1
|
Almeida-Silva D, Vera Candioti F. Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs. Animals (Basel) 2024; 14:1406. [PMID: 38791625 PMCID: PMC11117230 DOI: 10.3390/ani14101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Phenotypic traits can evolve independently at different stages of ontogeny, optimizing adaptation to distinct ecological contexts and increasing morphological diversity in species with complex life cycles. Given the relative independence resulting from the profound changes induced by metamorphosis, niche occupation and resource utilization in tadpoles may prompt evolutionary responses that do not necessarily affect the adults. Consequently, diversity patterns observed in the larval shape may not necessarily correspond to those found in the adult shape for the same species, a premise that can be tested through the Adaptive Decoupling Hypothesis (ADH). Herein, we investigate the ADH for larval and adult shape differentiation in Neoaustrarana frogs. Neoaustrarana frogs, particularly within the Cycloramphidae family, exhibit remarkable diversity in tadpole morphology, making them an ideal model for studying adaptive decoupling. By analyzing 83 representative species across four families (Alsodidae, Batrachylidae, Cycloramphidae, and Hylodidae), we generate a morphological dataset for both larval and adult forms. We found a low correlation between larval and adult shapes, species with a highly distinct larval shape having relatively similar shape when adults. Larval morphological disparity is not a good predictor for adult morphological disparity within the group, with distinct patterns observed among families. Differences between families are notable in other aspects as well, such as the role of allometric components influencing shape and morphospace occupancy. The larval shape has higher phylogenetic structure than the adult. Evolutionary convergence emerges as a mechanism of diversification for both larval and adult shapes in the early evolution of neoaustraranans, with shape disparity of tadpoles reaching stable levels since the Oligocene. The widest occupation in morphospace involves families associated with dynamically changing environments over geological time. Our findings support the ADH driving phenotypic diversity in Neoaustrarana, underscoring the importance of considering ontogenetic stages in evolutionary studies.
Collapse
Affiliation(s)
- Diego Almeida-Silva
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo, San Miguel de Tucumán 4000, Argentina;
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil
| | - Florencia Vera Candioti
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo, San Miguel de Tucumán 4000, Argentina;
| |
Collapse
|
2
|
Whalan S. The role of photobehaviour in sponge larval dispersal and settlement. PLoS One 2023; 18:e0287989. [PMID: 37428784 DOI: 10.1371/journal.pone.0287989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
Deciphering the behavioural ecology of adult (sessile) sponges is challenging. However, their motile larval stages afford opportunities to investigate how behaviour contributes to dispersal and selection of habitat. Light is a fundamental cue contributing to larval sponge dispersal where photoreceptive cells contribute to this process. But how universal is light as a cue to sponge larval dispersal and settlement? Behavioural choice experiments were used to test the effect of light on dispersal and settlement behaviours. Larvae of the tropical sponge species Coscinoderma mathewsi, Luffariella variabilis, Ircinia microconnulosa, and Haliclona sp., from deep (12-15 m) and shallower-water habitats (2-5 m), were used in experiments. Dispersal experiments provided a light-gradient-choice where light represented light attenuation with depth. Light treatments included white light and the spectral components of red and blue light. Settlement experiments comprised a choice between illuminated and shaded treatments. Fluorescence microscopy was used to establish the presence of fluorescent proteins associated with posterior locomotory cilia. Deeper-water species, C. mathewsi and I. microconnulosa discriminate light spectral signatures. Both species changed dispersal behaviour to light spectra as larvae aged. For C. mathewsi positive phototaxis to blue light changed to photophobic responses (all light treatments) after six hours and behaviours in I. microconnulosa changed from positive to negative phototaxis (white light) after six hours. L. variabilis, also a deeper-water species, was negatively phototactic to all light treatments. Larvae from the shallow-water species, Haliclona sp., moved towards all light wavelengths tested. There was no effect of light on settlement of the shallow-water Haliclona sp., but larvae in all three deeper-water species showed significantly higher settlement in shaded treatments. Fluorescence microscopy showed discrete fluorescent bands contiguous to posterior tufted cilia in all four species. These fluorescent bands may play a contributory role in larval photobehaviour.
Collapse
Affiliation(s)
- Steve Whalan
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
3
|
Schott RK, Bell RC, Loew ER, Thomas KN, Gower DJ, Streicher JW, Fujita MK. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol 2022; 20:138. [PMID: 35761245 PMCID: PMC9238225 DOI: 10.1186/s12915-022-01341-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology, York University, Toronto, Ontario, Canada.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
4
|
Campbell DR, Bischoff M, Raguso RA, Briggs HM, Sosenski P. Selection of Floral Traits by Pollinators and Seed Predators during Sequential Life History Stages. Am Nat 2022; 199:808-823. [DOI: 10.1086/716740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Mascha Bischoff
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Environmental Research Institute, North Highland College, Castle Street, Thurso KW14 7JD, United Kingdom
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Heather M. Briggs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Consejo Nacional de Ciencia y Tecnología (CONACYT)–Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
5
|
Peters H, Laberge F, Heyland A. Latent effect of larval rearing environment on post-metamorphic brain growth in an anuran amphibian. ZOOLOGY 2022; 152:126011. [DOI: 10.1016/j.zool.2022.126011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
6
|
Radovanović TB, Gavrilović BR, Petrović TG, Despotović SG, Gavrić JP, Kijanović A, Mirč M, Tomašević Kolarov N, Faggio C, Prokić MD. Impact of desiccation pre-exposure on deltamethrin-induced oxidative stress in Bombina variegata juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109191. [PMID: 34536572 DOI: 10.1016/j.cbpc.2021.109191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Global warming represents a severe threat to existing ecosystems, especially for anuran tadpoles who encounter significant fluctuations in their habitats. Decreasing water levels in permanent and temporary water bodies is a significant risk for larval survival or fitness. On the other hand, the natural environment of amphibians is extremely polluted by various xenobiotics. This study evaluated how pre-exposure of Bombina variegata tadpoles to chronic environmental stress (desiccation) modulates the biochemical response of juvenile individuals to following acute chemical stressor (pesticide deltamethrin). Our results demonstrated that individually applied pesticide changed the thiol and lipid status of the treated juveniles but animals subjected solely to desiccation pressure were more tolerant to free radicals and showed no induction of lipid peroxidation. Comparison of juveniles exposed to deltamethrin revealed that desiccation pretreatment during the larval stage of development modified cellular protection in the juveniles. Higher activities of CAT, GSH-Px and GR were recorded in the pre-exposed group, as well as a lower degree of lipid peroxidation relative to the group that was not pre-exposed to low water stress. Pre-desiccated groups displayed the greatest range of coordination of investigated antioxidant parameters, supported by Pearson's correlations. Activation of the GSH-redox system is a significant marker in juveniles against stress caused by desiccation and a chemical stressor. The stressful environment experienced during tadpole development produced an adaptive reaction to subsequent exposure to another stressor in juveniles. To develop relevant management and conservation strategies, more studies of the interactive effects of environmental and chemical stressors are necessary.
Collapse
Affiliation(s)
- Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
7
|
Herrig DK, Vertacnik KL, Kohrs AR, Linnen CR. Support for the adaptive decoupling hypothesis from whole-transcriptome profiles of a hypermetamorphic and sexually dimorphic insect, Neodiprion lecontei. Mol Ecol 2021; 30:4551-4566. [PMID: 34174126 DOI: 10.1111/mec.16041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Though seemingly bizarre, the dramatic morphological and ecological transformation that occurs when immature life stages metamorphose into reproductive adults is one of the most successful developmental strategies on the planet. The adaptive decoupling hypothesis (ADH) proposes that metamorphosis is an adaptation for breaking developmental links between traits expressed in different life stages, thereby facilitating their independent evolution when exposed to opposing selection pressures. Here, we draw inspiration from the ADH to develop a conceptual framework for understanding changes in gene expression across ontogeny. We hypothesized that patterns of stage-biased and sex-biased gene expression are the product of both decoupling mechanisms and selection history. To test this hypothesis, we characterized transcriptome-wide patterns of gene-expression traits for three ecologically distinct larval stages (all male) and adult males and females of a hypermetamorphic insect (Neodiprion lecontei). We found that stage-biased gene expression was most pronounced between larval and adult males, which is consistent with the ADH. However, even in the absence of a metamorphic transition, considerable stage-biased expression was observed among morphologically and behaviourally distinct larval stages. Stage-biased expression was also observed across ecologically relevant Gene Ontology categories and genes, highlighting the role of ecology in shaping patterns of gene expression. We also found that the magnitude and prevalence of stage-biased expression far exceeded adult sex-biased expression. Overall, our results highlight how the ADH can shed light on transcriptome-wide patterns of gene expression in organisms with complex life cycles. For maximal insight, detailed knowledge of organismal ecology is also essential.
Collapse
Affiliation(s)
- Danielle K Herrig
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Kim L Vertacnik
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Anna R Kohrs
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
8
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02315. [PMID: 33636022 PMCID: PMC8243920 DOI: 10.1002/eap.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C. Donelan
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Matthew B. Ogburn
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| |
Collapse
|
9
|
Roux O, Renault D, Mouline K, Diabaté A, Simard F. Living with predators at the larval stage has differential long-lasting effects on adult life history and physiological traits in two anopheline mosquito species. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104234. [PMID: 33831434 DOI: 10.1016/j.jinsphys.2021.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Olivier Roux
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; Institut de Recherche des Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso.
| | - David Renault
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes biodiversitéévolution) - UMR 6553, F-35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - Karine Mouline
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; Institut de Recherche des Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche des Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | | |
Collapse
|
10
|
Chirgwin E, Monro K. Correlational selection on size and development time is inconsistent across early life stages. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
McFarland K, Plough LV, Nguyen M, Hare MP. Are bivalves susceptible to domestication selection? Using starvation tolerance to test for potential trait changes in eastern oyster larvae. PLoS One 2020; 15:e0230222. [PMID: 32603332 PMCID: PMC7326227 DOI: 10.1371/journal.pone.0230222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
Conservation efforts are increasingly being challenged by a rapidly changing environment, and for some aquatic species the use of captive rearing or selective breeding is an attractive option. However, captivity itself can impose unintended artificial selection known as domestication selection (adaptation to culture conditions) and is relatively understudied for most marine species. To test for domestication selection in marine bivalves, we focused on a fitness-related trait (larval starvation resistance) that could be altered under artificial selection. Using larvae produced from a wild population of Crassostrea virginica and a selectively bred, disease-resistant line we measured growth and survival during starvation versus standard algal diet conditions. Larvae from both lineages showed a remarkable resilience to food limitation, possibly mediated by an ability to utilize dissolved organic matter for somatic maintenance. Water chemistry analysis showed dissolved organic carbon in filtered tank water to be at concentrations similar to natural river water. We observed that survival in larvae produced from the aquaculture line was significantly lower compared to larvae produced from wild broodstock (8 ± 3% and 21 ± 2%, respectively) near the end of a 10-day period with no food (phytoplankton). All larval cohorts had arrested growth and depressed respiration during the starvation period and took at least two days to recover once food was reintroduced before resuming growth. Respiration rate recovered rapidly and final shell length was similar between the two treatments Phenotypic differences between the wild and aquaculture lines suggest potential differences in the capacity to sustain extended food limitation, but this work requires replication with multiple selection lines and wild populations to make more general inferences about domestication selection. With this contribution we explore the potential for domestication selection in bivalves, discuss the physiological and fitness implications of reduced starvation tolerance, and aim to inspire further research on the topic.
Collapse
Affiliation(s)
- Katherine McFarland
- Department of Natural Resources, Cornell University, Ithaca, New York, United States of America
- Center for Environmental Science University of Maryland, Cambridge, Maryland, United States of America
- NOAA Fisheries NEFSC, Milford Laboratory, Milford, CT, United States of America
- * E-mail:
| | - Louis V. Plough
- Center for Environmental Science University of Maryland, Cambridge, Maryland, United States of America
| | - Michelle Nguyen
- Center for Environmental Science University of Maryland, Cambridge, Maryland, United States of America
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Matthew P. Hare
- Department of Natural Resources, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J Comp Physiol B 2020; 190:297-315. [PMID: 32144506 DOI: 10.1007/s00360-020-01271-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Environmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity. We investigated how developmental temperature (Tdev) and altered TH levels (simulating proximate effects of environmental stress) influence the standard metabolic rate (SMR), body condition (BC), and thermal tolerance in metamorphic and post-metamorphic anuran larvae of the common frog (Rana temporaria) reared at five constant temperatures (14-28 °C). At metamorphosis, larvae that developed at higher temperatures had higher maximum thermal limits but narrower ranges in thermal tolerance. Mean CTmax was 37.63 °C ± 0.14 (low TH), 36.49 °C ± 0.31 (control), and 36.43 °C ± 0.68 (high TH) in larvae acclimated to different temperatures. Larvae were able to acclimate to higher Tdev by adjusting their thermal tolerance, but not their SMR, and this effect was not impaired by altered TH levels. BC was reduced by 80% (metamorphic) and by 85% (post-metamorphic) at highest Tdev. The effect of stressful larval conditions (i.e., different developmental temperatures and, to some extent, altered TH levels) on SMR and particularly on BC at the onset of metamorphosis was carried over to froglets at the end of metamorphic climax. This has far reaching consequences, since body condition at metamorphosis is known to determine metamorphic success and, thus, is indirectly linked to individual fitness in later life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
13
|
Hammer TJ, Moran NA. Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190068. [PMID: 31438811 PMCID: PMC6711286 DOI: 10.1098/rstb.2019.0068] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Many animals depend on microbial symbionts to provide nutrition, defence or other services. Holometabolous insects, as well as other animals that undergo metamorphosis, face unique constraints on symbiont maintenance. Microbes present in larvae encounter a radical transformation of their habitat and may also need to withstand chemical and immunological challenges. Metamorphosis also provides an opportunity, in that symbiotic associations can be decoupled over development. For example, some holometabolous insects maintain the same symbiont as larvae and adults, but house it in different tissues; in other species, larvae and adults may harbour entirely different types or numbers of microbes, in accordance with shifts in host diet or habitat. Such flexibility may provide an advantage over hemimetabolous insects, in which selection on adult-stage microbial associations may be constrained by its negative effects on immature stages, and vice versa. Additionally, metamorphosis itself can be directly influenced by symbionts. Across disparate insect taxa, microbes protect hosts from pathogen infection, supply nutrients essential for rebuilding the adult body and provide cues regulating pupation. However, microbial associations remain completely unstudied for many families and even orders of Holometabola, and future research will undoubtedly reveal more links between metamorphosis and microbiota, two widespread features of animal life. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
14
|
Saboret G, Ingram T. Carryover effects of larval environment on individual variation in a facultatively diadromous fish. Ecol Evol 2019; 9:10630-10643. [PMID: 31624571 PMCID: PMC6787821 DOI: 10.1002/ece3.5582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
Intraspecific trait variation may result from "carryover effects" of variability of environments experienced at an earlier life stage. This phenomenon is particularly relevant in partially migrating populations composed of individuals with divergent early life histories. While many studies have addressed the causes of partial migration, few have investigated the consequences for between-individual variability later in life.We studied carryover effects of larval environment in a facultatively diadromous New Zealand fish, Gobiomorphus cotidianus, along an estuarine salinity gradient. We investigated the implications of varying environmental conditions during this critical stage of ontogeny for adult phenotype.We inferred past environmental history of wild-caught adult fish using otolith microchemistry (Sr/Ca) as a proxy for salinity. We tested for main and interactive effects of larval and adult environment on a suite of traits, including growth rates, behavior (exploration and activity), parasite load, and diet (stable isotopes and gut contents).We found a Sr/Ca consistent with a continuum from freshwater to brackish environments, and with different trajectories from juvenile to adult habitat. Fish with Sr/Ca indicating upstream migration were more vulnerable to trematode infection, suggesting a mismatch to freshwater habitat. Diet analysis suggested an interactive effect of larval and adult environments on trophic position and diet preference, while behavioral traits were unrelated to environment at any life stage. Growth rates did not seem to be affected by past environment.Overall, we show that early life environment can have multiple effects on adult performance and ecology, with the potential for lifetime fitness trade-offs associated with life history. Our study highlights that even relatively minor variation in rearing conditions may be enough to generate individual variation in natural populations.
Collapse
Affiliation(s)
- Grégoire Saboret
- Département de Biologie, Master BiosciencesENS de LyonLyonFrance
| | - Travis Ingram
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
15
|
Lackey ACR, Moore MP, Doyle J, Gerlanc N, Hagan A, Geile M, Eden C, Whiteman HH. Lifetime Fitness, Sex-Specific Life History, and the Maintenance of a Polyphenism. Am Nat 2019; 194:230-245. [DOI: 10.1086/704156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Roux O, Robert V. Larval predation in malaria vectors and its potential implication in malaria transmission: an overlooked ecosystem service? Parasit Vectors 2019; 12:217. [PMID: 31068213 PMCID: PMC6505304 DOI: 10.1186/s13071-019-3479-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
Abstract
The role of aquatic predators in controlling the anopheline aquatic stage has been known for decades. Recently, studies have highlighted that exposition to predation stress during aquatic development can have a profound impact on life-history traits (e.g. growth rate, fecundity and longevity) and consequently on the ability of adults to transmit human malaria parasites. In this study, we present a review aiming to contextualize the role of Anopheles larvae predators as an ecosystem factor interacting with the malaria pathogen through its vector, i.e. the female adult Anopheles. We first envisage the predator diversity that anopheline vectors are susceptible to encounter in their aquatic habitats. We then focus on mosquito-predator interactions with a special mention to anti-predator behaviors and prey adaptations developed to deal with the predation threat. Next, we address the direct and indirect effects of larval predation stress on mosquito populations and on individual life-history traits, which strongly suggest some carry-over effect of the impact of larval predation on vectorial capacity. The last part addresses the impact of human activities on larval predation. Concluding remarks highlight gaps in the knowledge of anopheline bio-ecology which may constitute avenues for researchers in the future.
Collapse
Affiliation(s)
- Olivier Roux
- MIVEGEC Unit, IRD-CNRS, Université de Montpellier, Montpellier, France. .,Institut de Recherche des Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| | - Vincent Robert
- MIVEGEC Unit, IRD-CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
ten Brink H, de Roos AM, Dieckmann U. The Evolutionary Ecology of Metamorphosis. Am Nat 2019; 193:E116-E131. [DOI: 10.1086/701779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Larval Exposure to the Bacterial Insecticide Bti Enhances Dengue Virus Susceptibility of Adult Aedes aegypti Mosquitoes. INSECTS 2018; 9:insects9040193. [PMID: 30558130 PMCID: PMC6316598 DOI: 10.3390/insects9040193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Understanding the interactions between pathogens sharing the same host can be complicated for holometabolous animals when larval and adult stages are exposed to distinct pathogens. In medically important insect vectors, the effect of pathogen exposure at the larval stage may influence susceptibility to human pathogens at the adult stage. We addressed this hypothesis in the mosquito Aedes aegypti, a major vector of arthropod-borne viruses (arboviruses), such as the dengue virus (DENV) and the chikungunya virus (CHIKV). We experimentally assessed the consequences of sub-lethal exposure to the bacterial pathogen Bacillus thuringiensis subsp. israelensis (Bti), during larval development, on arbovirus susceptibility at the adult stage in three Ae. aegypti strains that differ in their genetic resistance to Bti. We found that larval exposure to Bti significantly increased DENV susceptibility, but not CHIKV susceptibility, in the Bti-resistant strains. However, there was no major difference in the baseline arbovirus susceptibility between the Bti-resistant strains and their Bti-susceptible parental strain. Although the generality of our results remains to be tested with additional arbovirus strains, this study supports the idea that the outcome of an infection by a pathogen depends on other pathogens sharing the same host even when they do not affect the same life stage of the host. Our findings may also have implications for Bti as a mosquito biocontrol agent, indicating that the sub-optimal Bti efficacy may have counter-productive effects by increasing vector competence, at least for some combinations of arbovirus and mosquito strains.
Collapse
|
19
|
Orizaola G, Richter-Boix A, Laurila A. Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses. Ecology 2018; 97:2470-2478. [PMID: 27859081 DOI: 10.1002/ecy.1464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
Abstract
As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in phenology affect species interactions is highly relevant for better understanding ecological responses to climate change.
Collapse
Affiliation(s)
- Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| | - Alex Richter-Boix
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| | - Anssi Laurila
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| |
Collapse
|
20
|
Thia JA, Riginos C, Liggins L, Figueira WF, McGuigan K. Larval traits show temporally consistent constraints, but are decoupled from postsettlement juvenile growth, in an intertidal fish. J Anim Ecol 2018; 87:1353-1363. [DOI: 10.1111/1365-2656.12844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua A. Thia
- School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
| | - Cynthia Riginos
- School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
| | - Libby Liggins
- Institute of Natural and Mathematical Sciences; Massey University; Auckland New Zealand
| | - Will F. Figueira
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW Australia
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; Brisbane Qld Australia
| |
Collapse
|
21
|
Moore MP, Martin RA. Trade-offs between larval survival and adult ornament development depend on predator regime in a territorial dragonfly. Oecologia 2018; 188:97-106. [PMID: 29808358 DOI: 10.1007/s00442-018-4171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/21/2018] [Indexed: 01/20/2023]
Abstract
Trade-offs between juvenile survival and the development of sexually selected traits can cause ontogenetic conflict between life stages that constrains adaptive evolution. However, the potential for ecological interactions to alter the presence or strength of these trade-offs remains largely unexplored. Antagonistic selection over the accumulation and storage of resources could be one common cause of environment-specific trade-offs between life stages: higher condition may simultaneously enhance adult ornament development and increase juvenile vulnerability to predators. We tested this hypothesis in an ornamented dragonfly (Pachydiplax longipennis). Higher larval body condition indeed enhanced the initial development of its intrasexually selected wing coloration, but was opposed by viability selection in the presence of large aeshnid predators. In contrast, viability selection did not oppose larval body condition in pools when aeshnids were absent, and was not affected when we manipulated cannibalism risk. Trade-offs between larval survival and ornament development, mediated through the conflicting effects of body condition, therefore occurred only under high predation risk. We additionally characterized how body condition influences several traits associated with predator avoidance. Although body condition did not affect burst distance, it did increase larval abdomen size, potentially making larvae easier targets for aeshnid predators. As high body condition similarly increases vulnerability to predators in many other animals, predator-mediated costs of juvenile resource accumulation could be a common, environment-specific limitation on the elaboration of sexually selected traits.
Collapse
Affiliation(s)
- Michael P Moore
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
22
|
Parsons PJ, Bridle JR, Rüber L, Genner MJ. Evolutionary divergence in life history traits among populations of the Lake Malawi cichlid fish Astatotilapia calliptera. Ecol Evol 2017; 7:8488-8506. [PMID: 29075465 PMCID: PMC5648681 DOI: 10.1002/ece3.3311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.
Collapse
Affiliation(s)
- Paul J Parsons
- School of Biological Sciences University of Bristol Bristol UK.,University of Exeter Penryn UK
| | - Jon R Bridle
- School of Biological Sciences University of Bristol Bristol UK
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern Bern Switzerland.,Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Martin J Genner
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
23
|
Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat Ecol Evol 2017; 1:1385-1391. [DOI: 10.1038/s41559-017-0268-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 07/03/2017] [Indexed: 11/08/2022]
|
24
|
Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, Bouchier C, Ayala D, Paupy C, Moro CV, Lambrechts L. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. SCIENCE ADVANCES 2017; 3:e1700585. [PMID: 28835919 PMCID: PMC5559213 DOI: 10.1126/sciadv.1700585] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/05/2017] [Indexed: 05/19/2023]
Abstract
Conditions experienced during larval development of holometabolous insects can affect adult traits, but whether differences in the bacterial communities of larval development sites contribute to variation in the ability of insect vectors to transmit human pathogens is unknown. We addressed this question in the mosquito Aedes aegypti, a major arbovirus vector breeding in both sylvatic and domestic habitats in Sub-Saharan Africa. Targeted metagenomics revealed differing bacterial communities in the water of natural breeding sites in Gabon. Experimental exposure to different native bacterial isolates during larval development resulted in significant differences in pupation rate and adult body size but not life span. Larval exposure to an Enterobacteriaceae isolate resulted in decreased antibacterial activity in adult hemolymph and reduced dengue virus dissemination titer. Together, these data provide the proof of concept that larval exposure to different bacteria can drive variation in adult traits underlying vectorial capacity. Our study establishes a functional link between larval ecology, environmental microbes, and adult phenotypic variation in a holometabolous insect vector.
Collapse
Affiliation(s)
- Laura B. Dickson
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, CNRS URA 3012, Paris, France
- Corresponding author. (L.B.D.); (L.L.)
| | - Davy Jiolle
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, CNRS URA 3012, Paris, France
- MIVEGEC, UMR IRD 224-CNRS 5290-UM, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Guillaume Minard
- Université de Lyon, Lyon, France
- Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, INRA UMR 1418, Villeurbanne, France
- Metapopulation Research Center, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, CNRS URA 3012, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, C3BI, Institut Pasteur, USR 3756 IP CNRS, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, C3BI, Institut Pasteur, USR 3756 IP CNRS, Paris, France
- Genomics Facility, Biomics Pole, CITECH, Institut Pasteur, Paris, France
| | | | - Diego Ayala
- MIVEGEC, UMR IRD 224-CNRS 5290-UM, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, UMR IRD 224-CNRS 5290-UM, Montpellier, France
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France
- Université Lyon 1, CNRS UMR 5557 Ecologie Microbienne, INRA UMR 1418, Villeurbanne, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, CNRS URA 3012, Paris, France
- Corresponding author. (L.B.D.); (L.L.)
| |
Collapse
|
25
|
Roux O, Vantaux A, Roche B, Yameogo KB, Dabiré KR, Diabaté A, Simard F, Lefèvre T. Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proc Biol Sci 2017; 282:20152430. [PMID: 26674956 DOI: 10.1098/rspb.2015.2430] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology.
Collapse
Affiliation(s)
- Olivier Roux
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Amélie Vantaux
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Benjamin Roche
- UMMISCO (Unité de Modélisation Mathématique et Informatique des Systèmes Complexes), UMI IRD/UPMC 209, Bondy, France
| | - Koudraogo B Yameogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Frederic Simard
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France
| | - Thierry Lefèvre
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290-UM, Montpellier, France Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
26
|
Svanfeldt K, Monro K, Marshall DJ. Dispersal duration mediates selection on offspring size. OIKOS 2016. [DOI: 10.1111/oik.03604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karin Svanfeldt
- Centre of Geometric Biology/School of Biological Sciences Monash University Victoria 3800 Australia
| | - Keyne Monro
- Centre of Geometric Biology/School of Biological Sciences Monash University Victoria 3800 Australia
| | - Dustin J. Marshall
- Centre of Geometric Biology/School of Biological Sciences Monash University Victoria 3800 Australia
| |
Collapse
|
27
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
28
|
Dingeldein AL, White JW. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish. J Anim Ecol 2016; 85:903-14. [PMID: 26913461 DOI: 10.1111/1365-2656.12506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/04/2016] [Indexed: 11/29/2022]
Abstract
Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post-settlement behaviour, although not as we expected: higher quality larvae join groups more frequently (safer) but then forage more. Foraging is risky but may allow faster post-settlement growth, reducing mortality risk in the long run. This shows that behaviour likely serves as a mechanistic link connecting larval traits to post-settlement selective mortality.
Collapse
Affiliation(s)
- Andrea L Dingeldein
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| | - J Wilson White
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC, 28403, USA
| |
Collapse
|
29
|
Anderson BB, Scott A, Dukas R. Social behavior and activity are decoupled in larval and adult fruit flies. Behav Ecol 2015. [DOI: 10.1093/beheco/arv225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Bouchard SS, O'Leary CJ, Wargelin LJ, Charbonnier JF, Warkentin KM. Post‐metamorphic carry‐over effects of larval digestive plasticity. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah S. Bouchard
- Department of Biology and Earth Science Otterbein University 1 S. Grove St.Westerville OH 43081USA
| | - Chelsea J. O'Leary
- Department of Biology and Earth Science Otterbein University 1 S. Grove St.Westerville OH 43081USA
| | - Lindsay J. Wargelin
- Department of Biology and Earth Science Otterbein University 1 S. Grove St.Westerville OH 43081USA
| | - Julie F. Charbonnier
- Department of Biology Virginia Commonwealth University 1000 West Cary St.Richmond VA 23284USA
| | - Karen M. Warkentin
- Department of Biology Boston University 5 Cummington MallBoston MA 02215USA
- Smithsonian Tropical Research Institute Apartado Postal 0843‐03092 Balboa Panama
| |
Collapse
|
31
|
Aguirre JD, Blows MW, Marshall DJ. The genetic covariance between life cycle stages separated by metamorphosis. Proc Biol Sci 2015; 281:20141091. [PMID: 24966319 DOI: 10.1098/rspb.2014.1091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage.
Collapse
Affiliation(s)
- J David Aguirre
- School of Biological Sciences, University of Queensland, Brisbane 4072, Australia
| | - Mark W Blows
- School of Biological Sciences, University of Queensland, Brisbane 4072, Australia
| | - Dustin J Marshall
- School of Biological Sciences, University of Queensland, Brisbane 4072, Australia Marine Evolutionary Ecology Group, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
32
|
Allen RM, Marshall D. Egg size effects across multiple life-history stages in the marine annelid Hydroides diramphus. PLoS One 2014; 9:e102253. [PMID: 25036850 PMCID: PMC4103814 DOI: 10.1371/journal.pone.0102253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022] Open
Abstract
The optimal balance of reproductive effort between offspring size and number depends on the fitness of offspring size in a particular environment. The variable environments offspring experience, both among and within life-history stages, are likely to alter the offspring size/fitness relationship and favor different offspring sizes. Hence, the many environments experienced throughout complex life-histories present mothers with a significant challenge to optimally allocate their reproductive effort. In a marine annelid, we tested the relationship between egg size and performance across multiple life-history stages, including: fertilization, larval development, and post-metamorphosis survival and size in the field. We found evidence of conflicting effects of egg size on performance: larger eggs had higher fertilization under sperm-limited conditions, were slightly faster to develop pre-feeding, and were larger post-metamorphosis; however, smaller eggs had higher fertilization when sperm was abundant, and faster planktonic development; and egg size did not affect post-metamorphic survival. The results indicate that egg size effects are conflicting in H. diramphus depending on the environments within and among life-history stages. We suggest that offspring size in this species may be a compromise between the overall costs and benefits of egg sizes in each stage and that performance in any one stage is not maximized.
Collapse
Affiliation(s)
- Richard M. Allen
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Dustin Marshall
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
33
|
Variability in size-selective mortality obscures the importance of larval traits to recruitment success in a temperate marine fish. Oecologia 2014; 175:1201-10. [DOI: 10.1007/s00442-014-2968-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
34
|
Earl JE, Semlitsch RD. Carryover effects in amphibians: are characteristics of the larval habitat needed to predict juvenile survival? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:1429-1442. [PMID: 24147414 DOI: 10.1890/12-1235.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Carryover effects occur when experiences early in life affect an individual's performance at a later stage. Many studies have shown carryover effects to be important for future performance. However, it is currently unclear whether variation in later environments could overwhelm factors from an earlier life stage. We were interested in whether similar patterns would emerge under the same experimental design with similar taxa. To examine this, we implemented a four-way factorial experimental design with different forestry practices on three species of anurans (each examined in different years) in the aquatic larval environment and terrestrial juvenile environment in outdoor mesocosms in central Missouri, USA. Using Cormack-Jolly-Seber mark-recapture models implemented in program MARK, we investigated whether one environment or both environments best predicted terrestrial juvenile survival. We found only limited evidence of carryover effects for one of three species in one time period. These were the effects of time to metamorphosis and body condition at metamorphosis predicting leopard frog (Lithobates sphenocephalus) survival. However, both effects were counterintuitive and/or very weak. For wood frogs (L. sylvaticus), all of the variables predicting survival had confidence intervals that included zero, but very low survival may have limited our ability to estimate parameters. The terrestrial environment was important for predicting survival in both American toads (Anaxyrus americanus) and southern leopard frogs. The partial harvest forest tended to increase survival relative to control forest and early-successional forest in American toads. Alternately, early-successional forest with downed wood removed increased survival for leopard frogs, but this treatment was no different from control forest for American toads. Previous studies have shown negative effects of recent clearcuts on terrestrial amphibians. It appears that vegetative regrowth after just a few years can mitigate these initial negative effects. Our study shows that variation in later environments probably can overwhelm variation from earlier environments. However, previous evidence of carryover effects suggests that more research is needed to predict when carryover effects are likely to occur.
Collapse
Affiliation(s)
- Julia E Earl
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, Tennessee 37996, USA.
| | | |
Collapse
|
35
|
Hartmann AC, Marhaver KL, Chamberland VF, Sandin SA, Vermeij MJA. Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species. Ecology 2013; 94:1966-76. [DOI: 10.1890/13-0161.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Ginger KWK, Vera CBS, R D, Dennis CKS, Adela LJ, Yu Z, Thiyagarajan V. Larval and post-larval stages of Pacific oyster (Crassostrea gigas) are resistant to elevated CO2. PLoS One 2013; 8:e64147. [PMID: 23724027 PMCID: PMC3665819 DOI: 10.1371/journal.pone.0064147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
The average pH of surface oceans has decreased by 0.1 unit since industrialization and is expected to decrease by another 0.3-0.7 units before the year 2300 due to the absorption of anthropogenic CO2. This human-caused pH change is posing serious threats and challenges to the Pacific oyster (Crassostrea gigas), especially to their larval stages. Our knowledge of the effect of reduced pH on C. gigas larvae presently relies presumptively on four short-term (<4 days) survival and growth studies. Using multiple physiological measurements and life stages, the effects of long-term (40 days) exposure to pH 8.1, 7.7 and 7.4 on larval shell growth, metamorphosis, respiration and filtration rates at the time of metamorphosis, along with the juvenile shell growth and structure of the C. gigas, were examined in this study. The mean survival and growth rates were not affected by pH. The metabolic, feeding and metamorphosis rates of pediveliger larvae were similar, between pH 8.1 and 7.7. The pediveligers at pH 7.4 showed reduced weight-specific metabolic and filtration rates, yet were able to sustain a more rapid post-settlement growth rate. However, no evidence suggested that low pH treatments resulted in alterations to the shell ultrastructures (SEM images) or elemental compositions (i.e., Mg/Ca and Sr/Ca ratios). Thus, larval and post-larval forms of the C. gigas in the Yellow Sea are probably resistant to elevated CO2 and decreased near-future pH scenarios. The pre-adapted ability to resist a wide range of decreased pH may provide C. gigas with the necessary tolerance to withstand rapid pH changes over the coming century.
Collapse
Affiliation(s)
- Ko W. K. Ginger
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| | - Chan B. S. Vera
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| | - Dineshram R
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| | - Choi K. S. Dennis
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| | - Li J. Adela
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| | - Ziniu Yu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
37
|
Ritchie H, Marshall DJ. Fertilisation is not a new beginning: sperm environment affects offspring developmental success. ACTA ACUST UNITED AC 2013; 216:3104-9. [PMID: 23661780 DOI: 10.1242/jeb.087221] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For organisms with complex life histories, the direction and magnitude of phenotypic links among life-history stages can have important ecological and evolutionary effects. While the phenotypic links between mothers and offspring, as well as between larvae and adults, are well recognised, the links between sperm phenotype and offspring phenotype have been less well explored. Here, we used a split-clutch/split-ejaculate design to examine whether the environment that sperm experience affects the subsequent performance of larvae in the broadcast spawning marine invertebrate Galeolaria gemineoa. The environment that sperm experienced affected the developmental success of larvae sired by these sperm; larvae sired by sperm that experienced low salinities had poorer developmental success than larvae sired by sperm that experienced a normal salinity. When we explored the interactive effects of the sperm environment and the larval environment with an orthogonal design, we found an interaction; when sperm and larvae experienced the same environment, performance was generally higher than when the sperm and larval environments differed. These effects could be due to selection on specific sperm phenotypes, phenotypic modification of the sperm or both. Together, our results challenge the traditional notion that sperm are merely transporters of genetic material; instead, significant covariance between sperm and offspring phenotypes exists. Our study adds to a growing list that demonstrates that fertilisation does have a homogenising effect on the phenotype of the zygote, and that events before fertilisation during the gamete phase can carry through to affect performance in later life-history stages.
Collapse
Affiliation(s)
- Hannah Ritchie
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
38
|
Polato NR, Altman NS, Baums IB. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol Ecol 2013; 22:1366-82. [DOI: 10.1111/mec.12163] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Nicholas R. Polato
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - Naomi S. Altman
- Department of Statistics; The Pennsylvania State University; 312 Thomas Building University Park PA 16802 USA
| | - Iliana B. Baums
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| |
Collapse
|
39
|
Benesh DP, Hafer N. Growth and ontogeny of the tapeworm Schistocephalus solidus in its copepod first host affects performance in its stickleback second intermediate host. Parasit Vectors 2012; 5:90. [PMID: 22564512 PMCID: PMC3403952 DOI: 10.1186/1756-3305-5-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background For parasites with complex life cycles, size at transmission can impact performance in the next host, thereby coupling parasite phenotypes in the two consecutive hosts. However, a handful of studies with parasites, and numerous studies with free-living, complex-life-cycle animals, have found that larval size correlates poorly with fitness under particular conditions, implying that other traits, such as physiological or ontogenetic variation, may predict fitness more reliably. Using the tapeworm Schistocephalus solidus, we evaluated how parasite size, age, and ontogeny in the copepod first host interact to determine performance in the stickleback second host. Methods We raised infected copepods under two feeding treatments (to manipulate parasite growth), and then exposed fish to worms of two different ages (to manipulate parasite ontogeny). We assessed how growth and ontogeny in copepods affected three measures of fitness in fish: infection probability, growth rate, and energy storage. Results Our main, novel finding is that the increase in fitness (infection probability and growth in fish) with larval size and age observed in previous studies on S. solidus seems to be largely mediated by ontogenetic variation. Worms that developed rapidly (had a cercomer after 9 days in copepods) were able to infect fish at an earlier age, and they grew to larger sizes with larger energy reserves in fish. Infection probability in fish increased with larval size chiefly in young worms, when size and ontogeny are positively correlated, but not in older worms that had essentially completed their larval development in copepods. Conclusions Transmission to sticklebacks as a small, not-yet-fully developed larva has clear costs for S. solidus, but it remains unclear what prevents the evolution of faster growth and development in this species.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | |
Collapse
|
40
|
McConnell B, Gradinger R, Iken K, Bluhm BA. Growth rates of arctic juvenile Scolelepis squamata (Polychaeta: Spionidae) isolated from Chukchi Sea fast ice. Polar Biol 2012. [DOI: 10.1007/s00300-012-1187-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
|