1
|
Meneses CG, Pitogo KME, Supsup CE, Brown RM. Philippine herpetology (Amphibia, Reptilia), 20 years on: two decades of progress towards an increasingly collaborative, equitable, and inclusive approach to the study of the archipelago's amphibians and reptiles. Zookeys 2024; 1190:213-257. [PMID: 38327266 PMCID: PMC10848817 DOI: 10.3897/zookeys.1190.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
A first review of the history, status, and prospects for Philippine herpetology conducted more than two decades ago (2002) summarized the diverse topics studied and highlighted the development and achievements in research up to the year 2000. This study revisits and re-assesses what Philippine herpetology has accomplished, both as a discipline and a community, during the last two decades (2002-2022). A total of 423 herpetological publications was collated, revealing a substantial increase in annual publications, rising from approximately four per year during 2002-2008 to around 28 per year in 2009-2022. Half of the published studies focused on squamate reptiles (lizards 30.5%, snakes 21%) and 28.4% on amphibians, 5.9% on turtles, and 2.6% on crocodiles. The remaining 11.6% of studies focused simultaneously on multiple taxa (i.e., faunal inventories). Diversity and distribution (35.2%) and ecological (26.5%) studies remained popular, while studies on taxonomy (14.9%), phylogenetics and biogeography (11.8%), and conservation (11.6%) all increased. However, geographical gaps persist urging immediate surveys in many understudied regions of the country. Finally, we found a balanced representation between Filipino and foreign first authors (1.0:1.1), yet a substantial gender gap exists between male and female first authors (7.1:1.0). Nonetheless, the steep increase in publications and the diversity of people engaged in Philippine herpetology is a remarkable positive finding compared to the 20 years preceding the last review (1980-2000). Our hope is that the next decades will bring increasingly equitable, internationally collaborative, and broadly inclusive engagement in the study of amphibians and reptiles in the Philippines.
Collapse
Affiliation(s)
- Camila G. Meneses
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USAUniversity of KansasLawrenceUnited States of America
| | - Kier Mitchel E. Pitogo
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USAUniversity of KansasLawrenceUnited States of America
| | - Christian E. Supsup
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USAUniversity of KansasLawrenceUnited States of America
| | - Rafe M. Brown
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USAUniversity of KansasLawrenceUnited States of America
| |
Collapse
|
2
|
Kohlsdorf T. Reversibility of digit loss revisited: Limb diversification in Bachia lizards (gymnophthalmidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:496-508. [PMID: 33544406 DOI: 10.1002/jez.b.23024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023]
Abstract
Strict interpretations of the Dollo's Law lead to postulation that trait loss is irreversible and organisms never recover ancestral phenotypes. Dollo, however, admitted the possibility of reversals in trait loss when predicted differences between reversed (derived) and ancestral forms. Phenotypic signatures from reversals are expected, as the historical context of a reversal in trait loss differs from the initial setting where the trait originally evolved. This article combines morphological and molecular information for Bachia scolecoides to discuss phenotypic and genetic patterns established during processes that reversed digit loss in Gymnophthalmidae (also termed microteiid lizards). Results suggest that pathways leading to the derived tetradactyl state of B. scolecoides comprise particularities in their origin and associated processes. Autopodial bones of B. scolecoides lack digit identity, and muscle anatomy is very similar between manus and pes. Gymnophthalmidae sequence patterns in the limb-specific sonic hedgehog enhancer (ZRS) suggest that regulation of shh expression did not degenerate in Bachia, given the prediction of similar motifs despite mutations specific to Bachia. Persistence of developmental mechanisms might explain intermittent character expression leading to reversals of digit loss, as ZRS signaling pathways remain active during the development of at least one pair of appendices in Bachia, especially if some precursors persisted at early stages. Patterns of ZRS sequences suggest that irreversibility of trait loss might be lineage-specific (restricted to Gymnophthalmini) and contingent to the type of signature established. These results provide insights regarding possible mechanisms that may allow reactivation of developmental programs in specific regions of the embryo.
Collapse
Affiliation(s)
- Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Coordinating tiny limbs and long bodies: Geometric mechanics of lizard terrestrial swimming. Proc Natl Acad Sci U S A 2022; 119:e2118456119. [PMID: 35759665 PMCID: PMC9271186 DOI: 10.1073/pnas.2118456119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although typically possessing four limbs and short bodies, lizards have evolved diverse morphologies, including elongate trunks with tiny limbs. Such forms are hypothesized to aid locomotion in cluttered/fossorial environments but propulsion mechanisms (e.g., the use of body and/or limbs to interact with substrates) and potential body/limb coordination remain unstudied. Here, we use biological experiments, a geometric theory of locomotion, and robophysical models to investigate body-limb coordination in diverse lizards. Locomotor field studies in short-limbed, elongate lizards (Brachymeles and Lerista) and laboratory studies of fully limbed lizards (Uma scoparia and Sceloporus olivaceus) and a snake (Chionactis occipitalis) reveal that body-wave dynamics can be described by a combination of standing and traveling waves; the ratio of the amplitudes of these components is inversely related to the degree of limb reduction and body elongation. The geometric theory (which replaces laborious calculation with diagrams) helps explain our observations, predicting that the advantage of traveling-wave body undulations (compared with a standing wave) emerges when the dominant thrust-generation mechanism arises from the body rather than the limbs and reveals that such soil-dwelling lizards propel via "terrestrial swimming" like sand-swimming lizards and snakes. We test our hypothesis by inducing the use of traveling waves in stereotyped lizards via modulating the ground-penetration resistance. Study of a limbed/undulatory robophysical model demonstrates that a traveling wave is beneficial when propulsion is generated by body-environment interaction. Our models could be valuable in understanding functional constraints on the evolutionary processes of elongation and limb reduction as well as advancing robot designs.
Collapse
|
4
|
Slavenko A, Dror L, Camaiti M, Farquhar JE, Shea GM, Chapple DG, Meiri S. Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world's second-largest family of terrestrial vertebrates. Evolution 2022; 76:1195-1208. [PMID: 35355258 PMCID: PMC9322454 DOI: 10.1111/evo.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism's morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns.
Collapse
Affiliation(s)
- Alex Slavenko
- School of BiosciencesUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| | - Liat Dror
- School of ZoologyTel Aviv UniversityTel AvivIsrael
| | - Marco Camaiti
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Jules E. Farquhar
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Glenn M. Shea
- Sydney School of Veterinary Science B01University of SydneyNew South WalesAustralia,Australian Museum Research InstituteThe Australian MuseumSydneyNew South WalesAustralia
| | - David G. Chapple
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Shai Meiri
- School of ZoologyTel Aviv UniversityTel AvivIsrael,The Steinhardt Museum of Natural HistoryTel AvivIsrael
| |
Collapse
|
5
|
Benkovský N, Moravec J, Gvoždíková Javůrková V, Šifrová H, Gvoždík V, Jandzik D. Phenotypic differentiation of the slow worm lizards (Squamata: Anguis) across their contact zone in Central Europe. PeerJ 2022; 9:e12482. [PMID: 35036115 PMCID: PMC8706331 DOI: 10.7717/peerj.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Background The application of molecular-phylogenetic approaches to taxonomy has had a dramatic effect on our understanding of the diversity of reptiles. These approaches have allowed researchers to reveal previously hidden lineages as well as taxonomic overestimation in morphologically plastic taxa. Slow worms, legless lizards of the genus Anguis (Squamata: Anguidae), were previously considered to comprise either one or two species, and morphology-based intraspecific taxonomy of Anguis fragilis remained controversial throughout the 20th century. After the discovery of deep genetic divergences within the genus, its taxonomy was reconsidered, and as a result, five extant species have been recognized. In order to better understand the patterns of their interspecific differentiation, here we studied phenotypic differences between the two most widespread of them—A. fragilis and A. colchica, and their putative hybrids across the contact zone of both species in Central Europe. Methods We used multivariate and univariate statistics and analyzed ten metric, eleven meristic, and six categorical phenotypic variables in material comprising a total of 326 individuals. We also genotyped individuals from the contact zone for one mitochondrial and two nuclear DNA fragments in order to delineate the distribution of individuals of hybrid and non-hybrid origin. The clines in morphological traits were studied using HZAR. Results We show that the two species are morphologically differentiated. Anguis fragilis has a less robust head, fewer scales covering the body, lower frequency of the external ear opening presence, lower frequency of separated prefrontal scales, higher frequency of prefrontal scales in contact with each other, and body coloration more similar to the juvenile coloration than A. colchica. Slow worms from the contact/hybrid zone are characterized by an intermediate morphology, with more similarities to A. fragilis than to A. colchica. Discussion None of the analyzed characters alone proved to be fully diagnostic, although more than 90% of all individuals could be successfully assigned to one or another species based on numbers of scales around the body. Our results indicate concordant, coincident, and steep clines in character states change. We present several hypotheses on the origin and evolutionary maintenance of the morphological divergence between both species and suggest that different evolutionary histories of the taxa rather than recently acting selection explain the observed morphological variation.
Collapse
Affiliation(s)
- Norbert Benkovský
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jiří Moravec
- Department of Zoology, National Museum, Prague, Czech Republic
| | | | - Helena Šifrová
- Department of Zoology, National Museum, Prague, Czech Republic
| | - Václav Gvoždík
- Department of Zoology, National Museum, Prague, Czech Republic.,Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - David Jandzik
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Smith‐Paredes D, Griffith O, Fabbri M, Yohe L, Blackburn DG, Siler CD, Bhullar BS, Wagner GP. Hidden limbs in the "limbless skink" Brachymeles lukbani: Developmental observations. J Anat 2021; 239:693-703. [PMID: 33870497 PMCID: PMC8349411 DOI: 10.1111/joa.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g., digit reduction in Chalcides and limb reduction in Scelotes). The genus Brachymeles, a Southeast Asian clade of skinks, includes species with a range of limb morphologies, from pentadactyl to functionally and structurally limbless species. Adults of the small, snake-like species Brachymeles lukbani show no sign of external limbs in the adult except for small depressions where they might be expected to occur. Here, we show that embryos of B. lukbani in early stages of development, on the other hand, show a truncated but well-developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development proceeds, the limb's small size persists even while the embryo elongates. These observations are made based on external morphology. We used florescent whole-mount immunofluorescence to visualize the morphology of skeletal elements and muscles within the embryonic limb of B. lukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with these structures are dorsal and ventral muscle masses as those found in the embryos of other limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest of the body, with well-developed skeletal elements and their associated muscles. In later stages of development, we find the small limb is still present under the skin, but there are few indications of its presence, save for the morphology of the scale covering it. By use of CT scanning, we find that the adult morphology consists of a well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-developed limb musculature connected to the pectoral girdle. These muscles form in association with a developing limb during embryonic stages, a hint that "limbless" lizards that possess these muscles may have or have had at least transient developing limbs, as we find in B. lukbani. Overall, this newly observed pattern of ontogenetic reduction leads to an externally limbless adult in which a limb rudiment is hidden and covered under the trunk skin, a situation called cryptomelia. The results of this work add to our growing understanding of clade-specific patterns of limb reduction and the convergent evolution of limbless phenotypes through different developmental processes.
Collapse
Affiliation(s)
- Daniel Smith‐Paredes
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Oliver Griffith
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Matteo Fabbri
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Laurel Yohe
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Daniel G. Blackburn
- Department of Biology, and Electron Microscopy CenterTrinity CollegeHartfordCTUSA
| | - Cameron D. Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural HistoryUniversity of OklahomaNormanOKUSA
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary Science and Peabody Museum of Natural HistoryYale UniversityNew HavenCTUSA
| | - Günter P. Wagner
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
7
|
Stepanova N, Bauer AM. Phylogenetic history influences convergence for a specialized ecology: comparative skull morphology of African burrowing skinks (Squamata; Scincidae). BMC Ecol Evol 2021; 21:86. [PMID: 33993867 PMCID: PMC8127277 DOI: 10.1186/s12862-021-01821-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Skulls serve many functions and as a result, are subject to many different evolutionary pressures. In squamates, many fossorial species occupy a unique region of skull morphospace, showing convergence across families, due to modifications related to head-first burrowing. As different substrates have variable physical properties, particular skull shapes may offer selective advantages in certain substrates. Despite this, studies of variation within burrowers have been limited and are typically focused on a single origin of fossoriality. We focused on seven skink genera (Acontias, Typhlosaurus, Scelotes, Sepsina, Feylinia, Typhlacontias, and Mochlus; 39 sp.) from southern Africa, encompassing at least three independent evolutions of semi-fossoriality/fossoriality. We used microCT scans and geometric morphometrics to test how cranial and mandibular shape were influenced by phylogenetic history, size, and ecology. We also qualitatively described the skulls of four species to look at variation across phylogenetic and functional levels, and assess the degree of convergence. Results We found a strong effect of phylogenetic history on cranial and mandibular shape, with size and substrate playing secondary roles. There was a clear gradient in morphospace from less specialized to more specialized burrowers and burrowers in sand were significantly different from those in other substrates. We also created an anatomical atlas for four species with each element described in isolation. Every bone showed some variation in shape and relative scaling of features, with the skull roofing bones, septomaxilla, vomer, and palatine showing the most variation. We showed how broad-scale convergence in traits related to fossoriality can be the result of different anatomical changes. Conclusions Our study used geometric morphometrics and comparative anatomy to examine how skull morphology changes for a highly specialized and demanding lifestyle. Although there was broad convergence in both shape and qualitative traits, phylogenetic history played a large role and much of this convergence was produced by different anatomical changes, implying different developmental pathways or lineage-specific constraints. Even within a single family, adaptation for a specialized ecology does not follow a singular deterministic path. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01821-w.
Collapse
Affiliation(s)
- Natasha Stepanova
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA. .,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| |
Collapse
|
8
|
Camaiti M, Evans AR, Hipsley CA, Chapple DG. A farewell to arms and legs: a review of limb reduction in squamates. Biol Rev Camb Philos Soc 2021; 96:1035-1050. [PMID: 33538028 DOI: 10.1111/brv.12690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
Abstract
Elongated snake-like bodies associated with limb reduction have evolved multiple times throughout vertebrate history. Limb-reduced squamates (lizards and snakes) account for the vast majority of these morphological transformations, and thus have great potential for revealing macroevolutionary transitions and modes of body-shape transformation. Here we present a comprehensive review on limb reduction, in which we examine and discuss research on these dramatic morphological transitions. Historically, there have been several approaches to the study of squamate limb reduction: (i) definitions of general anatomical principles of snake-like body shapes, expressed as varying relationships between body parts and morphometric measurements; (ii) framing of limb reduction from an evolutionary perspective using morphological comparisons; (iii) defining developmental mechanisms involved in the ontogeny of limb-reduced forms, and their genetic basis; (iv) reconstructions of the evolutionary history of limb-reduced lineages using phylogenetic comparative methods; (v) studies of functional and biomechanical aspects of limb-reduced body shapes; and (vi) studies of ecological and biogeographical correlates of limb reduction. For each of these approaches, we highlight their importance in advancing our understanding, as well as their weaknesses and limitations. Lastly, we provide suggestions to stimulate further studies, in which we underscore the necessity of widening the scope of analyses, and of bringing together different perspectives in order to understand better these morphological transitions and their evolution. In particular, we emphasise the importance of investigating and comparing the internal morphology of limb-reduced lizards in contrast to external morphology, which will be the first step in gaining a deeper insight into body-shape variation.
Collapse
Affiliation(s)
- Marco Camaiti
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Alistair R Evans
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Sciences, Museums Victoria, 11 Nicholson St, Carlton, Melbourne, VIC, 3053, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
9
|
Bergmann PJ, Morinaga G, Freitas ES, Irschick DJ, Wagner GP, Siler CD. Locomotion and palaeoclimate explain the re-evolution of quadrupedal body form in Brachymeles lizards. Proc Biol Sci 2020; 287:20201994. [PMID: 33171093 DOI: 10.1098/rspb.2020.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evolutionary reversals, including re-evolution of lost structures, are commonly found in phylogenetic studies. However, we lack an understanding of how these reversals happen mechanistically. A snake-like body form has evolved many times in vertebrates, and occasionally a quadrupedal form has re-evolved, including in Brachymeles lizards. We use body form and locomotion data for species ranging from snake-like to quadrupedal to address how a quadrupedal form could re-evolve. We show that large, quadrupedal species are faster at burying and surface locomotion than snake-like species, indicating a lack of expected performance trade-off between these modes of locomotion. Species with limbs use them while burying, suggesting that limbs are useful for burying in wet, packed substrates. Palaeoclimatological data suggest that Brachymeles originally evolved a snake-like form under a drier climate probably with looser soil in which it was easier to dig. The quadrupedal clade evolved as the climate became humid, where limbs and large size facilitated fossorial locomotion in packed soils.
Collapse
Affiliation(s)
- Philip J Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Gen Morinaga
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Elyse S Freitas
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Ave., Norman, OK 73072, USA
| | - Duncan J Irschick
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Cameron D Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Ave., Norman, OK 73072, USA
| |
Collapse
|
10
|
DeLorenzo L, Vander Linden A, Bergmann PJ, Wagner GP, Siler CD, Irschick DJ. Using 3D-digital photogrammetry to examine scaling of the body axis in burrowing skinks. J Morphol 2020; 281:1382-1390. [PMID: 32815588 DOI: 10.1002/jmor.21253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022]
Abstract
Three-dimensional (3D) modeling techniques have been increasingly utilized across disciplines for the visualization and analysis of complex structures. We employ 3D-digital photogrammetry for understanding the scaling of the body axis of 12 species of scincid lizards in the genus Brachymeles. These skinks represent a diverse radiation which shows tremendous variation in body size and degree of axial elongation. Because of the complex nature of the body axis, 3D-methods are important for understanding how the body axis evolves. 3D-digital photogrammetry presents a flexible, inexpensive, and portable system for the reconstruction of biological forms. As body size increased among species, the cross-sectional area and circumference of the head and other portions of the body axis increased isometrically, which indicates that species of differing sizes possess proportionally similar head and body shapes. These results suggest that there are no substantial head and body shape changes with body size among the sampled species, but further comparative studies with larger sample sizes and functional studies of size and morphology effects on burrowing or above-ground locomotion are needed.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Abby Vander Linden
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Philip J Bergmann
- Department of Biology, Clark University, Worcester, Massachusetts, USA
| | - Gunter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Duncan J Irschick
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Bergmann PJ, Mann SDW, Morinaga G, Freitas ES, Siler CD. Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles. Integr Comp Biol 2020; 60:190-201. [DOI: 10.1093/icb/icaa015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics. We compared each elongate species to closely related quadrupedal species and determined whether the direction of vertebral or locomotor change matched in each case. The five lineages examined are obscure species from remote locations, providing a valuable glimpse into their biology. They are the skink lizards Brachymeles lukbani, Lerista praepedita, and Isopachys anguinoides, the basal squamate Dibamus novaeguineae, and the basal snake Malayotyphlops cf. ruficaudus. Our results support convergence among these species in the number of trunk and caudal vertebrae, but not vertebral shape. We also find that the elongate species are relatively slower than their limbed counterparts and move with lower frequency and higher amplitude body undulations, with the exception of Isopachys. This is among the first evidence of locomotor convergence across distantly related, elongate species.
Collapse
Affiliation(s)
| | - Sara D W Mann
- Department of Biology, Clark University, Worcester, MA, USA
| | - Gen Morinaga
- Department of Biology, Clark University, Worcester, MA, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Elyse S Freitas
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA
| | - Cameron D Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
12
|
Morinaga G, Bergmann PJ. Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards. Proc Biol Sci 2020; 287:20200192. [PMID: 32183623 DOI: 10.1098/rspb.2020.0192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dramatic evolutionary transitions in morphology are often assumed to be adaptive in a new habitat. However, these assumptions are rarely tested because such tests require intermediate forms, which are often extinct. In vertebrates, the evolution of an elongate, limbless body is generally hypothesized to facilitate locomotion in fossorial and/or cluttered habitats. However, these hypotheses remain untested because few studies examine the locomotion of species ranging in body form from tetrapod to snake-like. Here, we address these functional hypotheses by testing whether trade-offs exist between locomotion in surface, fossorial and cluttered habitats in Australian Lerista lizards, which include multiple intermediate forms. We found that snake-like species penetrated sand substrates faster than more lizard-like species, representing the first direct support of the adaptation to fossoriality hypothesis. By contrast, body form did not affect surface locomotion or locomotion through cluttered leaf litter. Furthermore, all species with hindlimbs used them during both fossorial and surface locomotion. We found no evidence of a trade-off between fossorial and surface locomotion. This may be either because Lerista employed kinematic strategies that took advantage of both axial- and limb-based propulsion. This may have led to the differential occupation of their habitat, facilitating diversification of intermediate forms.
Collapse
Affiliation(s)
- Gen Morinaga
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | | |
Collapse
|
13
|
|
14
|
Camaiti M, Villa A, Wencker LCM, Bauer AM, Stanley EL, Delfino M. Descriptive osteology and patterns of limb loss of the European limbless skink Ophiomorus punctatissimus (Squamata, Scincidae). J Anat 2019; 235:313-345. [PMID: 31125128 DOI: 10.1111/joa.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 11/26/2022] Open
Abstract
The limbless skink Ophiomorus punctatissimus is a cryptozoic species found in the Peloponnese region of Greece and on the Greek island Kythira. To provide the first thorough description of the cranial and postcranial osteology of this species, both disarticulated specimens and X-ray computed tomographies of wet-preserved specimens were examined in detail. Resulting from this, an anatomical atlas of this species is provided. Two separate considerations, an evolutionary and an ecomorphological one, are made based on the observed adaptations related to limb loss in this skink. The structure of the girdles shows a particular pattern of reduction: whereas the pelvic girdle is mostly vestigial, the pectoral girdle is instead well developed, with all the elements typical of limbed lizards except for the actual limbs. This led us to hypothesize an asynchronous pattern of limb reduction during the evolution of this species, in which the hindlimbs regressed earlier than the forelimbs. Furthermore, considerations based on overall body morphology, osteology and the structure of the inner ear led to the recognition of this species as a burrowing ecomorph. In contrast to the morphology normally displayed in this ecomorph, O. punctatissimus is characterized by the retention of autotomic vertebrae in its tail. This is consistent with the habitats in which it lives, where active burrowing would be difficult because of the hard, rocky terrain. Instead, this skink hides among rocks on the surface and is, therefore, subject to greater predation risk.
Collapse
Affiliation(s)
- Marco Camaiti
- Dipartimento di Scienze della Terra, Università di Torino, Turin, Italy.,School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Andrea Villa
- Dipartimento di Scienze della Terra, Università di Torino, Turin, Italy.,Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| | | | - Aaron M Bauer
- Department of Biology, Villanova University, Villanova, PA, USA
| | - Edward L Stanley
- Department of Herpetology, Florida Museum of Natural History, Gainesville, FL, USA
| | - Massimo Delfino
- Dipartimento di Scienze della Terra, Università di Torino, Turin, Italy.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Ledbetter NM, Bonett RM. Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly. J Evol Biol 2019; 32:642-652. [PMID: 30891861 DOI: 10.1111/jeb.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 01/03/2023]
Abstract
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.
Collapse
Affiliation(s)
| | - Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
16
|
Bonett RM, Phillips JG, Ledbetter NM, Martin SD, Lehman L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc Biol Sci 2019; 285:rspb.2017.2304. [PMID: 29343600 DOI: 10.1098/rspb.2017.2304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023] Open
Abstract
Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - John G Phillips
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | | | - Samuel D Martin
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Luke Lehman
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
17
|
Bergmann PJ, Morinaga G. The convergent evolution of snake‐like forms by divergent evolutionary pathways in squamate reptiles*. Evolution 2018; 73:481-496. [DOI: 10.1111/evo.13651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Philip J. Bergmann
- Department of Biology Clark University 950 Main Street Worcester Massachusetts 01610
| | - Gen Morinaga
- Department of Biology Clark University 950 Main Street Worcester Massachusetts 01610
| |
Collapse
|
18
|
Integrative species delimitation in practice: Revealing cryptic lineages within the short-nosed skink Plestiodon brevirostris (Squamata: Scincidae). Mol Phylogenet Evol 2018; 129:242-257. [DOI: 10.1016/j.ympev.2018.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
|
19
|
Wagner GP, Griffith OW, Bergmann PJ, Bello‐Hellegouarch G, Kohlsdorf T, Bhullar A, Siler CD. Are there general laws for digit evolution in squamates? The loss and re‐evolution of digits in a clade of fossorial lizards (
Brachymeles
, Scincinae). J Morphol 2018; 279:1104-1119. [DOI: 10.1002/jmor.20834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Günter P. Wagner
- Department of Ecology and Evolutionary BiologyYale UniversityNew Haven Connecticut
- Yale Systems Biology Institute, Yale UniversityWest Haven Connecticut
- Department of Obstetrics, Gynecology and Reproductive SciencesYale Medical SchoolNew Haven Connecticut
- Department of Obstetrics and GynecologyWayne State UniversityDetroit Michigan
- Yale Peabody Museum of Natural History, Yale UniversityNew Haven Connecticut
| | - Oliver W. Griffith
- Department of Ecology and Evolutionary BiologyYale UniversityNew Haven Connecticut
- Yale Systems Biology Institute, Yale UniversityWest Haven Connecticut
| | | | - Gaelle Bello‐Hellegouarch
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto São Paulo Brazil
| | - Tiana Kohlsdorf
- Department of BiologyFFCLRP, University of São Paulo, Avenida BandeirantesRibeirão Preto São Paulo Brazil
| | - Anjan Bhullar
- Department of Geology and GeophysicsYale UniversityNew Haven Connecticut
| | - Cameron D. Siler
- Department of Biology and Sam Noble MuseumUniversity of OklahomaNorman Oklahoma
| |
Collapse
|
20
|
Infante CR, Rasys AM, Menke DB. Appendages and gene regulatory networks: Lessons from the limbless. Genesis 2017; 56. [PMID: 29076617 DOI: 10.1002/dvg.23078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Among squamate reptiles, dozens of lineages have independently evolved complete or partial limb reduction. This remarkable convergence of limbless and limb-reduced phenotypes provides multiple natural replicates of different ages to explore the evolution and development of the vertebrate limb and the gene regulatory network that controls its formation. The most successful and best known of the limb-reduced squamates are snakes, which evolved a limb-reduced body form more than 100 million years ago. Recent studies have revealed the unexpected finding that many ancient limb enhancers are conserved in the genomes of snakes. Analyses in limbed animals show that many of these limb enhancers are also active during development of the phallus, suggesting that these enhancers may have been retained in snakes due their importance in regulating transcription in the external genitalia. This hypothesis is substantiated by functional tests of snake enhancers, which demonstrate that snake enhancer elements have lost limb function while retaining genital enhancer function. The large degree of overlap in the gene regulatory networks deployed during limb and phallus development may act to constrain the divergence of shared gene network components and the evolution of appendage morphology. Future studies will reveal whether limb regulatory elements have undergone similar functional changes in other lineages of limb-reduced squamates.
Collapse
Affiliation(s)
- Carlos R Infante
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, 85721
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602.,Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
21
|
Grismer LL, Wood PL, Quah ESH, Anuar S, Ngadi EB, Izam NAM, Ahmad N. Systematics, ecomorphology, cryptic speciation and biogeography of the lizard genus Tytthoscincus Linkem, Diesmos & Brown (Squamata: Scincidae) from the sky-island archipelago of Peninsular Malaysia. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, California, USA
| | - Perry L Wood
- Department of Biology, Brigham Young University, East Bulldog Boulevard, Provo, Utah, USA
| | - Evan S H Quah
- School of Biological Sciences, Universiti Sains Malaysia, USM, Pulau Pinang, Penang, Malaysia
| | - Shahrul Anuar
- School of Biological Sciences, Universiti Sains Malaysia, USM, Pulau Pinang, Penang, Malaysia
- Center for Marine and Coastal Studies, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Ehwan B Ngadi
- School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Amalina Mohd Izam
- School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Norhayati Ahmad
- School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute for Environment and Development, (LESTARI), Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
22
|
Evidence for complex life cycle constraints on salamander body form diversification. Proc Natl Acad Sci U S A 2017; 114:9936-9941. [PMID: 28851828 DOI: 10.1073/pnas.1703877114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metazoans display a tremendous diversity of developmental patterns, including complex life cycles composed of morphologically disparate stages. In this regard, the evolution of life cycle complexity promotes phenotypic diversity. However, correlations between life cycle stages can constrain the evolution of some structures and functions. Despite the potential macroevolutionary consequences, few studies have tested the impacts of life cycle evolution on broad-scale patterns of trait diversification. Here we show that larval and adult salamanders with a simple, aquatic-only (paedomorphic) life cycle had an increased rate of vertebral column and body form diversification compared to lineages with a complex, aquatic-terrestrial (biphasic) life cycle. These differences in life cycle complexity explain the variations in vertebral number and adult body form better than larval ecology. In addition, we found that lineages with a simple terrestrial-only (direct developing) life cycle also had a higher rate of adult body form evolution than biphasic lineages, but still 10-fold lower than aquatic-only lineages. Our analyses demonstrate that prominent shifts in phenotypic evolution can follow long-term transitions in life cycle complexity, which may reflect underlying stage-dependent constraints.
Collapse
|
23
|
Morinaga G, Bergmann PJ. Convergent body shapes have evolved via deterministic and historically contingent pathways in Lerista lizards. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
24
|
Katz PS. Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150057. [PMID: 26598733 DOI: 10.1098/rstb.2015.0057] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
25
|
Miralles A, Jono T, Mori A, Gandola R, Erens J, Köhler J, Glaw F, Vences M. A new perspective on the reduction of cephalic scales in fossorial legless skinks (Squamata, Scincidae). ZOOL SCR 2016. [DOI: 10.1111/zsc.12164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aurélien Miralles
- Division of Evolutionary Biology; Zoological Institute; Technical University of Braunschweig; Mendelssohnstr. 4 Braunschweig 38106 Germany
| | - Teppei Jono
- Department of Zoology; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu 610041 China
| | - Akira Mori
- Department of Zoology; Graduate School of Science; Kyoto University; Kyoto 606-8502 Japan
| | - Robert Gandola
- Ocean and Earth Sciences; National Oceanography Centre; University of Southampton; European Way Southampton SO13 3ZH UK
| | - Jesse Erens
- Division of Evolutionary Biology; Zoological Institute; Technical University of Braunschweig; Mendelssohnstr. 4 Braunschweig 38106 Germany
- Biosystematics Group; Wageningen University; Droevendaalsesteeg 1 Wageningen 6708PB The Netherlands
| | - Jörn Köhler
- Hessisches Landesmuseum Darmstadt; Friedensplatz 1 Darmstadt 64283 Germany
| | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB); Münchhausenstr. 21 München 81247 Germany
| | - Miguel Vences
- Division of Evolutionary Biology; Zoological Institute; Technical University of Braunschweig; Mendelssohnstr. 4 Braunschweig 38106 Germany
| |
Collapse
|
26
|
Andrade JB, Lewis RP, Senter P. Appendicular skeletons of five Asian skink species of the genera Brachymeles and Ophiomorus, including species with vestigial appendicular structures. AMPHIBIA-REPTILIA 2016. [DOI: 10.1163/15685381-00003062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vestigial biological structures provide an important line of evidence for macroevolution. They abound in the appendicular skeletons of limbless and reduced-limbed members of the skink subfamily Scincinae, which includes a predominantly Asian clade and a predominantly African clade. Reduced appendicular skeletons in the predominantly African clade have received much recent attention, but for most species in the predominantly Asian clade the appendicular skeleton has yet to be described. Here we provide descriptions of the appendicular skeletons of the reduced-limbed skinks Brachymeles bonitae and Ophiomorus blandfordi, the externally limbless skink Ophiomorus punctatissimus, and, for comparison, the pentadactyl skinks Brachymeles gracilis and B. talinis. We used x-ray radiographs to examine the skeletons of these species and to note similarities and differences in the previously-described appendicular skeletal morphology of related species. We found that in B. bonitae the pectoral and pelvic girdles are unreduced, the proximal limb elements are reduced, and the distal limb elements are vestigial. In O. punctatissimus vestigial pectoral and pelvic girdles are present. In O. blanfordi the fifth metatarsal is vestigial. The phylogenetic distribution of morphological features related to appendicular reduction shows that multiple, parallel reduction events have taken place within each of these two genera. In addition, the anatomical distribution of element reduction and loss in these genera shows that the bones are reduced and lost in the same sequence in the predominantly Asian scincine clade as they are in other squamate clades. This suggests a common evolutionary mechanism for appendicular reduction and loss across the Squamata.
Collapse
Affiliation(s)
- Julia B. Andrade
- Department of Biological Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, USA
| | - Ryshonda P. Lewis
- Department of Biological Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, USA
| | - Phil Senter
- Department of Biological Sciences, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, USA
| |
Collapse
|
27
|
Barley AJ, Monnahan PJ, Thomson RC, Grismer LL, Brown RM. Sun skink landscape genomics: assessing the roles of micro-evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Mol Ecol 2015; 24:1696-712. [DOI: 10.1111/mec.13151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Anthony J. Barley
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| | - Patrick J. Monnahan
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| | - Robert C. Thomson
- Department of Biology; University of Hawai'i at Mānoa; Honolulu HI 96822 USA
| | - L. Lee Grismer
- Department of Biology; La Sierra University; Riverside CA 92515 USA
| | - Rafe M. Brown
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| |
Collapse
|
28
|
Werneburg I, Sánchez-Villagra MR. Skeletal heterochrony is associated with the anatomical specializations of snakes among squamate reptiles. Evolution 2014; 69:254-63. [DOI: 10.1111/evo.12559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Ingmar Werneburg
- Paläontologisches Institut und Museum der Universität Zürich; Karl-Schmid-Strasse 4 8006 Zürich Switzerland
- Museum für Naturkunde; Leibniz-Institut für Evolutions & Biodiversitätsforschung, an der Humboldt-Universität zu Berlin; Invalidenstraße 43 10115 Berlin Germany
| | | |
Collapse
|
29
|
Evaluating the Diversity of Philippine Slender Skinks of theBrachymeles bonitaeComplex (Reptilia: Squamata: Scincidae): Redescription ofB. tridactylusand Descriptions of Two New Species. J HERPETOL 2014. [DOI: 10.1670/13-173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Welton LJ, Wood PL, Oaks JR, Siler CD, Brown RM. Fossil-calibrated phylogeny and historical biogeography of Southeast Asian water monitors (Varanus salvator Complex). Mol Phylogenet Evol 2014; 74:29-37. [PMID: 24486878 DOI: 10.1016/j.ympev.2014.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/11/2014] [Accepted: 01/17/2014] [Indexed: 11/25/2022]
Abstract
We utilize robust geographical genetic sampling, a multilocus dataset, a new synthesis of numerous fossil calibration points, a time-calibrated phylogeny, and the Dispersal-Extinction-Cladogenesis model to test the prediction that widespread Southeast Asian water monitor species initially diversified on the Asian mainland and subsequently invaded the island archipelagos of the Philippines, Sundaland, and Wallacea. Our results strongly contradict these expectations and instead infer an initial water monitor radiation of range-restricted but highly divergent evolutionary lineages (now recognized as endemic species) in one archipelago around 3.6 mya, followed by an out-of-the-Philippines reinvasion of the mainland (2.2 mya), resulting in a few, widespread species that now inhabit most the islands of the Sunda Shelf and the Southeast Asian mainland as far north as Myanmar, as well as an out-of-the-Philippines invasion of Sulawesi (2.1 mya). Our analyses both confirm the importance of island archipelagos as drivers of diversification for mainland biodiversity and emphasize the global evolutionary significance and conservation priority of the Philippines for understanding processes of diversification in island archipelagos.
Collapse
Affiliation(s)
- Luke J Welton
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7561, USA.
| | - Perry L Wood
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jamie R Oaks
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7561, USA.
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK 73072-7029, USA.
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7561, USA.
| |
Collapse
|
31
|
Brown RM, Siler CD, Oliveros CH, Esselstyn JA, Diesmos AC, Hosner PA, Linkem CW, Barley AJ, Oaks JR, Sanguila MB, Welton LJ, Blackburn DC, Moyle RG, Townsend Peterson A, Alcala AC. Evolutionary Processes of Diversification in a Model Island Archipelago. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110411-160323] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rafe M. Brown
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | - Cameron D. Siler
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, Oklahoma 73073-7029;
| | - Carl H. Oliveros
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | - Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803;
| | - Arvin C. Diesmos
- Herpetology Section, Zoology Division, National Museum of the Philippines, Manila, Philippines;
| | - Peter A. Hosner
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | - Charles W. Linkem
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
- Current address: Department of Biology, University of Washington, Seattle, Washington 98195;
| | - Anthony J. Barley
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | - Jamie R. Oaks
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | | | - Luke J. Welton
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
- Department of Biology, Brigham Young University, Provo, Utah 84602;
| | - David C. Blackburn
- Department of Vertebrate Zoology and Anthropology, California Academy of Sciences, San Francisco, California 94118;
| | - Robert G. Moyle
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | - A. Townsend Peterson
- Department of Ecology and Evolution and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; , , , , , ,
| | - Angel C. Alcala
- Silliman University-Angelo King Center for Research and Environmental Management (SUAKCREM), SU-Marine Laboratory, 6200 Dumaguete City, Philippines;
| |
Collapse
|
32
|
Brown RM, Siler CD, Oliveros CH, Welton LJ, Rock A, Swab J, Weerd MV, van Beijnen J, Jose E, Rodriguez D, Jose E, Diesmos AC. The amphibians and reptiles of Luzon Island, Philippines, VIII: the herpetofauna of Cagayan and Isabela Provinces, northern Sierra Madre Mountain Range. Zookeys 2013; 266:1-120. [PMID: 23653519 PMCID: PMC3591760 DOI: 10.3897/zookeys.266.3982] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/09/2013] [Indexed: 11/25/2022] Open
Abstract
We provide the first report on the herpetological biodiversity (amphibians and reptiles) of the northern Sierra Madre Mountain Range (Cagayan and Isabela provinces), northeast Luzon Island, Philippines. New data from extensive previously unpublished surveys in the Municipalities of Gonzaga, Gattaran, Lasam, Santa Ana, and Baggao (Cagayan Province), as well as fieldwork in the Municipalities of Cabagan, San Mariano, and Palanan (Isabela Province), combined with all available historical museum records, suggest this region is quite diverse. Our new data indicate that at least 101 species are present (29 amphibians, 30 lizards, 35 snakes, two freshwater turtles, three marine turtles, and two crocodilians) and now represented with well-documented records and/or voucher specimens, confirmed in institutional biodiversity repositories. A high percentage of Philippine endemic species constitute the local fauna (approximately 70%). The results of this and other recent studies signify that the herpetological diversity of the northern Philippines is far more diverse than previously imagined. Thirty-eight percent of our recorded species are associated with unresolved taxonomic issues (suspected new species or species complexes in need of taxonomic partitioning). This suggests that despite past and present efforts to comprehensively characterize the fauna, the herpetological biodiversity of the northern Philippines is still substantially underestimated and warranting of further study.
Collapse
Affiliation(s)
- Rafe M. Brown
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA
- Zoology Division, National Museum of the Philippines, Rizal Park, Padre Burgos Avenue, Ermita 1000, Manila, Philippines
| | - Cameron D. Siler
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA
- Zoology Division, National Museum of the Philippines, Rizal Park, Padre Burgos Avenue, Ermita 1000, Manila, Philippines
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Carl. H Oliveros
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA
- Isla Biodiversity Conservation; 9 Bougainvillea Street, Manuela Subdivision, Las Piñas City 1741, Philippines
| | - Luke J. Welton
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Ashley Rock
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA
| | - John Swab
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Merlijn Van Weerd
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands
- Mabuwaya Foundation, Isabela State University Campus Garita, Cabagan, Isabela, Philippines
| | | | - Edgar Jose
- Herpetology Section, Zoology Division, Philippine National Museum, Rizal Park, Burgos St., Manila, Philippines
| | - Dominic Rodriguez
- Mabuwaya Foundation, Isabela State University Campus Garita, Cabagan, Isabela, Philippines
| | - Edmund Jose
- Mabuwaya Foundation, Isabela State University Campus Garita, Cabagan, Isabela, Philippines
| | - Arvin C. Diesmos
- Herpetology Section, Zoology Division, Philippine National Museum, Rizal Park, Burgos St., Manila, Philippines
| |
Collapse
|
33
|
Siler CD, Jones RM, Diesmos AC, Diesmos ML, Brown RM. Phylogeny-Based Species Delimitation In Philippine Slender Skinks (Reptilia: Squamata: Scincidae) III: Taxonomic Revision of the Brachymeles Gracilis Complex, With Descriptions of Three New Species. HERPETOLOGICAL MONOGRAPHS 2012. [DOI: 10.1655/herpmonographs-d-11-00006.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Brown RP, Tejangkura T, El Mouden EH, Ait Baamrane MA, Znari M. Species delimitation and digit number in a North African skink. Ecol Evol 2012; 2:2962-73. [PMID: 23301164 PMCID: PMC3538992 DOI: 10.1002/ece3.326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Delimitation of species is an important and controversial area within evolutionary biology. Many species boundaries have been defined using morphological data. New genetic approaches now offer more objective evaluation and assessment of the reliability of morphological variation as an indicator that speciation has occurred. We examined geographic variation in morphology of the continuously distributed skink Chalcides mionecton from Morocco and used Bayesian analyses of nuclear and mitochondrial DNA (mtDNA) loci to examine: (i) their concordance with morphological patterns, (ii) support for species delimitation, (iii) timing of speciation, and (iv) levels of gene flow between species. Four digit individuals were found at sites between Cap Rhir (in the south) and the northern extreme of the range, whereas five-digit individuals were found in two disjunct areas: (i) south of Cap Rhir and (ii) the north of the range where they were often syntopic with four-digit individuals. The pattern of variation in generalized body dimensions was largely concordant with that in digit number, suggesting two general morphotypes. Bayesian analyses of population structure showed that individuals from sites south of Cap Rhir formed one genetic cluster, but that northern four- and five-digit individuals clustered together. Statistical support for delimitation of these genetic clusters into two species was provided by a recent Bayesian method. Phylogenetic-coalescent dating with external time calibrations indicates that speciation was relatively recent, with a 95% posterior interval of 0.46-2.66 mya. This postdates equivalent phylogenetic dating estimates of sequence divergence by approximately 1 Ma. Statistical analyses of a small number of independent loci provide important insights into the history of the speciation process in C. mionecton and support delimitation of populations into two species with distributions that are spatially discordant with patterns of morphological variation.
Collapse
Affiliation(s)
- R P Brown
- School of Natural Sciences and Psychology, Liverpool John Moores University Liverpool, L3 3AF
| | | | | | | | | |
Collapse
|
35
|
Hugi J, Hutchinson MN, Koyabu D, Sánchez-Villagra MR. Heterochronic shifts in the ossification sequences of surface- and subsurface-dwelling skinks are correlated with the degree of limb reduction. ZOOLOGY 2012; 115:188-98. [DOI: 10.1016/j.zool.2011.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/26/2011] [Accepted: 10/13/2011] [Indexed: 01/22/2023]
|
36
|
Lamb T, Beamer DA. Digits lost or gained? Evidence for pedal evolution in the dwarf salamander complex (Eurycea, Plethodontidae). PLoS One 2012; 7:e37544. [PMID: 22649536 PMCID: PMC3359299 DOI: 10.1371/journal.pone.0037544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Change in digit number, particularly digit loss, has occurred repeatedly over the evolutionary history of tetrapods. Although digit loss has been documented among distantly related species of salamanders, it is relatively uncommon in this amphibian order. For example, reduction from five to four toes appears to have evolved just three times in the morphologically and ecologically diverse family Plethodontidae. Here we report a molecular phylogenetic analysis for one of these four-toed lineages--the Eurycea quadridigitata complex (dwarf salamanders)--emphasizing relationships to other species in the genus. A multilocus phylogeny reveals that dwarf salamanders are paraphyletic with respect to a complex of five-toed, paedomorphic Eurycea from the Edwards Plateau in Texas. We use this phylogeny to examine evolution of digit number within the dwarf-Edwards Plateau clade, testing contrasting hypotheses of digit loss (parallelism among dwarf salamanders) versus digit gain (re-evolution in the Edwards Plateau complex). Bayes factors analysis provides statistical support for a five-toed common ancestor at the dwarf-Edwards node, favoring, slightly, the parallelism hypothesis for digit loss. More importantly, our phylogenetic results pinpoint a rare event in the pedal evolution of plethodontid salamanders.
Collapse
Affiliation(s)
- Trip Lamb
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - David A. Beamer
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
- Department of Mathematics and Sciences, Nash Community College, Rocky Mount, North Carolina, United States of America
| |
Collapse
|
37
|
BRANDLEY MATTHEWC, OTA HIDETOSHI, HIKIDA TSUTOMU, NIETO MONTES DE OCA ADRIÁN, FERÍA-ORTÍZ MANUEL, GUO XIANGUANG, WANG YUEZHAO. The phylogenetic systematics of blue-tailed skinks (Plestiodon) and the family Scincidae. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2011.00801.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
A model of developmental evolution: selection, pleiotropy and compensation. Trends Ecol Evol 2012; 27:316-22. [PMID: 22385978 DOI: 10.1016/j.tree.2012.01.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 11/20/2022]
Abstract
Development and physiology translate genetic variation into phenotypic variation and determine the genotype-phenotype map, such as which gene affects which character (pleiotropy). Any genetic change in this mapping reflects a change in development. Here, we discuss evidence for variation in pleiotropy and propose the selection, pleiotropy and compensation model (SPC) for adaptive evolution. It predicts that adaptive change in one character is associated with deleterious pleiotropy in others and subsequent selection to compensate for these pleiotropic effects. The SPC model provides a unifying perspective for a variety of puzzling phenomena, including developmental systems drift and character homogenization. The model suggests that most adaptive signatures detected in genome scans could be the result of compensatory changes, rather than of progressive character adaptations.
Collapse
|
39
|
Siler CD, Fuiten AM, Jones RM, Alcala AC, Brown RM. Phylogeny-Based Species Delimitation in Philippine Slender Skinks (Reptilia: Squamata: Scincidae) II: Taxonomic Revision of Brachymeles samarensis and Description of Five New Species. HERPETOLOGICAL MONOGRAPHS 2011. [DOI: 10.1655/herpmonographs-d-10-00013.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|