1
|
Josefson CC, Fitzwater BM, Beltran RS, Costa DP, Fornara JH, Garland T, Harris BN, Hinde K, Hood WR, Hunt E, Kenagy GJ, Liebl AL, Litmer AR, Lopes PC, Misra D, Meuti M, Place NJ, Powers LE, Saltzman W, Orr TJ. Balancing Act: An Interdisciplinary Exploration of Trade-offs in Reproducing Females. Integr Comp Biol 2024; 64:1734-1756. [PMID: 38982258 DOI: 10.1093/icb/icae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Trade-offs resulting from the high demand of offspring production are a central focus of many subdisciplines within the field of biology. Yet, despite the historical and current interest on this topic, large gaps in our understanding of whole-organism trade-offs that occur in reproducing individuals remain, particularly as it relates to the nuances associated with female reproduction. This volume of Integrative and Comparative Biology (ICB) contains a series of papers that focus on reviewing trade-offs from the female-centered perspective of biology (i.e., a perspective that places female reproductive biology at the center of the topic being investigated or discussed). These papers represent some of the work showcased during our symposium held at the 2024 meeting of the Society for Integrative and Comparative Biology (SICB) in Seattle, Washington. In this roundtable discussion, we use a question-and-answer format to capture the diverse perspectives and voices involved in our symposium. We hope that the dialogue featured in this discussion will be used to motivate researchers interested in understanding trade-offs in reproducing females and provide guidance on future research endeavors.
Collapse
Affiliation(s)
- Chloe C Josefson
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Brooke M Fitzwater
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Katie Hinde
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eloise Hunt
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - G J Kenagy
- University of Washington, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Andrea L Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Allison R Litmer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Deblina Misra
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Megan Meuti
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA
| | - Ned J Place
- Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lisa E Powers
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
2
|
Álvarez-Quintero N, Kim SY. Effects of maternal age and environmental enrichment on learning ability and brain size. Behav Ecol 2024; 35:arae049. [PMID: 38952837 PMCID: PMC11215699 DOI: 10.1093/beheco/arae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
It is well known that maternal age at reproduction affects offspring lifespan and some other fitness-related traits, but it remains understudied whether maternal senescence affects how offspring respond to their environments. Early environment often plays a significant role in the development of an animal's behavioral phenotype. For example, complex environments can promote changes in cognitive ability and brain morphology in young animals. Here, we study whether and how maternal effect senescence influences offspring plasticity in cognition, group behavior, and brain morphology in response to environmental complexity. For this, juvenile 3-spined sticklebacks from young and old mothers (i.e. 1-yr and 2-yr-old) were exposed to different levels of environmental enrichment and complexity (i.e. none, simple, and complex), and their behavior, cognitive ability, and brain size were measured. Exposing fish to enriched conditions improved individual learning ability assessed by a repeated detour-reaching task, increased the size of the whole brain, and decreased aggressive interactions in the shoal. Maternal age did not influence the inhibitory control, learning ability, and group behavioral responses of offspring to the experimental environmental change. However, maternal age affected how some brain regions of offspring changed in response to environmental complexity. In offspring from old mothers, those exposed to the complex environment had larger telencephalons and cerebellums than those who experienced simpler environments. Our results suggest that maternal effect senescence may influence how offspring invest in brain functions related to cognition in response to environmental complexity.
Collapse
Affiliation(s)
- Náyade Álvarez-Quintero
- Grupo de Ecoloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Fonte das Abelleiras, s/n, Vigo, 36310 Pontevedra, Spain
- Dipartimento di Biologia, Complesso Interdepartamentale A. Vallisneri, Università di Padova, Via Ugo Bassi, 58b, 35121 Padova PD, Italy
| | - Sin-Yeon Kim
- Grupo de Ecoloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Fonte das Abelleiras, s/n, Vigo, 36310 Pontevedra, Spain
| |
Collapse
|
3
|
Cordero-Molina S, Fetter-Pruneda I, Contreras-Garduño J. Neural mechanisms involved in female mate choice in invertebrates. Front Endocrinol (Lausanne) 2024; 14:1291635. [PMID: 38269245 PMCID: PMC10807292 DOI: 10.3389/fendo.2023.1291635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Mate choice is a critical decision with direct implications for fitness. Although it has been recognized for over 150 years, our understanding of its underlying mechanisms is still limited. Most studies on mate choice focus on the evolutionary causes of behavior, with less attention given to the physiological and molecular mechanisms involved. This is especially true for invertebrates, where research on mate choice has largely focused on male behavior. This review summarizes the current state of knowledge on the neural, molecular and neurohormonal mechanisms of female choice in invertebrates, including behaviors before, during, and after copulation. We identify areas of research that have not been extensively explored in invertebrates, suggesting potential directions for future investigation. We hope that this review will stimulate further research in this area.
Collapse
Affiliation(s)
- Sagrario Cordero-Molina
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingrid Fetter-Pruneda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Contreras-Garduño
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Dyakonova VE. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1719-1731. [PMID: 38105193 DOI: 10.1134/s0006297923110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the "initial substrate of aging". Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Fichtel C, Henke-von der Malsburg J, Kappeler PM. Cognitive performance is linked to fitness in a wild primate. SCIENCE ADVANCES 2023; 9:eadf9365. [PMID: 37436999 DOI: 10.1126/sciadv.adf9365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Cognitive performance varies widely across animal species, but the processes underlying cognitive evolution remain poorly known. For cognitive abilities to evolve, performance must be linked to individual fitness benefits, but these links have been rarely studied in primates even though they exceed most other mammals in these traits. We subjected 198 wild gray mouse lemurs to four cognitive and two personality tests and subsequently monitored their survival in a mark-recapture study. Our study revealed that survival was predicted by individual variation in cognitive performance as well as body mass and exploration. Because cognitive performance covaried negatively with exploration, individuals gathering more accurate information enjoyed better cognitive performance and lived longer, but so did heavier and more explorative individuals. These effects may reflect a speed-accuracy trade-off, with alternative strategies yielding similar overall fitness. The observed intraspecific variation in selective benefits of cognitive performance, if heritable, can provide the basis for the evolution of cognitive abilities in members of our lineage.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen 37077, Germany
| | - Johanna Henke-von der Malsburg
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Padamsey Z, Rochefort NL. Paying the brain's energy bill. Curr Opin Neurobiol 2023; 78:102668. [PMID: 36571958 DOI: 10.1016/j.conb.2022.102668] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/25/2022]
Abstract
How have animals managed to maintain metabolically expensive brains given the volatile and fleeting availability of calories in the natural world? Here we review studies in support of three strategies that involve: 1) a reallocation of energy from peripheral tissues and functions to cover the costs of the brain, 2) an implementation of energy-efficient neural coding, enabling the brain to operate at reduced energy costs, and 3) efficient use of costly neural resources during food scarcity. Collectively, these studies reveal a heterogeneous set of energy-saving mechanisms that make energy-costly brains fit for survival.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom.
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom.
| |
Collapse
|
7
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
8
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. General cognitive performance declines with female age and is negatively related to fledging success in a wild bird. Proc Biol Sci 2022; 289:20221748. [PMID: 36541175 PMCID: PMC9768653 DOI: 10.1098/rspb.2022.1748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying the causes and fitness consequences of intraspecific variation in cognitive performance is fundamental to understand how cognition evolves. Selection may act on different cognitive traits separately or jointly as part of the general cognitive performance (GCP) of the individual. To date, few studies have examined simultaneously whether individual cognitive performance covaries across different cognitive tasks, the relative importance of individual and social attributes in determining cognitive variation, and its fitness consequences in the wild. Here, we tested 38 wild southern pied babblers (Turdoides bicolor) on a cognitive test battery targeting associative learning, reversal learning and inhibitory control. We found that a single factor explained 59.5% of the variation in individual cognitive performance across tasks, suggestive of a general cognitive factor. GCP varied by age and sex; declining with age in females but not males. Older females also tended to produce a higher average number of fledglings per year compared to younger females. Analysing over 10 years of breeding data, we found that individuals with lower general cognitive performance produced more fledglings per year. Collectively, our findings support the existence of a trade-off between cognitive performance and reproductive success in a wild bird.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Huang S, Piao C, Beuschel CB, Zhao Z, Sigrist SJ. A brain-wide form of presynaptic active zone plasticity orchestrates resilience to brain aging in Drosophila. PLoS Biol 2022; 20:e3001730. [PMID: 36469518 PMCID: PMC9721493 DOI: 10.1371/journal.pbio.3001730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/10/2022] Open
Abstract
The brain as a central regulator of stress integration determines what is threatening, stores memories, and regulates physiological adaptations across the aging trajectory. While sleep homeostasis seems to be linked to brain resilience, how age-associated changes intersect to adapt brain resilience to life history remains enigmatic. We here provide evidence that a brain-wide form of presynaptic active zone plasticity ("PreScale"), characterized by increases of active zone scaffold proteins and synaptic vesicle release factors, integrates resilience by coupling sleep, longevity, and memory during early aging of Drosophila. PreScale increased over the brain until mid-age, to then decreased again, and promoted the age-typical adaption of sleep patterns as well as extended longevity, while at the same time it reduced the ability of forming new memories. Genetic induction of PreScale also mimicked early aging-associated adaption of sleep patterns and the neuronal activity/excitability of sleep control neurons. Spermidine supplementation, previously shown to suppress early aging-associated PreScale, also attenuated the age-typical sleep pattern changes. Pharmacological induction of sleep for 2 days in mid-age flies also reset PreScale, restored memory formation, and rejuvenated sleep patterns. Our data suggest that early along the aging trajectory, PreScale acts as an acute, brain-wide form of presynaptic plasticity to steer trade-offs between longevity, sleep, and memory formation in a still plastic phase of early brain aging.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Christine B. Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Zhiying Zhao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
10
|
Cram DL. Oxidative stress and cognition in ecology. J Zool (1987) 2022. [DOI: 10.1111/jzo.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. L. Cram
- Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
11
|
Dravecz N, Shaw T, Davies I, Brown C, Ormerod L, Vu G, Walker T, Taank T, Shirras AD, Broughton SJ. Reduced Insulin Signaling Targeted to Serotonergic Neurons but Not Other Neuronal Subtypes Extends Lifespan in Drosophila melanogaster. Front Aging Neurosci 2022; 14:893444. [PMID: 35865744 PMCID: PMC9294736 DOI: 10.3389/fnagi.2022.893444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced Insulin/IGF-like signaling (IIS) plays an evolutionarily conserved role in improving longevity and some measures of health-span in model organisms. Recent studies, however, have found a disconnection between lifespan extension and behavioral health-span. We have previously shown that reduction of IIS in Drosophila neurons extends female lifespan but does not improve negative geotaxis senescence and has a detrimental effect on exploratory walking senescence in both sexes. We hypothesize that individual neuronal subtypes respond differently to IIS changes, thus the behavioral outcomes of pan-neuronal IIS reduction are the balance of positive, negative and neutral functional effects. In order to further understand how reduced IIS in neurons independently modulates lifespan and locomotor behavioral senescence we expressed a dominant negative Insulin receptor transgene selectively in individual neuronal subtypes and measured the effects on lifespan and two measures of locomotor senescence, negative geotaxis and exploratory walking. IIS reduction in cholinergic, GABAergic, dopaminergic, glutamatergic, and octopaminergic neurons was found to have either no affect or a detrimental effect on lifespan and locomotor senescence. However, reduction of IIS selectively in serotonergic neurons resulted in extension of lifespan in females with no effect on locomotor senescence. These data indicate that individual neuronal subtypes respond differently to IIS changes in the modulation of lifespan and locomotor senescence, and identify a specific role for the insulin receptor in serotonergic neurons in the modulation of lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Susan J. Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
12
|
Dyakonova V, Mezheritskiy M, Boguslavsky D, Dyakonova T, Chistopolsky I, Ito E, Zakharov I. Exercise and the Brain: Lessons From Invertebrate Studies. Front Behav Neurosci 2022; 16:928093. [PMID: 35836487 PMCID: PMC9275788 DOI: 10.3389/fnbeh.2022.928093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Benefits of physical exercise for brain functions are well documented in mammals, including humans. In this review, we will summarize recent research on the effects of species-specific intense locomotion on behavior and brain functions of different invertebrates. Special emphasis is made on understanding the biological significance of these effects as well as underlying cellular and molecular mechanisms. The results obtained in three distantly related clades of protostomes, Nematodes, Molluscs and Artropods, suggest that influence of intense locomotion on the brain could have deep roots in evolution and wide adaptive significance. In C. elegans, improved learning, nerve regeneration, resistance to neurodegenerative processes were detected after physical activity; in L. stagnalis—facilitation of decision making in the novel environment, in Drosophila—increased endurance, improved sleep and feeding behavior, in G. bimaculatus—improved orientation in conspecific phonotaxis, enhanced aggressiveness, higher mating success, resistance to some disturbing stimuli. Many of these effects have previously been described in mammals as beneficial results of running, suggesting certain similarity between distantly-related species. Our hypothesis posits that the above modulation of cognitive functions results from changes in the organism’s predictive model. Intense movement is interpreted by the organism as predictive of change, in anticipation of which adjustments need to be made. Identifying the physiological and molecular mechanisms behind these adjustments is easier in experiments in invertebrates and may lead to the discovery of novel neurobiological mechanisms for regulation and correction of cognitive and emotional status.
Collapse
Affiliation(s)
- Varvara Dyakonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Varvara Dyakonova
| | - Maxim Mezheritskiy
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitri Boguslavsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Taisia Dyakonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya Chistopolsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
| | - Igor Zakharov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Hernandez AR, Hoffman JM, Hernandez CM, Cortes CJ, Jumbo-Lucioni P, Baxter MG, Esser KA, Liu AC, McMahon LL, Bizon JL, Burke SN, Buford TW, Carter CS. Reuniting the Body "Neck Up and Neck Down" to Understand Cognitive Aging: The Nexus of Geroscience and Neuroscience. J Gerontol A Biol Sci Med Sci 2022; 77:e1-e9. [PMID: 34309630 PMCID: PMC8751793 DOI: 10.1093/gerona/glab215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham (UAB), USA
| | | | - Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA
| | - Constanza J Cortes
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, USA
| | - Patricia Jumbo-Lucioni
- Department of Biology, University of Alabama at Birmingham, USA.,Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama,USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Lori L McMahon
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| | - Jennifer L Bizon
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| |
Collapse
|
15
|
Rather PA, Herzog AE, Ernst DA, Westerman EL. Effect of experience on mating behaviour in male Heliconius melpomene butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kahnau P, Guenther A, Boon MN, Terzenbach JD, Hanitzsch E, Lewejohann L, Brust V. Lifetime Observation of Cognition and Physiological Parameters in Male Mice. Front Behav Neurosci 2021; 15:709775. [PMID: 34539359 PMCID: PMC8442583 DOI: 10.3389/fnbeh.2021.709775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Laboratory mice are predominantly used for one experiment only, i.e., new mice are ordered or bred for every new experiment. Moreover, most experiments use relatively young mice in the range of late adolescence to early adulthood. As a consequence, little is known about the day-to-day life of adult and aged laboratory mice. Here we present a long-term data set with three consecutive phases conducted with the same male mice over their lifetime in order to shed light on possible long-term effects of repeated cognitive stimulation. One third of the animals was trained by a variety of learning tasks conducted up to an age of 606 days. The mice were housed in four cages with 12 animals per cage; only four mice per cage had to repeatedly solve cognitive tasks for getting access to water using the IntelliCage system. In addition, these learner mice were tested in standard cognitive tests outside their home-cage. The other eight mice served as two control groups living in the same environment but without having to solve tasks for getting access to water. One control group was additionally placed on the test set-ups without having to learn the tasks. Next to the cognitive tasks, we took physiological measures (body mass, resting metabolic rate) and tested for dominance behavior, and attractivity in a female choice experiment. Overall, the mice were under surveillance until they died a natural death, providing a unique data set over the course of virtually their entire lives. Our data showed treatment differences during the first phase of our lifetime data set. Young learner mice showed a higher activity, less growth and resting metabolic rate, and were less attractive for female mice. These effects, however, were not preserved over the long-term. We also did not find differences in dominance or effects on longevity. However, we generated a unique and valuable set of long-term behavioral and physiological data from a single group of male mice and note that our long-term data contribute to a better understanding of the behavioral and physiological processes in male C57Bl/6J mice.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anja Guenther
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Marcus Nicolaas Boon
- Department for Electrical Engineering and Computer Science, Modeling of Cognitive Processes, Technische Universität Berlin, Berlin, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| | | | - Eric Hanitzsch
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Berlin, Germany
| | - Vera Brust
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
17
|
Evans LJ, Smith KE, Raine NE. Odour Learning Bees Have Longer Foraging Careers Than Non-learners in a Natural Environment. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individual animals allowed the opportunity to learn generally outperform those prevented from learning, yet, within a species the capacity for learning varies markedly. The evolutionary processes that maintain this variation in learning ability are not yet well understood. Several studies demonstrate links between fitness traits and visual learning, but the selection pressures operating on cognitive traits are likely influenced by multiple sensory modalities. In addition to vision, most animals will use a combination of hearing, olfaction (smell), gustation (taste), and touch to gain information about their environment. Some animals demonstrate individual preference for, or enhanced learning performance using certain senses in relation to particular aspects of their behaviour (e.g., foraging), whereas conspecific individuals may show different preferences. By assessing fitness traits in relation to different sensory modalities we will strengthen our understanding of factors driving observed variation in learning ability. We assessed the relationship between the olfactory learning ability of bumble bees (Bombus terrestris) and their foraging performance in their natural environment. We found that bees which failed to learn this odour-reward association had shorter foraging careers; foraging for fewer days and thus provisioning their colonies with fewer resources. This was not due to a reduced propensity to forage, but may have been due to a reduced ability to return to their colony. When comparing among only individuals that did learn, we found that the rate at which floral resources were collected was similar, regardless of how they performed in the olfactory learning task. Our results demonstrate that an ability to learn olfactory cues can have a positive impact of the foraging performance of B. terrestris in a natural environment, but echo findings of earlier studies on visual learning, which suggest that enhanced learning is not necessarily beneficial for bee foragers provisioning their colony.
Collapse
|
18
|
Boussard A, Amcoff M, Buechel SD, Kotrschal A, Kolm N. The link between relative brain size and cognitive ageing in female guppies (Poecilia reticulata) artificially selected for variation in brain size. Exp Gerontol 2020; 146:111218. [PMID: 33373711 DOI: 10.1016/j.exger.2020.111218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022]
Abstract
Cognitive ageing is the general process when certain mental skills gradually deteriorate with age. Across species, there is a pattern of a slower brain structure degradation rate in large-brained species. Hence, having a larger brain might buffer the impact of cognitive ageing and positively affect survival at older age. However, few studies have investigated the link between relative brain size and cognitive ageing at the intraspecific level. In particular, experimental data on how brain size affects brain function also into higher age is largely missing. We used 288 female guppies (Poecilia reticulata), artificially selected for large and small relative brain size, to investigate variation in colour discrimination and behavioural flexibility, at 4-6, 12 and 24 months of age. These ages are particularly interesting since they cover the life span from sexual maturation until maximal life length under natural conditions. We found no evidence for a slower cognitive ageing rate in large-brained females in neither initial colour discrimination nor reversal learning. Behavioural flexibility was predicted by large relative brain size in the youngest group, but the effect of brain size disappeared with increasing age. This result suggests that cognitive ageing rate is faster in large-brained female guppies, potentially due to the faster ageing and shorter lifespan in the large-brained selection lines. It also means that cognition levels align across different brain sizes with older age. We conclude that there are cognitive consequences of ageing that vary with relative brain size in advanced learning abilities, whereas fundamental aspects of learning can be maintained throughout the ecologically relevant life span.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| | - Severine D Buechel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden; Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands.
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden; Department of Animal Sciences: Behavioural Ecology, Wageningen University & Research, 6708 WD Wageningen, Netherlands.
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.
| |
Collapse
|
19
|
Young FJ, Montgomery SH. Pollen feeding in Heliconius butterflies: the singular evolution of an adaptive suite. Proc Biol Sci 2020; 287:20201304. [PMID: 33171092 PMCID: PMC7735275 DOI: 10.1098/rspb.2020.1304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Major evolutionary transitions can be triggered by behavioural novelty, and are often associated with 'adaptive suites', which involve shifts in multiple co-adapted traits subject to complex interactions. Heliconius butterflies represent one such example, actively feeding on pollen, a behaviour unique among butterflies. Pollen feeding permits a prolonged reproductive lifespan, and co-occurs with a constellation of behavioural, neuroanatomical, life history, morphological and physiological traits that are absent in closely related, non-pollen-feeding genera. As a highly tractable system, supported by considerable ecological and genomic data, Heliconius are an excellent model for investigating how behavioural innovation can trigger a cascade of adaptive shifts in multiple diverse, but interrelated, traits. Here, we synthesize current knowledge of pollen feeding in Heliconius, and explore potential interactions between associated, putatively adaptive, traits. Currently, no physiological, morphological or molecular innovation has been explicitly linked to the origin of pollen feeding, and several hypothesized links between different aspects of Heliconius biology remain poorly tested. However, resolving these uncertainties will contribute to our understanding of how behavioural innovations evolve and subsequently alter the evolutionary trajectories of diverse traits impacting resource acquisition, life history, senescence and cognition.
Collapse
Affiliation(s)
- Fletcher J. Young
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol UBS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol UBS8 1TQ, UK
| |
Collapse
|
20
|
Eschment M, Franz HR, Güllü N, Hölscher LG, Huh KE, Widmann A. Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae. PLoS Genet 2020; 16:e1009064. [PMID: 33104728 PMCID: PMC7644093 DOI: 10.1371/journal.pgen.1009064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/05/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
The ability to learn new skills and to store them as memory entities is one of the most impressive features of higher evolved organisms. However, not all memories are created equal; some are short-lived forms, and some are longer lasting. Formation of the latter is energetically costly and by the reason of restricted availability of food or fluctuations in energy expanses, efficient metabolic homeostasis modulating different needs like survival, growth, reproduction, or investment in longer lasting memories is crucial. Whilst equipped with cellular and molecular pre-requisites for formation of a protein synthesis dependent long-term memory (LTM), its existence in the larval stage of Drosophila remains elusive. Considering it from the viewpoint that larval brain structures are completely rebuilt during metamorphosis, and that this process depends completely on accumulated energy stores formed during the larval stage, investing in LTM represents an unnecessary expenditure. However, as an alternative, Drosophila larvae are equipped with the capacity to form a protein synthesis independent so-called larval anaesthesia resistant memory (lARM), which is consolidated in terms of being insensitive to cold-shock treatments. Motivated by the fact that LTM formation causes an increase in energy uptake in Drosophila adults, we tested the idea of whether an energy surplus can induce the formation of LTM in the larval stage. Suprisingly, increasing the metabolic state by feeding Drosophila larvae the disaccharide sucrose directly before aversive olfactory conditioning led to the formation of a protein synthesis dependent longer lasting memory. Moreover, formation of this memory component is accompanied by the suppression of lARM. We ascertained that insulin receptors (InRs) expressed in the mushroom body Kenyon cells suppresses the formation of lARM and induces the formation of a protein synthesis dependent longer lasting memory in Drosophila larvae. Given the numerical simplicity of the larval nervous system this work offers a unique prospect to study the impact of insulin signaling on the formation of protein synthesis dependent memories on a molecular level.
Collapse
Affiliation(s)
- Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hanna R. Franz
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| | - Nazlı Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Luis G. Hölscher
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| | - Ko-Eun Huh
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| | - Annekathrin Widmann
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Álvarez-Quintero N, Velando A, Kim SY. Long-Lasting Negative Effects of Learning Tasks During Early Life in the Three-Spined Stickleback. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.562404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
|
23
|
|
24
|
Liedtke J, Fromhage L. Need for speed: Short lifespan selects for increased learning ability. Sci Rep 2019; 9:15197. [PMID: 31645590 PMCID: PMC6811680 DOI: 10.1038/s41598-019-51652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
It is generally assumed that an investment into cognitive abilities and their associated cost is particularly beneficial for long-lived species, as a prolonged lifespan allows to recoup the initial investment. However, ephemeral organisms possess astonishing cognitive abilities too. Invertebrates, for example, are capable of simple associative learning, reversal learning, and planning. How can this discrepancy between theory and evidence be explained? Using a simulation, we show that short lives can actually select for an increase in learning abilities. The rationale behind this is that when learning is needed to exploit otherwise inaccessible resources, one needs to learn fast in order to utilize the resources when constrained by short lifespans. And thus, increased cognitive abilities may evolve, not despite short lifespan, but because of it.
Collapse
Affiliation(s)
- Jannis Liedtke
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, Jyvaskyla, 40014, Finland.
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, Jyvaskyla, 40014, Finland
| |
Collapse
|
25
|
Liefting M, Rohmann JL, Le Lann C, Ellers J. What are the costs of learning? Modest trade-offs and constitutive costs do not set the price of fast associative learning ability in a parasitoid wasp. Anim Cogn 2019; 22:851-861. [PMID: 31222547 PMCID: PMC6687694 DOI: 10.1007/s10071-019-01281-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
Abstract
Learning ability has been associated with energetic costs that typically become apparent through trade-offs in a wide range of developmental, physiological, and life-history traits. Costs associated with learning ability can be either constitutive or induced, depending on whether they are always incurred or only when information is actively learned and memorized. Using lines of the parasitoid wasp Nasonia vitripennis that were selected for fast associative learning ability, we assessed a range of traits that have previously been identified as potential costs associated with learning. No difference in longevity, lipid reserves, tibia length, egg load, or fecundity was observed between the selected and control lines. All of these traits are considered to potentially lead to constitutive costs in the setup of this study. A gradual reversal to baseline learning after two forms of relaxed selection was indicative of a small constitutive cost of learning ability. We also tested for a trade-off with other memory types formed at later stages, but found no evidence that the mid-term memory that was selected for caused a decrease in performance of other memory types. In conclusion, we observe only one minor effect of a constitutive cost and none of the other costs and trade-offs that are reported in the literature to be of significant value in this case. We, therefore, argue for better inclusion of ecological and economic costs in studies on costs and benefits of learning ability.
Collapse
Affiliation(s)
- Maartje Liefting
- Applied Zoology/Animal Ecology, Freie Universität Berlin, 12163, Berlin, Germany.
- Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| | - Jessica L Rohmann
- Institute of Public Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution) UMR 6553, 263 Avenue du Général Leclerc, 35000, Rennes, France
| | - Jacintha Ellers
- Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Madden JR, Langley EJG, Whiteside MA, Beardsworth CE, van Horik JO. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0297. [PMID: 30104439 PMCID: PMC6107567 DOI: 10.1098/rstb.2017.0297] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive abilities probably evolve through natural selection if they provide individuals with fitness benefits. A growing number of studies demonstrate a positive relationship between performance in psychometric tasks and (proxy) measures of fitness. We assayed the performance of 154 common pheasant (Phasianus colchicus) chicks on tests of acquisition and reversal learning, using a different set of chicks and different set of cue types (spatial location and colour) in each of two years and then followed their fates after release into the wild. Across all birds, individuals that were slow to reverse previously learned associations were more likely to survive to four months old. For heavy birds, individuals that rapidly acquired an association had improved survival to four months, whereas for light birds, slow acquirers were more likely to be alive. Slow reversers also exhibited less exploratory behaviour in assays when five weeks old. Fast acquirers visited more artificial feeders after release. In contrast to most other studies, we showed that apparently ‘poor’ cognitive performance (slow reversal speed suggesting low behavioural flexibility) correlates with fitness benefits in at least some circumstances. This correlation suggests a novel mechanism by which continued exaggeration of cognitive abilities may be constrained. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.
Collapse
Affiliation(s)
- Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
27
|
Boogert NJ, Madden JR, Morand-Ferron J, Thornton A. Measuring and understanding individual differences in cognition. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0280. [PMID: 30104425 DOI: 10.1098/rstb.2017.0280] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| | - Joah R Madden
- Department of Psychology, Washington Singer Labs, University of Exeter, Exeter EX4 4QG, UK
| | - Julie Morand-Ferron
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada, K1N 6N5
| | - Alex Thornton
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
28
|
van der Woude E, Groothuis J, Smid HM. No gains for bigger brains: Functional and neuroanatomical consequences of relative brain size in a parasitic wasp. J Evol Biol 2019; 32:694-705. [PMID: 30929291 PMCID: PMC6850633 DOI: 10.1111/jeb.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/25/2018] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Heritable genetic variation in relative brain size can underlie the relationship between brain performance and the relative size of the brain. We used bidirectional artificial selection to study the consequences of genetic variation in relative brain size on brain morphology, cognition and longevity in Nasonia vitripennis parasitoid wasps. Our results show a robust change in relative brain size after 26 generations of selection and six generations of relaxation. Total average neuropil volume of the brain was 16% larger in wasps selected for relatively large brains than in wasps selected for relatively small brains, whereas the body length of the large‐brained wasps was smaller. Furthermore, the relative volume of the antennal lobes was larger in wasps with relatively large brains. Relative brain size did not influence olfactory memory retention, whereas wasps that were selected for larger relative brain size had a shorter longevity, which was even further reduced after a learning experience. These effects of genetic variation on neuropil composition and memory retention are different from previously described effects of phenotypic plasticity in absolute brain size. In conclusion, having relatively large brains may be costly for N. vitripennis, whereas no cognitive benefits were recorded.
Collapse
Affiliation(s)
- Emma van der Woude
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
29
|
Dunlap AS, Austin MW, Figueiredo A. Components of change and the evolution of learning in theory and experiment. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Cauchoix M, Chow PKY, van Horik JO, Atance CM, Barbeau EJ, Barragan-Jason G, Bize P, Boussard A, Buechel SD, Cabirol A, Cauchard L, Claidière N, Dalesman S, Devaud JM, Didic M, Doligez B, Fagot J, Fichtel C, Henke-von der Malsburg J, Hermer E, Huber L, Huebner F, Kappeler PM, Klein S, Langbein J, Langley EJG, Lea SEG, Lihoreau M, Lovlie H, Matzel LD, Nakagawa S, Nawroth C, Oesterwind S, Sauce B, Smith EA, Sorato E, Tebbich S, Wallis LJ, Whiteside MA, Wilkinson A, Chaine AS, Morand-Ferron J. The repeatability of cognitive performance: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170281. [PMID: 30104426 PMCID: PMC6107569 DOI: 10.1098/rstb.2017.0281] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Behavioural and cognitive processes play important roles in mediating an individual's interactions with its environment. Yet, while there is a vast literature on repeatable individual differences in behaviour, relatively little is known about the repeatability of cognitive performance. To further our understanding of the evolution of cognition, we gathered 44 studies on individual performance of 25 species across six animal classes and used meta-analysis to assess whether cognitive performance is repeatable. We compared repeatability (R) in performance (1) on the same task presented at different times (temporal repeatability), and (2) on different tasks that measured the same putative cognitive ability (contextual repeatability). We also addressed whether R estimates were influenced by seven extrinsic factors (moderators): type of cognitive performance measurement, type of cognitive task, delay between tests, origin of the subjects, experimental context, taxonomic class and publication status. We found support for both temporal and contextual repeatability of cognitive performance, with mean R estimates ranging between 0.15 and 0.28. Repeatability estimates were mostly influenced by the type of cognitive performance measures and publication status. Our findings highlight the widespread occurrence of consistent inter-individual variation in cognition across a range of taxa which, like behaviour, may be associated with fitness outcomes.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- M Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du CNRS, 09200 Moulis, France
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | - P K Y Chow
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
- Graduate School of Environmental Science, Division of Biospohere Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - J O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - C M Atance
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - E J Barbeau
- Centre de recherche Cerveau et Cognition, UPS-CNRS, UMR5549, Toulouse, France
| | - G Barragan-Jason
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | - P Bize
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - A Boussard
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - S D Buechel
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - A Cabirol
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - L Cauchard
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - N Claidière
- LPC, Aix Marseille University, CNRS, Marseille, France
| | - S Dalesman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J M Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - M Didic
- AP-HM Timone & Institut de Neurosciences des Systèmes, Marseille, France
| | - B Doligez
- Department of Biometry and Evolutionary Biology, CNRS UMR 5558, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - J Fagot
- LPC, Aix Marseille University, CNRS, Marseille, France
| | - C Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - J Henke-von der Malsburg
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - E Hermer
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| | - L Huber
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - F Huebner
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - P M Kappeler
- Behavioural Ecology and Sociobiology Unit, German Primate Centre, Leibniz Institute for Primatology, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
- Leibniz Science Campus 'Primate Cognition', Göttingen, Germany
| | - S Klein
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - J Langbein
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - E J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - S E G Lea
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - M Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, Toulouse, France
| | - H Lovlie
- IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - L D Matzel
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - S Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - C Nawroth
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - S Oesterwind
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - B Sauce
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - E A Smith
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - E Sorato
- IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - S Tebbich
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - L J Wallis
- Clever Dog Lab, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - M A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - A Wilkinson
- School of Life Sciences, University of Lincoln, Lincoln, UK
| | - A S Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du CNRS, 09200 Moulis, France
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
| | | |
Collapse
|
31
|
O’Shea W, Serrano-Davies E, Quinn JL. Do personality and innovativeness influence competitive ability? An experimental test in the great tit. Behav Ecol 2017. [DOI: 10.1093/beheco/arx104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Liedtke J, Schneider JM. Social makes smart: rearing conditions affect learning and social behaviour in jumping spiders. Anim Cogn 2017; 20:1093-1106. [DOI: 10.1007/s10071-017-1125-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
|
33
|
Kishani Farahani H, Ashouri A, Goldansaz SH, Shapiro MS, Pierre JS, van Baaren J. Decrease of memory retention in a parasitic wasp: an effect of host manipulation by Wolbachia? INSECT SCIENCE 2017; 24:569-583. [PMID: 27090067 DOI: 10.1111/1744-7917.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Several factors, such as cold exposure, aging, the number of experiences and viral infection, have been shown to affect learning ability in different organisms. Wolbachia has been found worldwide as an arthropod parasite/mutualist symbiont in a wide range of species, including insects. Differing effects have been identified on physiology and behavior by Wolbachia. However, the effect of Wolbachia infection on the learning ability of their host had never previously been studied. The current study carried out to compare learning ability and memory duration in 2 strains of the parasitoid Trichogramma brassicae: 1 uninfected and 1 infected by Wolbachia. Both strains were able to associate the novel odors with the reward of an oviposition into a host egg. However, the percentage of females that responded to the experimental design and displayed an ability to learn in these conditions was higher in the uninfected strain. Memory duration was longer in uninfected wasps (23.8 and 21.4 h after conditioning with peppermint and lemon, respectively) than in infected wasps (18.9 and 16.2 h after conditioning with peppermint and lemon, respectively). Memory retention increased in response to the number of conditioning sessions in both strains, but memory retention was always shorter in the infected wasps than in the uninfected ones. Wolbachia infection may select for reduced memory retention because shorter memory induces infected wasps to disperse in new environments and avoid competition with uninfected wasps by forgetting cues related to previously visited environments, thus increasing transmission of Wolbachia in new environments.
Collapse
Affiliation(s)
- Hossein Kishani Farahani
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Seyed Hossein Goldansaz
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Martin S Shapiro
- Department of Psychology, California State University, Fresno, USA
| | - Jean-Sebastien Pierre
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Joan van Baaren
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| |
Collapse
|
34
|
Anderson CL, Kasumovic MM. Development rate rather than social environment influences cognitive performance in Australian black field crickets, Teleogryllus commodus. PeerJ 2017; 5:e3563. [PMID: 28717598 PMCID: PMC5511702 DOI: 10.7717/peerj.3563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive functioning is vital for enabling animals of all taxa to optimise their chances of survival and reproductive success. Learning and memory in particular are drivers of many evolutionary processes. In this study, we examine how developmental plasticity can affect cognitive ability by exploring the role the early social environment has on problem solving ability and learning of female black field crickets, Teleogryllus commodus. We used two learning paradigms, an analog of the Morris water maze and a novel linear maze, to examine cognitive differences between individuals reared in two acoustic treatments: silence or calling. Although there was no evidence of learning or memory, individuals that took longer to mature solved the Morris water maze more quickly. Our results suggest that increased investment into cognitive development is likely associated with increased development time during immature stages. Inconsistent individual performance and motivation during the novel linear maze task highlights the difficulties of designing ecologically relevant learning tasks within a lab setting. The role of experimental design in understanding cognitive ability and learning in more natural circumstances is discussed.
Collapse
Affiliation(s)
- Caitlin L Anderson
- Ecology & Evolution Research Centre, UNSW Australia, Sydney, NSW, Australia
| | | |
Collapse
|
35
|
Ancell H, Pires-daSilva A. Sex-specific lifespan and its evolution in nematodes. Semin Cell Dev Biol 2017; 70:122-129. [PMID: 28554570 DOI: 10.1016/j.semcdb.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Differences between sexes of the same species in lifespan and aging rate are widespread. While the proximal and evolutionary causes of aging are well researched, the factors that contribute to sex differences in these traits have been less studied. The striking diversity of nematodes provides ample opportunity to study variation in sex-specific lifespan patterns associated with shifts in life history and mating strategy. Although the plasticity of these sex differences will make it challenging to generalize from invertebrate to vertebrate systems, studies in nematodes have enabled empirical evaluation of predictions regarding the evolution of lifespan. These studies have highlighted how natural and sexual selection can generate divergent patterns of lifespan if the sexes are subject to different rates or sources of mortality, or if trade-offs between complex traits and longevity are resolved differently in each sex. Here, we integrate evidence derived mainly from nematodes that addresses the molecular and evolutionary basis of sex-specific aging and lifespan. Ultimately, we hope to generate a clearer picture of current knowledge in this area, and also highlight the limitations of our understanding.
Collapse
Affiliation(s)
- Henry Ancell
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
36
|
Liao S, Broughton S, Nässel DR. Behavioral Senescence and Aging-Related Changes in Motor Neurons and Brain Neuromodulator Levels Are Ameliorated by Lifespan-Extending Reproductive Dormancy in Drosophila. Front Cell Neurosci 2017; 11:111. [PMID: 28503133 PMCID: PMC5408790 DOI: 10.3389/fncel.2017.00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
The lifespan of Drosophilamelanogaster can be extended substantially by inducing reproductive dormancy (also known as diapause) by lowered temperature and short days. This increase of longevity is accompanied by lowered metabolism and increased stress tolerance. We ask here whether behavioral senescence is ameliorated during adult dormancy. To study this we kept flies for seven or more weeks in normal rearing conditions or in diapause conditions and compared to 1-week-old flies in different behavioral assays of sleep, negative geotaxis and exploratory walking. We found that the senescence of geotaxis and locomotor behavior seen under normal rearing conditions was negligible in flies kept in dormancy. The normal senescence of rhythmic activity and sleep patterns during the daytime was also reduced by adult dormancy. Investigating the morphology of specific neuromuscular junctions (NMJs), we found that changes normally seen with aging do not take place in dormant flies. To monitor age-associated changes in neuronal circuits regulating activity rhythms, sleep and walking behavior we applied antisera to tyrosine hydroxylase (TH), serotonin and several neuropeptides to examine changes in expression levels and neuron morphology. In most neuron types the levels of stored neuromodulators decreased during normal aging, but not in diapause treated flies. No signs of neurodegeneration were seen in either condition. Our data suggest that age-related changes in motor neurons could be the cause of part of the behavioral senescence and that this is ameliorated by reproductive diapause. Earlier studies established a link between age-associated decreases in neuromodulator levels and behavioral decline that could be rescued by overexpression of neuromodulator. Thus, it is likely that the retained levels of neuromodulators in dormant flies alleviate behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster UniversityLancaster, UK
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
37
|
Santos M, Sapage M, Matos M, Varela SAM. Mate-choice copying: A fitness-enhancing behavior that evolves by indirect selection. Evolution 2017; 71:1456-1464. [DOI: 10.1111/evo.13235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Mauro Santos
- Departament de Genètica i de Microbiologia; Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Manuel Sapage
- cE3c-Centre for Ecology; Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa; Campo Grande 1749-016 Lisboa Portugal
| | - Margarida Matos
- cE3c-Centre for Ecology; Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa; Campo Grande 1749-016 Lisboa Portugal
| | - Susana A. M. Varela
- cE3c-Centre for Ecology; Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa; Campo Grande 1749-016 Lisboa Portugal
| |
Collapse
|
38
|
Evans LJ, Smith KE, Raine NE. Fast learning in free-foraging bumble bees is negatively correlated with lifetime resource collection. Sci Rep 2017; 7:496. [PMID: 28356567 PMCID: PMC5428240 DOI: 10.1038/s41598-017-00389-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 11/09/2022] Open
Abstract
Despite widespread interest in the potential adaptive value of individual differences in cognition, few studies have attempted to address the question of how variation in learning and memory impacts their performance in natural environments. Using a novel split-colony experimental design we evaluated visual learning performance of foraging naïve bumble bees (Bombus terrestris) in an ecologically relevant associative learning task under controlled laboratory conditions, before monitoring the lifetime foraging performance of the same individual bees in the field. We found appreciable variation among the 85 workers tested in both their learning and foraging performance, which was not predicted by colony membership. However, rather than finding that foragers benefited from enhanced learning performance, we found that fast and slow learners collected food at comparable rates and completed a similar number of foraging bouts per day in the field. Furthermore, bees with better learning abilities foraged for fewer days; suggesting a cost of enhanced learning performance in the wild. As a result, slower learning individuals collected more resources for their colony over the course of their foraging career. These results demonstrate that enhanced cognitive traits are not necessarily beneficial to the foraging performance of individuals or colonies in all environments.
Collapse
Affiliation(s)
- Lisa J Evans
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
- The New Zealand Institute for Plant and Food Research, Hamilton, 3240, New Zealand.
| | - Karen E Smith
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Nigel E Raine
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
39
|
|
40
|
Zwoinska MK, Maklakov AA, Kawecki TJ, Hollis B. Experimental evolution of slowed cognitive aging in Drosophila melanogaster. Evolution 2016; 71:662-670. [PMID: 28000915 DOI: 10.1111/evo.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022]
Abstract
Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories.
Collapse
Affiliation(s)
- Martyna K Zwoinska
- Department of Animal Ecology, Uppsala University, 752 36, Uppsala, Sweden.,Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland
| | - Alexei A Maklakov
- Department of Animal Ecology, Uppsala University, 752 36, Uppsala, Sweden
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland
| | - Brian Hollis
- Department of Ecology and Evolution, University of Lausanne, CH 1015, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
41
|
|
42
|
Vágási CI, Vincze O, Pătraş L, Osváth G, Marton A, Bărbos L, Sol D, Pap PL. Large-brained birds suffer less oxidative damage. J Evol Biol 2016; 29:1968-1976. [DOI: 10.1111/jeb.12920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023]
Affiliation(s)
- C. I. Vágási
- MTA-DE “Lendület” Behavioural Ecology Research Group; Department of Evolutionary Zoology; University of Debrecen; Debrecen Hungary
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
| | - O. Vincze
- MTA-DE “Lendület” Behavioural Ecology Research Group; Department of Evolutionary Zoology; University of Debrecen; Debrecen Hungary
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
| | - L. Pătraş
- Department of Molecular Biology and Biotechnology; Babeş-Bolyai University; Cluj Napoca Romania
| | - G. Osváth
- Museum of Zoology; Babeş-Bolyai University; Cluj Napoca Romania
| | - A. Marton
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
- ’Milvus Group’ Bird and Nature Protection Association; Tîrgu Mureș Romania
| | - L. Bărbos
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
- ’Milvus Group’ Bird and Nature Protection Association; Tîrgu Mureș Romania
| | - D. Sol
- CREAF; Cerdanyola del Vallès Spain
- CSIC; Cerdanyola del Vallès Spain
| | - P. L. Pap
- MTA-DE “Lendület” Behavioural Ecology Research Group; Department of Evolutionary Zoology; University of Debrecen; Debrecen Hungary
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
| |
Collapse
|
43
|
Christiansen IC, Szin S, Schausberger P. Benefit-cost Trade-offs of Early Learning in Foraging Predatory Mites Amblyseius Swirskii. Sci Rep 2016; 6:23571. [PMID: 27006149 PMCID: PMC4804281 DOI: 10.1038/srep23571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/09/2016] [Indexed: 01/13/2023] Open
Abstract
Learning is changed behavior following experience, and ubiquitous in animals including plant-inhabiting predatory mites (Phytoseiidae). Learning has many benefits but also incurs costs, which are only poorly understood. Here, we addressed learning, especially its costs, in the generalist predatory mite Amblyseius swirskii, a biocontrol agent of several herbivores, which can also survive on pollen. The goals of our research were (1) to scrutinize if A. swirskii is able to learn during early life in foraging contexts and, if so, (2) to determine the costs of early learning. In the experiments, we used one difficult-to-grasp prey, i.e., thrips, and one easy-to-grasp prey, i.e., spider mites. Our experiments show that A. swirskii is able to learn during early life. Adult predators attacked prey experienced early in life (i.e., matching prey) more quickly than they attacked unknown (i.e., non-matching) prey. Furthermore, we observed both fitness benefits and operating (physiological) costs of early learning. Predators receiving the matching prey produced the most eggs, whereas predators receiving the non-matching prey produced the least. Thrips-experienced predators needed the longest for juvenile development. Our findings may be used to enhance A. swirskii's efficacy in biological control, by priming young predators on a specific prey early in life.
Collapse
Affiliation(s)
- Inga C. Christiansen
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Peter Jordanstrasse 82, 1190 Vienna, Austria
| | - Sandra Szin
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Peter Jordanstrasse 82, 1190 Vienna, Austria
| | - Peter Schausberger
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Peter Jordanstrasse 82, 1190 Vienna, Austria
| |
Collapse
|
44
|
Zwoinska MK, Lind MI, Cortazar-Chinarro M, Ramsden M, Maklakov AA. Selection on learning performance results in the correlated evolution of sexual dimorphism in life history. Evolution 2016; 70:342-57. [DOI: 10.1111/evo.12862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Martyna K. Zwoinska
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Martin I. Lind
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Maria Cortazar-Chinarro
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Mark Ramsden
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Alexei A. Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
45
|
Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. ACTA ACUST UNITED AC 2015; 22:426-37. [PMID: 26286653 PMCID: PMC4561405 DOI: 10.1101/lm.038877.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation.
Collapse
Affiliation(s)
- Harini C Krishnan
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
46
|
The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One 2015; 10:e0125312. [PMID: 26020640 PMCID: PMC4447345 DOI: 10.1371/journal.pone.0125312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/16/2015] [Indexed: 01/12/2023] Open
Abstract
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan.
Collapse
|
47
|
White GE, Brown C. Microhabitat use affects brain size and structure in intertidal gobies. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:107-16. [PMID: 25896449 DOI: 10.1159/000380875] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
The ecological cognition hypothesis poses that the brains and behaviours of individuals are largely shaped by the environments in which they live and the associated challenges they must overcome during their lives. Here we examine the effect of environmental complexity on relative brain size in 4 species of intertidal gobies from differing habitats. Two species were rock pool specialists that lived on spatially complex rocky shores, while the remainder lived on dynamic, but structurally simple, sandy shores. We found that rock pool-dwelling species had relatively larger brains and telencephalons in particular, while sand-dwelling species had a larger optic tectum and hypothalamus. In general, it appears that various fish species trade off neural investment in specific brain lobes depending on the environment in which they live. Our previous research suggests that rock pool species have greater spatial learning abilities, enabling them to navigate their spatially complex environment, which may account for their enlarged telencephalon, while sand-dwelling species likely have a reduced need for spatial learning, due to their spatially simple habitat, and a greater need for visual acuity. The dorsal medulla and cerebellum size was unaffected by the habitat in which the fish lived, but there were differences between species indicative of species-specific trade-offs in neural investment.
Collapse
Affiliation(s)
- Gemma E White
- Department of Biological Sciences, Macquarie University, North Ryde, N.S.W., Australia
| | | |
Collapse
|
48
|
Morand-Ferron J, Cole EF, Quinn JL. Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol Rev Camb Philos Soc 2015; 91:367-89. [PMID: 25631282 DOI: 10.1111/brv.12174] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Cognition is defined as the processes by which animals collect, retain and use information from their environment to guide their behaviour. Thus cognition is essential in a wide range of behaviours, including foraging, avoiding predators and mating. Despite this pivotal role, the evolutionary processes shaping variation in cognitive performance among individuals in wild populations remain very poorly understood. Selection experiments in captivity suggest that cognitive traits can have substantial heritability and can undergo rapid evolution. However only a handful of studies have attempted to explore how cognition influences life-history variation and fitness in the wild, and direct evidence for the action of natural or sexual selection on cognition is still lacking, reasons for which are diverse. Here we review the current literature with a view to: (i) highlighting the key practical and conceptual challenges faced by the field; (ii) describing how to define and measure cognitive traits in natural populations, and suggesting which species, populations and cognitive traits might be examined to greatest effect; emphasis is placed on selecting traits that are linked to functional behaviour; (iii) discussing how to deal with confounding factors such as personality and motivation in field as well as captive studies; (iv) describing how to measure and interpret relationships between cognitive performance, functional behaviour and fitness, offering some suggestions as to when and what kind of selection might be predicted; and (v) showing how an evolutionary ecological framework, more generally, along with innovative technologies has the potential to revolutionise the study of cognition in the wild. We conclude that the evolutionary ecology of cognition in wild populations is a rapidly expanding interdisciplinary field providing many opportunities for advancing the understanding of how cognitive abilities have evolved.
Collapse
Affiliation(s)
- Julie Morand-Ferron
- Department of Biology, University of Ottawa, 30 Marie Curie, Gendron Hall, room 160, Ottawa, Ontario K1N 6N5, Canada
| | - Ella F Cole
- Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K
| | - John L Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| |
Collapse
|
49
|
Nepoux V, Babin A, Haag C, Kawecki TJ, Le Rouzic A. Quantitative genetics of learning ability and resistance to stress in Drosophila melanogaster. Ecol Evol 2015; 5:543-56. [PMID: 25691979 PMCID: PMC4328760 DOI: 10.1002/ece3.1379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/12/2022] Open
Abstract
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg-to-adult survival and developmental rate on a low-quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low-quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits.
Collapse
Affiliation(s)
- Virginie Nepoux
- Department of Ecology and Evolution, University of Lausanne Lausanne, CH-1015, Switzerland
| | - Aurélie Babin
- Department of Ecology and Evolution, University of Lausanne Lausanne, CH-1015, Switzerland
| | - Christoph Haag
- Centre d'Écologie Fonctionnelle et Évolutive, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHA Montpellier 5, FR-34293, France
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne Lausanne, CH-1015, Switzerland
| | - Arnaud Le Rouzic
- Laboratoire Evolution Génome et Spéciation, UPR 9034, CNRS Gif-sur-Yvette, FR-91198, France
| |
Collapse
|
50
|
Vinauger C, Lazzari CR. Circadian modulation of learning abilities in a disease vector insect, Rhodnius prolixus. J Exp Biol 2015; 218:3110-7. [DOI: 10.1242/jeb.119057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022]
Abstract
Despite the drastic consequences it may have on the transmission of parasites, the ability of disease vectors to learn and retain information have just begun to be characterized. The kissing-bug Rhodnius prolixus, vectors of the Chagas disease, is an excellent model, particularly because conditioning the proboscis extension response (PER) constitutes a valuable paradigm to study their cognitive abilities under carefully controlled conditions. Another characteristic of these bugs is the temporal organisation of their different activities in a bimodal endogenous daily rhythm. This offers the opportunity to address the implication of the circadian system in learning and memory. Using aversive conditioning of the PER, we have tested whether the ability of kissing-bugs to learn and remember information varies during the day. We found that bugs perform well during the night, but not during the day: their ability to acquire information -but not that to retrieve it- is modulated in time. When keeping bugs under constant conditions to analyse the origin of this rhythm, the rhythm continues to freerun, showing its endogenous and truly circadian nature. These results are the first ones to evince the implication of the circadian system in the learning abilities of disease vectors and one of the few in insects in general.
Collapse
Affiliation(s)
- Clément Vinauger
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université François Rabelais, Tours, France
| | - Claudio R. Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261 - Université François Rabelais, Tours, France
| |
Collapse
|