tribes is well established, the phylogenetic relationships among the tribes remain largely elusive. Here, we present a new tribal level phylogenetic hypothesis for the cichlid fishes of Lake Tanganyika that is based on the so far largest set of nuclear markers and a total alignment length of close to 18kb. Using next-generation amplicon sequencing with the 454 pyrosequencing technology, we compiled a dataset consisting of 42 nuclear loci in 45 East African cichlid species, which we subjected to maximum likelihood and Bayesian inference phylogenetic analyses. We analyzed the entire concatenated dataset and each marker individually, and performed a Bayesian concordance analysis and gene tree discordance tests. Overall, we find strong support for a position of the Oreochromini, Boulengerochromini, Bathybatini and Trematocarini outside of a clade combining the substrate spawning Lamprologini and the mouthbrooding tribes of the 'H-lineage', which are both strongly supported to be monophyletic. The Eretmodini are firmly placed within the 'H-lineage', as sister-group to the most species-rich tribe of cichlids, the Haplochromini. The phylogenetic relationships at the base of the 'H-lineage' received less support, which is likely due to high speciation rates in the early phase of the radiation. Discordance among gene trees and marker sets further suggests the occurrence of past hybridization and/or incomplete lineage sorting in the cichlid fishes of Lake Tanganyika.
Collapse
Affiliation(s)
- Britta S Meyer
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Michael Matschiner
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
20
|
Liberal IM, Burrus M, Suchet C, Thébaud C, Vargas P. The evolutionary history of Antirrhinum in the Pyrenees inferred from phylogeographic analyses. BMC Evol Biol 2014; 14:146. [PMID: 24970688 PMCID: PMC4099501 DOI: 10.1186/1471-2148-14-146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The origin and colonisation history after the Quaternary ice ages remain largely unresolved for many plant lineages, mainly owing to a lack of fine-scale studies. Here, we present a molecular phylogeny and a phylogeographic analysis of Antirrhinum, an important model system in plant biology, in the Pyrenees range. Our goal was to reconstruct the evolutionary and colonisation history of four taxa endemic to this region (A. majus subsp. majus, A. majus. subsp. striatum, A. molle, and A. sempervirens) by using a dense sampling strategy, with a total of 452 individuals from 99 populations whose collective distribution spans nearly the entirety of the Pyrenees and adjacent mountains. RESULTS Phylogenetic and phylogeographic analyses of the sequences of two plastid (trnS-trnG and trnK-matK) regions revealed the following: (i) historical relationship between the Pyrenees and Iberia (but not with the Alps); (ii) the long persistence of populations in the Pyrenees, at least since the Late Pleistocene; (iii) three different colonisation histories for populations from the Western, Central, and Eastern Pyrenees; (iv) the deep phylogeographic separation of the eastern and western populations; and (v) the colonisation of southern France from the Eastern Pyrenees. CONCLUSIONS The present study underlines the enormous influence of the glacial history of the mountain ranges on the current configuration of intra- and inter-specific genetic diversity in Antirrhinum, as well as the importance of periglacial areas for the survival of species during glacial periods of the Quaternary.
Collapse
Affiliation(s)
- Isabel M Liberal
- Real Jardín Botánico de Madrid (CSIC), Plaza de Murillo 2, Madrid E-28014, Spain
| | - Monique Burrus
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, CNRS - Université de Toulouse (UPS)- ENFA, 118 route de Narbonne, Toulouse, Cedex 9 31062, France
| | - Claire Suchet
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, CNRS - Université de Toulouse (UPS)- ENFA, 118 route de Narbonne, Toulouse, Cedex 9 31062, France
| | - Christophe Thébaud
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, CNRS - Université de Toulouse (UPS)- ENFA, 118 route de Narbonne, Toulouse, Cedex 9 31062, France
| | - Pablo Vargas
- Real Jardín Botánico de Madrid (CSIC), Plaza de Murillo 2, Madrid E-28014, Spain
| |
Collapse
|
21
|
Lang M, Polihronakis Richmond M, Acurio AE, Markow TA, Orgogozo V. Radiation of the Drosophila nannoptera species group in Mexico. J Evol Biol 2014; 27:575-84. [PMID: 26227897 DOI: 10.1111/jeb.12325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
The Drosophila nannoptera species group, a taxon of Mexican cactophilic flies, is an excellent model system to study the influence of abiotic and biotic factors on speciation, the genetic causes of ecological specialization and the evolution of unusual reproductive characters. However, the phylogenetic relationships in the nannoptera species group and its position within the virilis-repleta phylogeny have not been thoroughly investigated. Using a multilocus data set of gene coding regions of eight nuclear and three mitochondrial genes, we found that the four described nannoptera group species diverged rapidly, with very short internodes between divergence events. Phylogenetic analysis of repleta group lineages revealed that D. inca and D. canalinea are sister to all other repleta group species, whereas the annulimana species D. aracataca and D. pseudotalamancana are sister to the nannoptera and bromeliae species groups. Our divergence time estimates suggest that the nannoptera species group radiated following important geological events in Central America. Our results indicate that a single evolutionary transition to asymmetric genitalia and to unusual sperm storage may have occurred during evolution of the nannoptera group.
Collapse
Affiliation(s)
- M Lang
- CNRS UMR7592, Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - M Polihronakis Richmond
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, La Jolla, CA, USA
| | - A E Acurio
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - T A Markow
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, La Jolla, CA, USA.,Laboratorio Nacional de Genómica de la Biodiversidad, CINVESTAV, Irapuato, Mexico
| | - V Orgogozo
- CNRS UMR7592, Institut Jacques Monod, Université Paris Diderot, Paris, France
| |
Collapse
|
22
|
Lin HC, Hastings PA. Phylogeny and biogeography of a shallow water fish clade (Teleostei: Blenniiformes). BMC Evol Biol 2013; 13:210. [PMID: 24067147 PMCID: PMC3849733 DOI: 10.1186/1471-2148-13-210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Blenniiformes comprises six families, 151 genera and nearly 900 species of small teleost fishes closely associated with coastal benthic habitats. They provide an unparalleled opportunity for studying marine biogeography because they include the globally distributed families Tripterygiidae (triplefin blennies) and Blenniidae (combtooth blennies), the temperate Clinidae (kelp blennies), and three largely Neotropical families (Labrisomidae, Chaenopsidae, and Dactyloscopidae). However, interpretation of these distributional patterns has been hindered by largely unresolved inter-familial relationships and the lack of evidence of monophyly of the Labrisomidae. RESULTS We explored the phylogenetic relationships of the Blenniiformes based on one mitochondrial (COI) and four nuclear (TMO-4C4, RAG1, Rhodopsin, and Histone H3) loci for 150 blenniiform species, and representative outgroups (Gobiesocidae, Opistognathidae and Grammatidae). According to the consensus of Bayesian Inference, Maximum Likelihood, and Maximum Parsimony analyses, the monophyly of the Blenniiformes and the Tripterygiidae, Blenniidae, Clinidae, and Dactyloscopidae is supported. The Tripterygiidae is the sister group of all other blennies, and the Blenniidae is the sister group of the remaining blennies. The monophyly of the Labrisomidae is supported with the exclusion of the Cryptotremini and inclusion of Stathmonotus, and we elevate two subgenera of Labrisomus to establish a monophyletic classification within the family. The monophyly of the Chaenopsidae is supported with the exclusion of Stathmonotus (placed in the Stathmonotini) and Neoclinus and Mccoskerichthys (placed in the Neoclinini). The origin of the Blenniiformes was estimated in the present-day IndoPacific region, corresponding to the Tethys Sea approximately 60.3 mya. A largely Neotropical lineage including the Labrisomidae, Chaenopsidae and Dactyloscopidae (node IV) evolved around 37.6 mya when the Neotropics were increasingly separated from the IndoPacific, but well before the closure of the Tethys Sea. CONCLUSIONS Relationships recovered in this study are similar to those of earlier analyses within the Clinidae and Chaenopsidae, and partially similar within the Blenniidae, but tripterygiid relationships remain poorly resolved. We present the first comprehensive phylogenetic hypothesis for a monophyletic Labrisomidae with five tribes (Labrisomini, Mnierpini, Paraclinini, Stathmonotini and Starksiini). Global distributions of blenny genera included in our analysis support the evolution of a largely Neotropical clade whose closest relatives (clinids and cryptotremines) are temperate in distribution.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Philip A Hastings
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M, Nielsen SCA, Weinstock J, Froese D, Vasiliev SK, Ovodov ND, Clary J, Helgen KM, Fleischer RC, Cooper A, Shapiro B, Orlando L. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 2013; 8:e55950. [PMID: 23437078 PMCID: PMC3577844 DOI: 10.1371/journal.pone.0055950] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).
Collapse
Affiliation(s)
- Julia T. Vilstrup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Stiller
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Aurelien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Sandra C. A. Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Jacobo Weinstock
- Faculty of Humanities, University of Southampton, Southampton, United Kingdom
| | - Duane Froese
- Department of Earth and Atmospheric Sciences, University of Alberta, Alberta, Canada
| | - Sergei K. Vasiliev
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolai D. Ovodov
- Laboratory of Archaeology and Paleogeography of Central Siberia, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Novosibirsk, Russia
| | - Joel Clary
- Centre de Conservation et d’Étude des Collections, Musée des Confluences, Lyon, France
| | - Kristofer M. Helgen
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America
| | - Robert C. Fleischer
- Center for Conservation and Evolutionary Genetics, Smithsonian National Zoological Park, Smithsonian Institution, Washington D.C., United States of America
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, The University of Adelaide, South Australia, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
24
|
Townsend JP, Su Z, Tekle YI. Phylogenetic Signal and Noise: Predicting the Power of a Data Set to Resolve Phylogeny. Syst Biol 2012; 61:835-49. [DOI: 10.1093/sysbio/sys036] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jeffrey P. Townsend
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
| | - Zhuo Su
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
| | - Yonas I. Tekle
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
- Department of Ecology and Evolutionary Biology; 2Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; and 3Department of Biology, Spelman College, Atlanta, GA 30341, USA
| |
Collapse
|
25
|
Vilstrup JT, Ho SYW, Foote AD, Morin PA, Kreb D, Krützen M, Parra GJ, Robertson KM, de Stephanis R, Verborgh P, Willerslev E, Orlando L, Gilbert MTP. Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae. BMC Evol Biol 2011; 11:65. [PMID: 21392378 PMCID: PMC3065423 DOI: 10.1186/1471-2148-11-65] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/10/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies) for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. RESULTS We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca) as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus) within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris) from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis) as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. CONCLUSION Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the resolution of a strongly supported, bifurcating phylogeny, and a chronology of the divergences within the Delphinidae family. This highlights the benefits and potential application of large mitogenome datasets to resolve long-standing phylogenetic uncertainties.
Collapse
Affiliation(s)
- Julia T Vilstrup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Simon YW Ho
- School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
| | - Andrew D Foote
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Phillip A Morin
- Southwest Fisheries Science Center, NOAA Fisheries, 3333 N. Torrey Pines Ct., La Jolla, CA, 92037 USA
| | - Danielle Kreb
- Yayasan Konservasi RASI, Samarinda, Kalimantan Timur, Indonesia
| | - Michael Krützen
- Evolutionary Genetics Group, Anthropological Institute and Museum, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Guido J Parra
- School of Biological Sciences, Flinders University, Lincoln Marine Science Centre, GPO BOX 2100 Adelaide, SA 5001, Australia
- South Australian Research and Development Institute (Aquatic Sciences), PO Box 120, Henley Beach, SA 5022, Australia
| | - Kelly M Robertson
- Southwest Fisheries Science Center, NOAA Fisheries, 3333 N. Torrey Pines Ct., La Jolla, CA, 92037 USA
| | - Renaud de Stephanis
- CIRCE, Conservation Information and Research on Cetaceans, C/Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cadiz, Spain
- Departamento de Biologia de la Conservación, Estación Biologica de Donana, CSIC, C/Americo Vespucio S/N, Isla de la Cartuja, Sevilla, 41092, Spain
| | - Philippe Verborgh
- CIRCE, Conservation Information and Research on Cetaceans, C/Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cadiz, Spain
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
26
|
LIVEZEY BRADLEYC. Phylogenetics of modern shorebirds (Charadriiformes) based on phenotypic evidence: analysis and discussion. Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2010.00635.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O. Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol 2010; 10:16. [PMID: 20089168 PMCID: PMC2826327 DOI: 10.1186/1471-2148-10-16] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The assembly of the tree of life has seen significant progress in recent years but algae and protists have been largely overlooked in this effort. Many groups of algae and protists have ancient roots and it is unclear how much data will be required to resolve their phylogenetic relationships for incorporation in the tree of life. The red algae, a group of primary photosynthetic eukaryotes of more than a billion years old, provide the earliest fossil evidence for eukaryotic multicellularity and sexual reproduction. Despite this evolutionary significance, their phylogenetic relationships are understudied. This study aims to infer a comprehensive red algal tree of life at the family level from a supermatrix containing data mined from GenBank. We aim to locate remaining regions of low support in the topology, evaluate their causes and estimate the amount of data required to resolve them. RESULTS Phylogenetic analysis of a supermatrix of 14 loci and 98 red algal families yielded the most complete red algal tree of life to date. Visualization of statistical support showed the presence of five poorly supported regions. Causes for low support were identified with statistics about the age of the region, data availability and node density, showing that poor support has different origins in different parts of the tree. Parametric simulation experiments yielded optimistic estimates of how much data will be needed to resolve the poorly supported regions (ca. 103 to ca. 104 nucleotides for the different regions). Nonparametric simulations gave a markedly more pessimistic image, some regions requiring more than 2.8 105 nucleotides or not achieving the desired level of support at all. The discrepancies between parametric and nonparametric simulations are discussed in light of our dataset and known attributes of both approaches. CONCLUSIONS Our study takes the red algae one step closer to meaningful inclusion in the tree of life. In addition to the recovery of stable relationships, the recognition of five regions in need of further study is a significant outcome of this work. Based on our analyses of current availability and future requirements of data, we make clear recommendations for forthcoming research.
Collapse
Affiliation(s)
- Heroen Verbruggen
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.
Collapse
Affiliation(s)
- Benjamin Vernot
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Maureen Stolzer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Aiton Goldman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Zou XH, Zhang FM, Zhang JG, Zang LL, Tang L, Wang J, Sang T, Ge S. Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol 2008; 9:R49. [PMID: 18315873 PMCID: PMC2397501 DOI: 10.1186/gb-2008-9-3-r49] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/18/2008] [Accepted: 03/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The completion of rice genome sequencing has made rice and its wild relatives an attractive system for biological studies. Despite great efforts, phylogenetic relationships among genome types and species in the rice genus have not been fully resolved. To take full advantage of rice genome resources for biological research and rice breeding, we will benefit from the availability of a robust phylogeny of the rice genus. RESULTS Through screening rice genome sequences, we sampled and sequenced 142 single-copy genes to clarify the relationships among all diploid genome types of the rice genus. The analysis identified two short internal branches around which most previous phylogenetic inconsistency emerged. These represent two episodes of rapid speciation that occurred approximately 5 and 10 million years ago (Mya) and gave rise to almost the entire diversity of the genus. The known chromosomal distribution of the sampled genes allowed the documentation of whole-genome sorting of ancestral alleles during the rapid speciation, which was responsible primarily for extensive incongruence between gene phylogenies and persisting phylogenetic ambiguity in the genus. Random sample analysis showed that 120 genes with an average length of 874 bp were needed to resolve both short branches with 95% confidence. CONCLUSION Our phylogenomic analysis successfully resolved the phylogeny of rice genome types, which lays a solid foundation for comparative and functional genomic studies of rice and its relatives. This study also highlights that organismal genomes might be mosaics of conflicting genealogies because of rapid speciation and demonstrates the power of phylogenomics in the reconstruction of rapid diversification.
Collapse
Affiliation(s)
- Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
SKINNER ADAM. Phylogenetic relationships and rate of early diversification of Australian Sphenomorphus group scincids (Scincoidea, Squamata). Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2007.00843.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
The resolution of four controversial topics in phylogenetic experimental design hinges upon the informativeness of characters about the historical relationships among taxa. These controversies regard the power of different classes of phylogenetic character, the relative utility of increased taxonomic versus character sampling, the differentiation between lack of phylogenetic signal and a historical rapid radiation, and the design of taxonomically broad phylogenetic studies optimized by taxonomically sparse genome-scale data. Quantification of the informativeness of characters for resolution of phylogenetic hypotheses during specified historical epochs is key to the resolution of these controversies. Here, such a measure of phylogenetic informativeness is formulated. The optimal rate of evolution of a character to resolve a dated four-taxon polytomy is derived. By scaling the asymptotic informativeness of a character evolving at a nonoptimal rate by the derived asymptotic optimum, and by normalizing so that net phylogenetic informativeness is equivalent for all rates when integrated across all of history, an informativeness profile across history is derived. Calculation of the informativeness per base pair allows estimation of the cost-effectiveness of character sampling. Calculation of the informativeness per million years allows comparison across historical radiations of the utility of a gene for the inference of rapid adaptive radiation. The theory is applied to profile the phylogenetic informativeness of the genes BRCA1, RAG1, GHR, and c-myc from a muroid rodent sequence data set. Bounded integrations of the phylogenetic profile of these genes over four epochs comprising the diversifications of the muroid rodents, the mammals, the lobe-limbed vertebrates, and the early metazoans demonstrate the differential power of these genes to resolve the branching order among ancestral lineages. This measure of phylogenetic informativeness yields a new kind of information for evaluation of phylogenetic experiments. It conveys the utility of the addition of characters a phylogenetic study and it provides a basis for deciding whether appropriate phylogenetic power has been applied to a polytomy that is proposed to be a rapid radiation. Moreover, it provides a quantitative measure of the capacity of a gene to resolve soft polytomies.
Collapse
Affiliation(s)
- Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
33
|
|
34
|
Hahn DA. Two Closely Related Species of Desert Carpenter Ant Differ in Individual‐Level Allocation to Fat Storage. Physiol Biochem Zool 2006; 79:847-56. [PMID: 16927231 DOI: 10.1086/505995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2006] [Indexed: 11/03/2022]
Abstract
Comparison of closely related species that differ in their life histories is a powerful method for studying the underlying physiological mechanisms contributing to life-history variation. I investigated whether two closely related members of the Camponotus festinatus species complex of desert carpenter ants, C. nr. festinatus Desert Light and C. nr. festinatus Desert Dark, differed in their life-history tactics with respect to fat storage. Newly mated queens were collected in the field, and colonies were reared under common conditions in the laboratory for 2 yr before sampling. I show that the two species differ in fat storage at the individual level. While the basic scaling relationship between lean mass and fat content did not differ between the two species, Dark workers and soldiers stored significantly more fat per unit lean mass than Light workers or soldiers. There were no significant demographic differences in the proportions of workers or soldiers involved in fat storage between the two species, although there was a trend toward Light colonies having a greater proportion of soldiers storing large amounts of fat. There was also no significant difference in the total amount of fat stored by the two species at the colony level. The detection of strong individual-level effects but no colony-level effects was likely due to the low statistical power of colony-level analyses. Showing that these two closely related species differ in fat storage at the individual level in a common environment demonstrates their utility as a model for understanding the physiological and behavioral mechanisms regulating life-history variation in fat storage in ants.
Collapse
Affiliation(s)
- Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, Florida 32611, USA.
| |
Collapse
|
35
|
Weisrock DW, Harmon LJ, Larson A. Resolving deep phylogenetic relationships in salamanders: analyses of mitochondrial and nuclear genomic data. Syst Biol 2006; 54:758-77. [PMID: 16243763 DOI: 10.1080/10635150500234641] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Phylogenetic relationships among salamander families illustrate analytical challenges inherent to inferring phylogenies in which terminal branches are temporally very long relative to internal branches. We present new mitochondrial DNA sequences, approximately 2,100 base pairs from the genes encoding ND1, ND2, COI, and the intervening tRNA genes for 34 species representing all 10 salamander families, to examine these relationships. Parsimony analysis of these mtDNA sequences supports monophyly of all families except Proteidae, but yields a tree largely unresolved with respect to interfamilial relationships and the phylogenetic positions of the proteid genera Necturus and Proteus. In contrast, Bayesian and maximum-likelihood analyses of the mtDNA data produce a topology concordant with phylogenetic results from nuclear-encoded rRNA sequences, and they statistically reject monophyly of the internally fertilizing salamanders, suborder Salamandroidea. Phylogenetic simulations based on our mitochondrial DNA sequences reveal that Bayesian analyses outperform parsimony in reconstructing short branches located deep in the phylogenetic history of a taxon. However, phylogenetic conflicts between our results and a recent analysis of nuclear RAG-1 gene sequences suggest that statistical rejection of a monophyletic Salamandroidea by Bayesian analyses of our mitochondrial genomic data is probably erroneous. Bayesian and likelihood-based analyses may overestimate phylogenetic precision when estimating short branches located deep in a phylogeny from data showing substitutional saturation; an analysis of nucleotide substitutions indicates that these methods may be overly sensitive to a relatively small number of sites that show substitutions judged uncommon by the favored evolutionary model.
Collapse
Affiliation(s)
- David W Weisrock
- Department of Biology, Campus Box 1137, Washington University, St. Louis, Missouri, 63130, USA.
| | | | | |
Collapse
|
36
|
Walsh HE, Jones IL, Friesen VL. A test of founder effect speciation using multiple loci in the auklets (Aethia spp.). Genetics 2005; 171:1885-94. [PMID: 16143621 PMCID: PMC1456112 DOI: 10.1534/genetics.105.043380] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether speciation results more frequently from the genetic consequences of founder events or from gradual genetic divergence of large populations is a matter of debate. In this study, multiple analyses were applied to data from three loci (cytochrome b, alpha-enolase intron VIII, and MHC class II B) to test for founder effects associated with speciation in Aethia (Aves: Alcidae), a genus of seabirds thought to have undergone a rapid founder-induced radiation. Effective population sizes (N(e)) were derived from estimators of based on allelic diversity and the coalescent and from data on trans-species polymorphism. Results indicated that N(e) has been on the order of 10(5)-10(6) individuals throughout the evolutionary histories of least and crested auklets (A. pusilla and A. cristatella, respectively) and that N(e) of the ancestral species was at least 16,000 individuals. Computer simulations of MHC evolution indicated that a single-generation bottleneck at speciation could not have involved <85 individuals for each species. More moderate simulation scenarios indicated that population size could not have dropped below 2000 individuals at the time of species founding. Demographic history appears to have been stable for the auklets throughout the past several million years, and a founder effect associated with their speciation is unlikely.
Collapse
Affiliation(s)
- H E Walsh
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
37
|
Vogler A, Cardoso A, Barraclough T. Exploring rate variation among and within sites in a densely sampled tree: species level phylogenetics of north american tiger beetles (genus cicindela). Syst Biol 2005; 54:4-20. [PMID: 15805007 DOI: 10.1080/10635150590906028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Species-level phylogenetic studies require fast-evolving nucleotide positions to resolve relationships among close relatives, but these sites may be highly homoplastic and perhaps uninformative or even misleading deeper in the tree. Here we describe a species-level analysis of tiger beetles in the genus Cicindela (Coleoptera: Cicindelidae) for 132 terminal taxa and 1897 nucleotide positions from three regions of mtDNA, comprising 75% coverage of species occurring in North America. Evenly weighted parsimony analysis recovered four major clades representing radiations confined to North and Central America. Relationships near the tips were well supported but signal was contradictory at deeper nodes. Two major categories (3rd positions and all others) can be distinguished in likelihood analysis of character variation, of which only the fast-changing 3rd position characters were affected by saturation. However, their downweighting under a variety of criteria did not improve the tree topology at basal nodes. There was weak conflict between 3rd and non-3rd position characters deep in the tree, but support levels declined towards the root for all categories, even on trees that were reconstructed from 3rd and non-3rd positions separately. Statistical analysis of parsimony-based character transitions along branches showed a largely homogeneous distribution of change along the root-to-tip axis. The comparison of character transitions among the four major portions of the tree revealed deviations from stochastic distribution for the non-3rd positions, but not for 3rd positions. Hence, variability of functionally constrained non-3rd positions differs between clades and may be dependent on the character states at other sites, consistent with the covarion model of molecular evolution. The results suggest that some properties of 3rd positions are less problematic for phylogenetic reconstruction than other categories despite their high total homoplasy. In densely sampled data sets of closely related species, the disadvantages of weighting schemes according to homoplasy levels outweigh the benefits, showing the difficulty of devising meaningful weighting schemes that are applicable universally throughout the tree.
Collapse
Affiliation(s)
- Alfried Vogler
- Department of Entomology, The Natural History Museum, London SW7 5BD, United Kingdom.
| | | | | |
Collapse
|
38
|
McCracken K, Sorenson M. Is homoplasy or lineage sorting the source of incongruent mtdna and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)? Syst Biol 2005; 54:35-55. [PMID: 15805009 DOI: 10.1080/10635150590910249] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We evaluated the potential effects of homoplasy, ancestral polymorphism, and hybridization as obstacles to resolving phylogenetic relationships within Nomonyx-Oxyura stiff-tailed ducks (Oxyurinae; subtribe Oxyurina). Mitochondrial DNA (mtDNA) control region sequences from 94 individuals supported monophyly of mtDNA haplotypes for each of the six species and provided no evidence of extant incomplete lineage sorting or inter-specific hybridization. The ruddy ducks (O. j. jamaicensis,O. j. andina, O. j. ferruginea) are each others' closest relatives, but the lack of shared haplotypes between O. j. jamaicensis and O. j. ferruginea suggests long-standing historical isolation. In contrast, O. j. andina shares haplotypes with O. j. jamaicensis and O. j. ferruginea, which supports Todd's (1979) and Fjeldså's (1986) hypothesis that O. j. andina is an intergrade or hybrid subspecies of O. j. jamaicensis and O. j. ferruginea. Control region data and a much larger data set composed of approximately 8800 base pairs of mitochondrial and nuclear sequence for each species indicate that the two New World species, O. vittata and O. jamaicensis, branch basally within Oxyura. A clade of three Old World species (O. australis, O. maccoa, O. leucocephala) is well supported, but different loci and also different characters within the mtDNA data support three different resolutions of the Old World clade, yielding an essentially unresolved trichotomy. Fundamentally different factors limited the resolution of the mtDNA and nuclear gene trees. Gene trees for most nuclear loci were unresolved due to slow rates of mutation and a lack of informative variation, whereas uncertain resolution of the mtDNA gene tree was due to homoplasy. Within the mtDNA, approximately equal numbers of characters supported each of three possible resolutions. Parametric and nonparametric bootstrap analyses suggest that resolution of the mtDNA tree based on ~4300 bp per taxon is uncertain but that complete mtDNA sequences would yield a fully resolved gene tree. A short internode separating O. leucocephala from (O. australis, O. maccoa) in the best mtDNA tree combined with long terminal branches and substantial rate variation among nucleotide sites allowed the small number of changes occurring on the internode to be obscured by homoplasy in a significant portion of simulated data sets. Although most nuclear loci were uninformative, two loci supported a resolution of the Old World clade (O. maccoa, O. leucocephala) that is incongruent with the best mtDNA tree. Thus, incongruence between nuclear and mtDNA trees may be due to random sorting of ancestral lineages during the short internode, homoplasy in the mtDNA data, or both. The Oxyura trichotomy represents a difficult though likely common problem in molecular systematics. Given a short internode, the mtDNA tree has a greater chance of being congruent with the history of speciation because its effective population size (N(e)) is one-quarter that of any nuclear locus, but its resolution is more likely to be obscured by homoplasy. In contrast, gene trees for more slowly evolving nuclear loci will be difficult to resolve due to a lack of substitutions during the internode, and when resolved are more likely to be incongruent with the species history due to the stochastic effects of lineage sorting. We suggest that researchers consider first whether independent gene trees are adequately resolved and then whether those trees are congruent with the species history. In the case of Oxyura, the answer to both questions may be no. Complete mtDNA sequences combined with data from a very large number of nuclear loci may be the only way to resolve such trichotomies.
Collapse
Affiliation(s)
- Kevin McCracken
- Institute of Arctic Biology, Department of Biology and Wildlife,University of Alaska Fairbanks, Fairbanks, Alaska 99775 USA.
| | | |
Collapse
|
39
|
Poe S, Chubb AL. BIRDS IN A BUSH: FIVE GENES INDICATE EXPLOSIVE EVOLUTION OF AVIAN ORDERS. Evolution 2004. [DOI: 10.1554/03-037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Di Stefano J. How much power is enough? Against the development of an arbitrary convention for statistical power calculations. Funct Ecol 2003. [DOI: 10.1046/j.1365-2435.2003.00782.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Pfenninger M, Reinhardt F, Streit B. Evidence for cryptic hybridization between different evolutionary lineages of the invasive clam genus
Corbicula
(Veneroida, Bivalvia). J Evol Biol 2002. [DOI: 10.1046/j.1420-9101.2002.00440.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- M. Pfenninger
- Abteilung Ökologie & Evolution, J.W. Goethe‐Universität, Frankfurt, Germany
| | - F. Reinhardt
- Abteilung Ökologie & Evolution, J.W. Goethe‐Universität, Frankfurt, Germany
| | - B. Streit
- Abteilung Ökologie & Evolution, J.W. Goethe‐Universität, Frankfurt, Germany
| |
Collapse
|
42
|
Cronn RC, Small RL, Haselkorn T, Wendel JF. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. AMERICAN JOURNAL OF BOTANY 2002; 89:707-25. [PMID: 21665671 DOI: 10.3732/ajb.89.4.707] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previous molecular phylogenetic studies have failed to resolve the branching order among the major cotton (Gossypium) lineages, and it has been unclear whether this reflects actual history (rapid radiation) or sampling properties of the genes evaluated. In this paper, we reconsider the phylogenetic relationships of diploid cotton genome groups using DNA sequences from 11 single-copy nuclear loci (10 293 base pairs [bp]), nuclear ribosomal DNA (695 bp), and four chloroplast loci (7370 bp). Results from individual loci and combined nuclear and chloroplast DNA partitions reveal that the cotton genome groups radiated in rapid succession following the formation of the genus. Maximum likelihood analysis of nuclear synonymous sites shows that this radiation occurred within a time span equivalent to 17% of the time since the separation of Gossypium from its nearest extant relatives in the genera Kokia and Gossypioides. Chloroplast and nuclear phylogenies differ significantly with respect to resolution of the basal divergence in the genus and to interrelationships among African cottons. This incongruence is due to limited character evolution in cpDNA and either previously unsuspected hybridization or unreliable phylogenetic performance of the cpDNA characters. This study highlights the necessity of using multiple, independent data sets for resolving phylogenetic relationships of rapidly diverged lineages.
Collapse
Affiliation(s)
- Richard C Cronn
- Department of Botany, Iowa State University, Ames, Iowa 50011 USA
| | | | | | | |
Collapse
|
43
|
Braun EL, Kimball RT. POLYTOMIES, THE POWER OF PHYLOGENETIC INFERENCE, AND THE STOCHASTIC NATURE OF MOLECULAR EVOLUTION: A COMMENT ON WALSH ET AL. (1999). Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[1261:ptpopi]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Walsh HE, Friesen VL. POWER AND STOCHASTICITY IN THE RESOLUTION OF SOFT POLYTOMIES: A REPLY TO BRAUN ET AL. Evolution 2001. [DOI: 10.1554/0014-3820(2001)055[1264:pasitr]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Eunmi Lee C. GLOBAL PHYLOGEOGRAPHY OF A CRYPTIC COPEPOD SPECIES COMPLEX AND REPRODUCTIVE ISOLATION BETWEEN GENETICALLY PROXIMATE “POPULATIONS”. Evolution 2000. [DOI: 10.1554/0014-3820(2000)054[2014:gpoacc]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|