1
|
Pita-Aquino JN, Bock DG, Baeckens S, Losos JB, Kolbe JJ. Stronger evidence for genetic ancestry than environmental conditions in shaping the evolution of a complex signalling trait during biological invasion. Mol Ecol 2023; 32:5558-5574. [PMID: 37698063 DOI: 10.1111/mec.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Introductions of invasive species to new environments often result in rapid rates of trait evolution. While in some cases these evolutionary transitions are adaptive and driven by natural selection, they can also result from patterns of genetic and phenotypic variation associated with the invasion history. Here, we examined the brown anole (Anolis sagrei), a widespread invasive lizard for which genetic data have helped trace the sources of non-native populations. We focused on the dewlap, a complex signalling trait known to be subject to multiple selective pressures. We measured dewlap reflectance, pattern and size in 30 non-native populations across the southeastern United States. As well, we quantified environmental variables known to influence dewlap signal effectiveness, such as canopy openness. Further, we used genome-wide data to estimate genetic ancestry, perform association mapping and test for signatures of selection. We found that among-population variation in dewlap characteristics was best explained by genetic ancestry. This result was supported by genome-wide association mapping, which identified several ancestry-specific loci associated with dewlap traits. Despite the strong imprint of this aspect of the invasion history on dewlap variation, we also detected significant relationships between dewlap traits and local environmental conditions. However, we found limited evidence that dewlap-associated genetic variants have been subject to selection. Our study emphasizes the importance of genetic ancestry and admixture in shaping phenotypes during biological invasion, while leaving the role of selection unresolved, likely due to the polygenic genetic architecture of dewlaps and selection acting on many genes of small effect.
Collapse
Affiliation(s)
- Jessica N Pita-Aquino
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dan G Bock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Simon Baeckens
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan B Losos
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
2
|
Batabyal A, Zambre A, Mclaren T, Rankin KJ, Somaweera R, Stuart‐Fox D, Thaker M. The extent of rapid colour change in male agamid lizards is unrelated to overall sexual dichromatism. Ecol Evol 2023; 13:e10293. [PMID: 37435020 PMCID: PMC10329938 DOI: 10.1002/ece3.10293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Dynamic colour change is widespread in ectothermic animals, but has primarily been studied in the context of background matching. For most species, we lack quantitative data on the extent of colour change across different contexts. It is also unclear whether and how colour change varies across body regions, and how overall sexual dichromatism relates to the extent of individual colour change. In this study, we obtained reflectance measures in response to different stimuli for males and females of six species of agamid lizards (Agamidae, sister family to Chameleonidae) comprising three closely related species pairs. We computed the colour volume in a lizard-vision colour space occupied by males and females of each species and estimated overall sexual dichromatism based on the area of non-overlapping male and female colour volumes. As expected, males had larger colour volumes than females, but the extent of colour change in males differed between species and between body regions. Notably, species that were most sexually dichromatic were not necessarily those in which males showed the greatest individual colour change. Our results indicate that the extent of colour change is independent of the degree of sexual dichromatism and demonstrate that colour change on different body regions can vary substantially even between pairs of closely related species.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural SciencesFLAME UniversityPuneIndia
- Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia
| | - Amod Zambre
- Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Tess Mclaren
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Katrina J. Rankin
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Ruchira Somaweera
- Stantec AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Devi Stuart‐Fox
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Maria Thaker
- Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
3
|
Thompson A, Kapsanaki V, Liwanag HEM, Pafilis P, Wang IJ, Brock KM. Some like it hotter: Differential thermal preferences among lizard color morphs. J Therm Biol 2023; 113:103532. [PMID: 37055135 DOI: 10.1016/j.jtherbio.2023.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Temperature rules the lives of ectotherms. To perform basic biological functions, ectotherms must make behavioral adjustments to keep their body temperatures near a preferred temperature (Tpref). Many color polymorphic lizards are active thermoregulators and exhibit morph differences in traits related to thermoregulation, such as color, body size, and microhabitat use. The Aegean wall lizard, Podarcis erhardii, is a heliothermic lizard with orange, white, and yellow color morphs that differ in size, behavior, and microhabitat use. Here, we tested whether P. erhardii color morphs from the same population from Naxos island, Greece, differ in Tpref. We hypothesized that orange morphs would prefer lower temperatures than white and yellow morphs because orange morphs are often found on cooler substrates and in microhabitats with more vegetation cover. We obtained Tpref for 95 individuals using laboratory thermal gradient experiments of wild-caught lizards and found that orange morphs do, indeed, prefer cooler temperatures. Average orange morph Tpref was 2.85 °C lower than average white and yellow morph Tpref. Our results add support to the idea that P. erhardii color morphs have multivariate alternative phenotypes and present the possibility that thermally heterogeneous environments play a role in the maintenance of color polymorphism in this species.
Collapse
Affiliation(s)
- Asher Thompson
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA, USA
| | - Vassiliki Kapsanaki
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Heather E M Liwanag
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Panayiotis Pafilis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece; Zoological Museum, National and Kapodistrian University of Athens, Athens, Greece
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA, USA; Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA, USA; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece; Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Abstract
Abstract
Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard, Podarcis erhardii, is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized approach. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs; select different refuge types; and re-emerge less often after being approached compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.
Significance statement
Color polymorphic species often differ in behaviors related to reproduction, but differences in other behaviors are relatively underexplored. In this study, we use an experimental approach in two natural populations of color populations of color polymorphic lizards to determine that color morphs have diverged in their escape behaviors. By conducting our experiments in two different populations with similar predator regimes, we show for the first time that behavioral differences among intra-specific color morphs are repeatable across populations, suggesting that alternative behavioral strategies have evolved in this species. Using this experimental approach, we demonstrate that the brightest orange morph stays closer to refuge than other morphs, uses a different refuge type (vegetation) more often than other morphs (wall crevices), and take much longer to emerge from refuge after a simulated predation event than other morphs. Thus, selective pressures from visual predators may differ between morphs and play a role in the evolution and maintenance of color polymorphisms in these types of systems. Our study species, Podarcis erhardii, belongs to a highly color polymorphic genus (19/23 spp. are color polymorphic) that contains the same three color morphs, thus we believe our results may be relevant to more than just P. erhardii.
Collapse
|
5
|
Scherrer R, Donihue CM, Reynolds RG, Losos JB, Geneva AJ. Dewlap colour variation in Anolis sagrei is maintained among habitats within islands of the West Indies. J Evol Biol 2022; 35:680-692. [PMID: 35535762 PMCID: PMC9321103 DOI: 10.1111/jeb.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour in Anolis lizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap coloration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap coloration in the most widespread species of anole, Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation-by-distance did not seem to explain our results. On the other hand, these habitat-specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation-parallel responses across islands-was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.
Collapse
Affiliation(s)
- Raphaël Scherrer
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Colin M Donihue
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Graham Reynolds
- Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, USA
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Anthony J Geneva
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Nelson CM, Ord TJ. Identifying potential cues of species identity in complex animal signals. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Labra A, Reyes‐Olivares C, Moreno‐Gómez FN, Velásquez NA, Penna M, Delano PH, Narins PM. Geographic variation in the matching between call characteristics and tympanic sensitivity in the Weeping lizard. Ecol Evol 2021; 11:18633-18650. [PMID: 35003698 PMCID: PMC8717325 DOI: 10.1002/ece3.8469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Effective communication requires a match among signal characteristics, environmental conditions, and receptor tuning and decoding. The degree of matching, however, can vary, among others due to different selective pressures affecting the communication components. For evolutionary novelties, strong selective pressures are likely to act upon the signal and receptor to promote a tight match among them. We test this prediction by exploring the coupling between the acoustic signals and auditory sensitivity in Liolaemus chiliensis, the Weeping lizard, the only one of more than 285 Liolaemus species that vocalizes. Individuals emit distress calls that convey information of predation risk to conspecifics, which may respond with antipredator behaviors upon hearing calls. Specifically, we explored the match between spectral characteristics of the distress calls and the tympanic sensitivities of two populations separated by more than 700 km, for which previous data suggested variation in their distress calls. We found that populations differed in signal and receptor characteristics and that this signal variation was explained by population differences in body size. No precise match occurred between the communication components studied, and populations differed in the degree of such correspondence. We suggest that this difference in matching between populations relates to evolutionary processes affecting the Weeping lizard distress calls.
Collapse
Affiliation(s)
- Antonieta Labra
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
| | - Claudio Reyes‐Olivares
- Programa de Fisiología y BiofísicaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de ChileSantiago de ChileChile
| | - Felipe N. Moreno‐Gómez
- Departamento de Biología y QuímicaFacultad de Ciencias BásicasUniversidad Católica del MauleTalcaChile
| | - Nelson A. Velásquez
- Departamento de Biología y QuímicaFacultad de Ciencias BásicasUniversidad Católica del MauleTalcaChile
| | - Mario Penna
- Programa de Fisiología y BiofísicaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de ChileSantiago de ChileChile
| | - Paul H. Delano
- Departamento de NeurocienciaFacultad de MedicinaUniversidad de ChileSantiagoChile
- Centro Avanzado de Ingeniería Eléctrica y ElectrónicaAC3EUniversidad Técnica Federico Santa MaríaValparaísoChile
| | - Peter M. Narins
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
de Mello PLH, Hime PM, Glor RE. Transcriptomic Analysis of Skin Color in Anole Lizards. Genome Biol Evol 2021; 13:evab110. [PMID: 33988681 PMCID: PMC8290120 DOI: 10.1093/gbe/evab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
Color and color pattern are critical for animal camouflage, reproduction, and defense. Few studies, however, have attempted to identify candidate genes for color and color pattern in squamate reptiles, a colorful group with over 10,000 species. We used comparative transcriptomic analyses between white, orange, and yellow skin in a color-polymorphic species of anole lizard to 1) identify candidate color and color-pattern genes in squamates and 2) assess if squamates share an underlying genetic basis for color and color pattern variation with other vertebrates. Squamates have three types of chromatophores that determine color pattern: guanine-filled iridophores, carotenoid- or pteridine-filled xanthophores/erythrophores, and melanin-filled melanophores. We identified 13 best candidate squamate color and color-pattern genes shared with other vertebrates: six genes linked to pigment synthesis pathways, and seven genes linked to chromatophore development and maintenance. In comparisons of expression profiles between pigment-rich and white skin, pigment-rich skin upregulated the pteridine pathway as well as xanthophore/erythrophore development and maintenance genes; in comparisons between orange and yellow skin, orange skin upregulated the pteridine and carotenoid pathways as well as melanophore maintenance genes. Our results corroborate the predictions that squamates can produce similar colors using distinct color-reflecting molecules, and that both color and color-pattern genes are likely conserved across vertebrates. Furthermore, this study provides a concise list of candidate genes for future functional verification, representing a first step in determining the genetic basis of color and color pattern in anoles.
Collapse
Affiliation(s)
- Pietro Longo Hollanda de Mello
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
9
|
Ord TJ, Klomp DA, Summers TC, Diesmos A, Ahmad N, Das I. Deep-time convergent evolution in animal communication presented by shared adaptations for coping with noise in lizards and other animals. Ecol Lett 2021; 24:1750-1761. [PMID: 34196091 DOI: 10.1111/ele.13773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022]
Abstract
Convergence in communication appears rare compared with other forms of adaptation. This is puzzling, given communication is acutely dependent on the environment and expected to converge in form when animals communicate in similar habitats. We uncover deep-time convergence in territorial communication between two groups of tropical lizards separated by over 140 million years of evolution: the Southeast Asian Draco and Caribbean Anolis. These groups have repeatedly converged in multiple aspects of display along common environmental gradients. Robot playbacks to free-ranging lizards confirmed that the most prominent convergence in display is adaptive, as it improves signal detection. We then provide evidence from a sample of the literature to further show that convergent adaptation among highly divergent animal groups is almost certainly widespread in nature. Signal evolution is therefore curbed towards the same set of adaptive solutions, especially when animals are challenged with the problem of communicating effectively in noisy environments.
Collapse
Affiliation(s)
- Terry J Ord
- Evolution & Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Danielle A Klomp
- Evolution & Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Thomas C Summers
- Evolution & Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Arvin Diesmos
- Herpetology Section, Zoology Division, National Museum of the Philippines, Manila, Philippines
| | - Norhayati Ahmad
- Department of Biological Sciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| |
Collapse
|
10
|
Hiermes M, Reher S, Rick IP, Bakker TCM. Influence of lighting environment on social preferences in sticklebacks from two different photic habitats. I. mate preferences of wild-caught females. Curr Zool 2021; 67:299-308. [PMID: 34616922 PMCID: PMC8488994 DOI: 10.1093/cz/zoab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet (UV) A signals (320-400 nm) are important in mate choice in numerous species. The sensitivity for UV signals is not only assumed to be costly, but also expected to be a function of the prevailing ecological conditions. Generally, those signals are favored by selection that efficiently reach the receiver. A decisive factor for color signaling is the lighting environment, especially in aquatic habitats, as the visibility of signals, and thus costs and benefits, are instantaneously influenced by it. Although ecological aspects of color signal evolution are relatively well-studied, there is little data on specific effects of environmental UV-light conditions on signaling at these shorter wavelengths. We studied wild-caught gravid female 3-spined sticklebacks Gasterosteus aculeatus of 2 photic habitat types (tea-stained and clear-water lakes), possessing great variation in their UV transmission. In 2 treatments, tea-stained and clear-water, preferences for males viewed under UV-present (UV+) and UV-absent (UV-) conditions were tested. A preference for males under UV+ conditions was found for females from both habitat types, thus stressing the significance of UV signals in stickleback's mate choice decisions. However, females from both habitat types showed the most pronounced preferences for males under UV+ conditions under clear-water test conditions. Moreover, reflectance measurements revealed that the carotenoid-based orange-red breeding coloration in wild-caught males of both habitat types differed significantly in color intensity (higher in clear-water males) and hue (more red shifted in clear-water males) while no significant differences in UV coloration were found. The differential reflection patterns in longer wavelengths suggest that sticklebacks of both habitat types have adapted to the respective water conditions. Adaptations of UV signals in a sexual context to ambient light conditions in both behavior and coloration seem less evident.
Collapse
Affiliation(s)
- Meike Hiermes
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
| | - Stephanie Reher
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
- Institute of Zoology, Functional Ecology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Ingolf P Rick
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
| |
Collapse
|
11
|
Prates I, D'Angiolella AB, Rodrigues MT, Melo-Sampaio PR, de Queiroz K, Bell RC. Evolutionary drivers of sexual signal variation in Amazon Slender Anoles. Evolution 2021; 75:1361-1376. [PMID: 33860933 DOI: 10.1111/evo.14230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/29/2023]
Abstract
Phenotypic variation among populations, as seen in the signaling traits of many species, provides an opportunity to test whether similar factors generate repeated phenotypic patterns in different parts of a species' range. We investigated whether genetic divergence, abiotic gradients, and sympatry with closely related species explain variation in the dewlap colors of Amazon Slender Anoles, Anolis fuscoauratus. To this aim, we characterized dewlap diversity in the field with respect to population genetic structure and evolutionary relationships, assessed whether dewlap phenotypes are associated with climate or landscape variables, and tested for nonrandom associations in the distributions of A. fuscoauratus phenotypes and sympatric Anolis species. We found that dewlap colors vary among but not within sites in A. fuscoauratus. Regional genetic clusters included multiple phenotypes, while populations with similar dewlaps were often distantly related. Phenotypes did not segregate in environmental space, providing no support for optimized signal transmission at a local scale. Instead, we found a negative association between certain phenotypes and sympatric Anolis species with similar dewlap color attributes, suggesting that interactions with closely related species promoted dewlap divergence among A. fuscoauratus populations. Amazon Slender Anoles emerge as a promising system to address questions about parallel trait evolution and the contribution of signaling traits to speciation.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109
| | | | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paulo R Melo-Sampaio
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560.,Herpetology Department, California Academy of Sciences, San Francisco, California, 94118
| |
Collapse
|
12
|
Kabir MS, Venkatesan R, Thaker M. Multiple Sensory Modalities in Diurnal Geckos Is Associated with the Signaling Environment and Evolutionary Constraints. Integr Org Biol 2021; 2:obaa027. [PMID: 33791567 PMCID: PMC7891680 DOI: 10.1093/iob/obaa027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To be effective, animal signals need to be detectable in the environment, but their development and expression require resources. For multimodal communication, investment in elaborating traits in one modality could reduce the elaboration of traits in other modalities. In Cnemaspis geckos, chemical signals for conspecific communication pre-dated the evolution of visual signals, allowing us to examine the potential trade-off in signal elaboration and the current habitat associations with signal use. We studied five species of Cnemaspis and quantified visual (patch size, color characteristics) and chemical (secretory composition) traits in males, as well as key environmental parameters (temperature, humidity, light) in each of their habitats. Within species, we found some trade-off in the elaboration of signals, as the strength of several components in the visual and chemical modalities were negatively associated. Strength of some signal components in each modality was also independently associated with specific environmental parameters that affect their detection (visual traits) and persistence (chemical traits). Specifically, species with larger, brighter, and more saturated color patches were found in habitats where the brightness and chroma of light were lower. Furthermore, environments with higher substrate temperature and higher relative humidity harbored species that produced secretions with a higher percentage of saturated and aromatic compounds. Thus, the elaboration of multimodal signals in this group of Cnemaspis geckos seems to increase the efficiency of communication in the signaling-environment, but the strength of signals in different modalities is constrained by trade-offs in signal expression.
Collapse
Affiliation(s)
- M S Kabir
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560 012, India
| | - R Venkatesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India.,Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741 246, India
| | - M Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560 012, India
| |
Collapse
|
13
|
Unlinking the Speciation Steps: Geographical Factors Drive Changes in Sexual Signals of an Amazonian Nurse-Frog Through Body Size Variation. Evol Biol 2021. [DOI: 10.1007/s11692-020-09525-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Myers TC, de Mello PLH, Glor RE. A morphometric assessment of species boundaries in a widespread anole lizard (Squamata: Dactyloidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractCryptic species – genetically distinct species that are morphologically difficult to distinguish – present challenges to systematists. Operationally, cryptic species are very difficult to identify and sole use of genetic data or morphological data can fail to recognize evolutionarily isolated lineages. We use morphometric data to test species boundaries hypothesized with genetic data in the North Caribbean bark anole (Anolis distichus), a suspected species complex. We use univariate and multivariate analyses to test if candidate species based on genetic data can be accurately diagnosed. We also test alternative species delimitation scenarios with a model fitting approach that evaluates normal mixture models capable of identifying morphological clusters. Our analyses reject the hypothesis that the candidate species are diagnosable. Neither uni- nor multivariate morphometric data distinguish candidate species. The best-supported model included two morphological clusters; however, these clusters were uneven and did not align with a plausible species divergence scenario. After removing two related traits driving this result, only one cluster was supported. Despite substantial differentiation revealed by genetic data, we recover no new evidence to delimit species and refrain from taxonomic revision. This study highlights the importance of considering other types of data along with molecular data when delimiting species.
Collapse
Affiliation(s)
- Tanner C Myers
- Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL, USA
| | - Pietro L H de Mello
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Herpetology Division, Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Herpetology Division, Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
15
|
Gray LN, Barley AJ, Hillis DM, Pavón‐Vázquez CJ, Poe S, White BA. Does breeding season variation affect evolution of a sexual signaling trait in a tropical lizard clade? Ecol Evol 2020; 10:3738-3746. [PMID: 32313632 PMCID: PMC7160170 DOI: 10.1002/ece3.6167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022] Open
Abstract
Sexually selected traits can be expected to increase in importance when the period of sexual behavior is constrained, such as in seasonally restricted breeders. Anolis lizard male dewlaps are classic examples of multifaceted signaling traits, with demonstrated intraspecific reproductive function reflected in courtship behavior. Fitch and Hillis found a correlation between dewlap size and seasonality in mainland Anolis using traditional statistical methods and suggested that seasonally restricted breeding seasons enhanced the differentiation of this signaling trait. Here, we present two tests of the Fitch-Hillis Hypothesis using new phylogenetic and morphological data sets for 44 species of Mexican Anolis. A significant relationship between dewlap size and seasonality is evident in phylogenetically uncorrected analyses but erodes once phylogeny is accounted for. This loss of strong statistical support for a relationship between a key aspect of dewlap morphology and seasonality also occurs within a species complex (A. sericeus group) that inhabits seasonal and aseasonal environments. Our results fail to support seasonality as a strong driver of evolution of Anolis dewlap size. We discuss the implications of our results and the difficulty of disentangling the strength of single mechanisms on trait evolution when multiple selection pressures are likely at play.
Collapse
Affiliation(s)
- Levi N. Gray
- Department of BiologyUniversity of New MexicoAlbuquerqueNMUSA
| | | | - David M. Hillis
- Department of Integrative BiologyUniversity of TexasAustinTXUSA
| | | | - Steven Poe
- Department of BiologyUniversity of New MexicoAlbuquerqueNMUSA
| | | |
Collapse
|
16
|
Choi N, Bern M, Elias DO, McGinley RH, Rosenthal MF, Hebets EA. A mismatch between signal transmission efficacy and mating success calls into question the function of complex signals. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Male responses suggest both evolutionary conservation and rapid change in chemical cues of female widow spiders. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Wollenberg Valero KC, Marshall JC, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller ML, Pabijan M, Russello MA, Sinervo B, Werneck FP, Sites JW, Wiens JJ, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes (Basel) 2019; 10:genes10090646. [PMID: 31455040 PMCID: PMC6769790 DOI: 10.3390/genes10090646] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
In this contribution, the aspects of reptile and amphibian speciation that emerged from research performed over the past decade are reviewed. First, this study assesses how patterns and processes of speciation depend on knowing the taxonomy of the group in question, and discuss how integrative taxonomy has contributed to speciation research in these groups. This study then reviews the research on different aspects of speciation in reptiles and amphibians, including biogeography and climatic niches, ecological speciation, the relationship between speciation rates and phenotypic traits, and genetics and genomics. Further, several case studies of speciation in reptiles and amphibians that exemplify many of these themes are discussed. These include studies of integrative taxonomy and biogeography in South American lizards, ecological speciation in European salamanders, speciation and phenotypic evolution in frogs and lizards. The final case study combines genomics and biogeography in tortoises. The field of amphibian and reptile speciation research has steadily moved forward from the assessment of geographic and ecological aspects, to incorporating other dimensions of speciation, such as genetic mechanisms and evolutionary forces. A higher degree of integration among all these dimensions emerges as a goal for future research.
Collapse
Affiliation(s)
| | - Jonathon C Marshall
- Department of Zoology, Weber State University, 1415 Edvalson Street, Dept. 2505, Ogden, UT 84401, USA
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York, College at Oneonta, Oneonta, NY 13820, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Arley Camargo
- Centro Universitario de Rivera, Universidad de la República, Ituzaingó 667, Rivera 40000, Uruguay
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC, CENPAT-CONICET) Bv. Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Fernanda P Werneck
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-000, Brazil
| | - Jack W Sites
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Steinfartz
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Erritouni YR, Reinke BA, Calsbeek R. A novel body coloration phenotype in Anolis sagrei: Implications for physiology, fitness, and predation. PLoS One 2019; 13:e0209261. [PMID: 30596690 PMCID: PMC6312277 DOI: 10.1371/journal.pone.0209261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
In animals, color signals that convey information about quality are often associated with costs linked to the expression of coloration and may therefore be honest signals of sender quality. Honest indicators are often seen in sexual signals that are used by males to advertise quality to females. Carotenoid and pterin pigments are responsible for yellow, orange, and red coloration in a variety of taxa, but can also serve important roles as antioxidants by reducing free radicals in the body. In this study, we test the effects of a novel full-bodied orange color phenotype of the brown anole, Anolis sagrei, on mate choice, physiology, and survival. We found no evidence that lizards expressing the orange phenotype were preferred by females. Additionally, they did not differ in immune function, running endurance, or maximum sprint speed from lizards that did not express the novel phenotype. Pigment extractions revealed that orange body coloration resulted from pterin pigments and not carotenoids. Visual models suggest that the orange phenotype is less conspicuous to bird predators than the brown phenotype and may provide an adaptive explanation for the persistence of this trait. Given its small, yet positive effect on fitness, we expect the orange color phenotype to increase in frequency in subsequent decades.
Collapse
Affiliation(s)
- Yasmeen R. Erritouni
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Beth A. Reinke
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
20
|
Gunderson AR, Fleishman LJ, Leal M. Visual "playback" of colorful signals in the field supports sensory drive for signal detectability. Curr Zool 2018; 64:493-498. [PMID: 30108630 PMCID: PMC6084605 DOI: 10.1093/cz/zoy046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/02/2018] [Indexed: 11/12/2022] Open
Abstract
Colorful visual signals are important systems for investigating the effects of signaling environments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory drive hypothesis on color signal evolution is mostly based on documenting correlations between the properties of signals and habitat conditions under which the signals are given (i.e., a correlational approach) and less commonly on the use of mathematical models that integrate representations of visual environments, signal properties, and sensory systems (i.e., a functional approach). Here, we used an experimental approach in the field to evaluate signal efficacy of colorful lizard throat fans called dewlaps that show geographic variation in the lizard Anolis cristatellus. We used a remote controlled apparatus to display "fake dewlaps" to wild lizards to test for adaptive divergence in dewlap brightness (i.e., perceived intensity) among populations in situ. We found evidence of local adaptation in dewlap brightness consistent with the sensory drive hypothesis. Specifically, dewlaps that had the brightness characteristics of local lizards were more likely to be detected than those with the brightness characteristics of non-local lizards. Our findings indicate that simplified mathematical representations of visual environments may allow robust estimates of relative detectability or conspicuousness in natural habitats. We have shown the feasibility of evaluating color signal efficacy experimentally under natural conditions and demonstrate the potential advantages of presenting isolated components of signals to an intended receiver to measure their contribution to signal function.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Manuel Leal
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO, USA
| | | |
Collapse
|
21
|
Dufour CMS, Herrel A, Losos JB. The effect of recent competition between the native Anolis oculatus and the invasive A. cristatellus on display behavior. PeerJ 2018; 6:e4888. [PMID: 29922509 PMCID: PMC6005165 DOI: 10.7717/peerj.4888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/13/2018] [Indexed: 01/28/2023] Open
Abstract
Invasive species are a global threat to biodiversity. Cases where the invasion has been tracked since its beginning are rare, however, such that the first interactions between invasive and native species remain poorly understood. Communication behavior is an integral part of species identity and is subject to selection. Consequently, resource use and direct interference competition between native and invasive species may drive its evolution. Here, we tested the role of interactions between the recently introduced invasive lizard Anolis cristatellus and the native Anolis oculatus on variation in behavior and communication in Calibishie (Dominica). From May to June 2016, we filmed 122 adult males of both species displaying in banana farms under two contexts (allopatry and sympatry). We then recorded (i) the proportion of time spent displaying and (ii) the relative frequency of dewlap vs. push-up displays. To control for habitat variation, we measured and compared the habitat characteristics (canopy openness and habitat openness) of 228 males in allopatry and sympatry. While the habitat characteristics and total display-time did not differ between the contexts for the two species, the proportion of display-time spent dewlapping by A. cristatellus decreased in sympatry. The display of A. oculatus did not differ between the contexts, however. Shifts in microhabitat use, predation pressure, or interspecific interference are potential factors which might explain the behavioral changes in display observed in A. cristatellus. This study highlights the role of behavioral traits as a first response of an invasive species to recent competition with a closely related native species.
Collapse
Affiliation(s)
- Claire M S Dufour
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Anthony Herrel
- Département 'Adaptations du vivant', UMR 7179 C.N.R.S/M.N.H.N, Museum National d'Histoire Naturelle, Paris, France
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Department of Biology, Washington University, St Louis, MO, USA
| |
Collapse
|
22
|
Baeckens S, Driessens T, Van Damme R. The brown anole dewlap revisited: do predation pressure, sexual selection, and species recognition shape among-population signal diversity? PeerJ 2018; 6:e4722. [PMID: 29761044 PMCID: PMC5947042 DOI: 10.7717/peerj.4722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 01/15/2023] Open
Abstract
Animal signalling structures are amongst the most variable characteristics, as they are subjected to a diversity of selection pressures. A well-known example of a diverse signalling system in the animal kingdom is the dewlap of Anolis lizards. Dewlap characteristics can vary remarkably among and within species, and also between sexes. Although a considerable amount of studies have attempted to disentangle the functional significance of the staggering dewlap diversity in Anolis, the underlying evolutionary processes remain elusive. In this study, we focus on the contribution of biotic selective pressures in shaping geographic variation in dewlap design (size, colour, and pattern) and dewlap display behaviour at the intraspecific level. Notably, we have tried to replicate and extend previously reported results hereof in both sexes of the brown anole lizard (Anolis sagrei). To do this, we assembled a dataset consisting of 17 A. sagrei heterogeneous island populations from the Caribbean and specifically tested whether predation pressure, sexual selection, or species recognition could explain interpopulational variation in an array of dewlap characteristics. Our findings show that in neither males nor females estimates of predation pressure (island size, tail break frequency, model attack rate, presence of predatory Leiocephalus lizards) or sexual selection (sexual size dimorphism) could explain variation in dewlap design. We did find that A. sagrei males from larger islands showed higher dewlap display intensities than males from smaller islands, but the direct connection with predation pressure remains ambiguous and demands further investigation. Last, we could show indirect support for species recognition only in males, as they are more likely to have a 'spotted' dewlap pattern when co-occurring with a higher number of syntopic Anolis species. In conclusion, we found overall limited support for the idea that the extensive interpopulational variability in dewlap design and use in A. sagrei is mediated by variation in their biotic environment. We propose a variety of conceptual and methodological explanations for this unexpected finding.
Collapse
Affiliation(s)
- Simon Baeckens
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Tess Driessens
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
23
|
Tollis M, Hutchins ED, Stapley J, Rupp SM, Eckalbar WL, Maayan I, Lasku E, Infante CR, Dennis SR, Robertson JA, May CM, Crusoe MR, Bermingham E, DeNardo DF, Hsieh STT, Kulathinal RJ, McMillan WO, Menke DB, Pratt SC, Rawls JA, Sanjur O, Wilson-Rawls J, Wilson Sayres MA, Fisher RE, Kusumi K. Comparative Genomics Reveals Accelerated Evolution in Conserved Pathways during the Diversification of Anole Lizards. Genome Biol Evol 2018; 10:489-506. [PMID: 29360978 PMCID: PMC5798147 DOI: 10.1093/gbe/evy013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 11/21/2022] Open
Abstract
Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species-Anolis frenatus, Anolis auratus, and Anolis apletophallus-for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards.
Collapse
Affiliation(s)
- Marc Tollis
- School of Life Sciences, Arizona State University
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University
| | - Elizabeth D Hutchins
- School of Life Sciences, Arizona State University
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jessica Stapley
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Shawn M Rupp
- School of Life Sciences, Arizona State University
| | | | - Inbar Maayan
- School of Life Sciences, Arizona State University
| | - Eris Lasku
- School of Life Sciences, Arizona State University
| | - Carlos R Infante
- Department of Genetics, University of Georgia
- Department of Molecular and Cellular Biology, University of Arizona
| | - Stuart R Dennis
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | | | | | | | - Eldredge Bermingham
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Patricia and Phillip Frost Museum of Science, Miami, Florida
| | | | | | | | | | | | | | | | - Oris Sanjur
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | | | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University
- The Center for Evolution and Medicine, Arizona State University
| | - Rebecca E Fisher
- School of Life Sciences, Arizona State University
- Department of Basic Medical Sciences, University of Arizona College of Medicine–Phoenix
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
- Department of Basic Medical Sciences, University of Arizona College of Medicine–Phoenix
| |
Collapse
|
24
|
Tinghitella RM, Lackey ACR, Martin M, Dijkstra PD, Drury JP, Heathcote R, Keagy J, Scordato ESC, Tyers AM. On the role of male competition in speciation: a review and research agenda. Behav Ecol 2017. [DOI: 10.1093/beheco/arx151] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Alycia C R Lackey
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, KY, USA
| | - Michael Martin
- Department of Biology, Oxford College of Emory University, Oxford, GA, USA
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Jonathan P Drury
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Heathcote
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alexandra M Tyers
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor, Gwynedd,, Wales, UK
| |
Collapse
|
25
|
Ingram T, Harrison A, Mahler DL, Castañeda MDR, Glor RE, Herrel A, Stuart YE, Losos JB. Comparative tests of the role of dewlap size in Anolis lizard speciation. Proc Biol Sci 2017; 283:rspb.2016.2199. [PMID: 28003450 DOI: 10.1098/rspb.2016.2199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/17/2016] [Indexed: 02/01/2023] Open
Abstract
Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait.
Collapse
Affiliation(s)
- Travis Ingram
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alexis Harrison
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, 3031, Toronto, Ontario, Canada M5S 3B2
| | - María Del Rosario Castañeda
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, UMR 7179 C.N.R.S/M.N.H.N., 57 rue Cuvier, Case postale 55, 75231 Paris Cedex 5, France
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, One University Station C0990, Austin, TX 78712, USA
| | - Jonathan B Losos
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Phenotypes in phylogeography: Species' traits, environmental variation, and vertebrate diversification. Proc Natl Acad Sci U S A 2017; 113:8041-8. [PMID: 27432983 DOI: 10.1073/pnas.1602237113] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Almost 30 y ago, the field of intraspecific phylogeography laid the foundation for spatially explicit and genealogically informed studies of population divergence. With new methods and markers, the focus in phylogeography shifted to previously unrecognized geographic genetic variation, thus reducing the attention paid to phenotypic variation in those same diverging lineages. Although phenotypic differences among lineages once provided the main data for studies of evolutionary change, the mechanisms shaping phenotypic differentiation and their integration with intraspecific genetic structure have been underexplored in phylogeographic studies. However, phenotypes are targets of selection and play important roles in species performance, recognition, and diversification. Here, we focus on three questions. First, how can phenotypes elucidate mechanisms underlying concordant or idiosyncratic responses of vertebrate species evolving in shared landscapes? Second, what mechanisms underlie the concordance or discordance of phenotypic and phylogeographic differentiation? Third, how can phylogeography contribute to our understanding of functional phenotypic evolution? We demonstrate that the integration of phenotypic data extends the reach of phylogeography to explain the origin and maintenance of biodiversity. Finally, we stress the importance of natural history collections as sources of high-quality phenotypic data that span temporal and spatial axes.
Collapse
|
27
|
Baeckens S, Martín J, García‐Roa R, Pafilis P, Huyghe K, Van Damme R. Environmental conditions shape the chemical signal design of lizards. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12984] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Baeckens
- Laboratory of Functional MorphologyDepartment of BiologyUniversity of Antwerp Wilrijk Belgium
- Department of Organismic and Evolutionary BiologyHarvard University Cambridge MA USA
| | - José Martín
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Roberto García‐Roa
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Panayiotis Pafilis
- Department of Zoology and Marine BiologySchool of BiologyNational and Kapodistrian University of Athens Ilissia Greece
| | - Katleen Huyghe
- Laboratory of Functional MorphologyDepartment of BiologyUniversity of Antwerp Wilrijk Belgium
| | - Raoul Van Damme
- Laboratory of Functional MorphologyDepartment of BiologyUniversity of Antwerp Wilrijk Belgium
| |
Collapse
|
28
|
|
29
|
García-Roa R, Jara M, Baeckens S, López P, Van Damme R, Martín J, Pincheira-Donoso D. Macroevolutionary diversification of glands for chemical communication in squamate reptiles. Sci Rep 2017; 7:9288. [PMID: 28839252 PMCID: PMC5570929 DOI: 10.1038/s41598-017-09083-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
Chemical communication plays a central role in social, sexual and ecological interactions among animals. However, the macroevolutionary diversification of traits responsible for chemical signaling remains fundamentally unknown. Most research investigating evolutionary diversification of glands responsible for the production of chemical signals has focused on arthropods, while its study among vertebrates remains neglected. Using a global-scale dataset covering > 80% (7,904 species) of the living diversity of lizards and snakes (squamates), we investigate rates, trajectories and phylogenetic patterns of diversification of their follicular glands for chemical communication. We observed these glands in 13.66% of species, that their expression has varying phylogenetic signal among lineages, and that the crown squamate ancestor lacked follicular glands, which therefore originated and diversified subsequently during their evolutionary history. Additionally, our findings challenge the longstanding view that within squamates the Iguania are visually oriented while Scleroglossa are chemically-oriented, given that Iguania doubles Scleroglossa in the frequency of glands. Our phylogenetic analyses identified stabilizing selection as the best model describing follicular gland diversification, and revealed high rates of disparity. We provide the first global-scale analysis investigating the diversification of one of the main forms of communication among reptiles, presenting a macroevolutionary angle to questions traditionally explored at microevolutionary scale.
Collapse
Affiliation(s)
- Roberto García-Roa
- Department of Evolutionary Ecology, National Museum of Natural Sciences - Spanish Research Council (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, Spain. .,Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Brayford Campus, Lincoln, LN6 7DL, United Kingdom.
| | - Manuel Jara
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Brayford Campus, Lincoln, LN6 7DL, United Kingdom
| | - Simon Baeckens
- Department of Biology, Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Pilar López
- Department of Evolutionary Ecology, National Museum of Natural Sciences - Spanish Research Council (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Raoul Van Damme
- Department of Biology, Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - José Martín
- Department of Evolutionary Ecology, National Museum of Natural Sciences - Spanish Research Council (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Daniel Pincheira-Donoso
- Laboratory of Evolutionary Ecology of Adaptations, School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Brayford Campus, Lincoln, LN6 7DL, United Kingdom
| |
Collapse
|
30
|
Driessens T, Baeckens S, Balzarolo M, Vanhooydonck B, Huyghe K, Van Damme R. Climate-related environmental variation in a visual signalling device: the male and female dewlap inAnolis sagreilizards. J Evol Biol 2017; 30:1846-1861. [DOI: 10.1111/jeb.13144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
- T. Driessens
- Department of Biology; University of Antwerp; Antwerp Belgium
| | - S. Baeckens
- Department of Biology; University of Antwerp; Antwerp Belgium
| | - M. Balzarolo
- Department of Biology; University of Antwerp; Antwerp Belgium
| | - B. Vanhooydonck
- Department of Biology; University of Antwerp; Antwerp Belgium
| | - K. Huyghe
- Department of Biology; University of Antwerp; Antwerp Belgium
| | - R. Van Damme
- Department of Biology; University of Antwerp; Antwerp Belgium
| |
Collapse
|
31
|
MacGuigan DJ, Geneva AJ, Glor RE. A genomic assessment of species boundaries and hybridization in a group of highly polymorphic anoles ( distichus species complex). Ecol Evol 2017; 7:3657-3671. [PMID: 28616163 PMCID: PMC5468153 DOI: 10.1002/ece3.2751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/12/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023] Open
Abstract
Delimiting young species is one of the great challenges of systematic biology, particularly when the species in question exhibit little morphological divergence. Anolis distichus, a trunk anole with more than a dozen subspecies that are defined primarily by dewlap color, may actually represent several independent evolutionary lineages. To test this, we utilized amplified fragment length polymorphisms (AFLP) genome scans and genetic clustering analyses in conjunction with a coalescent‐based species delimitation method. We examined a geographically widespread set of samples and two heavily sampled hybrid zones. We find that genetic divergence is associated with a major biogeographic barrier, the Hispaniolan paleo‐island boundary, but not with dewlap color. Additionally, we find support for hypotheses regarding colonization of two Hispaniolan satellite islands and the Bahamas from mainland Hispaniola. Our results show that A. distichus is composed of seven distinct evolutionary lineages still experiencing a limited degree of gene flow. We suggest that A. distichus merits taxonomic revision, but that dewlap color cannot be relied upon as the primary diagnostic character.
Collapse
Affiliation(s)
- Daniel J MacGuigan
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Anthony J Geneva
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Richard E Glor
- Herpetology Division Biodiversity Institute University of Kansas Lawrence KS USA.,Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
| |
Collapse
|
32
|
Ramos JA, Peters RA. Habitat-dependent variation in motion signal structure between allopatric populations of lizards. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
|
34
|
Regan CE, Pilkington JG, Bérénos C, Pemberton JM, Smiseth PT, Wilson AJ. Accounting for female space sharing in St. Kilda Soay sheep (Ovis aries) results in little change in heritability estimates. J Evol Biol 2016; 30:96-111. [PMID: 27747954 DOI: 10.1111/jeb.12990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023]
Abstract
When estimating heritability in free-living populations, it is common practice to account for common environment effects, because of their potential to generate phenotypic covariance among relatives thereby biasing heritability estimates. In quantitative genetic studies of natural populations, however, philopatry, which results in relatives being clustered in space, is rarely accounted for. The two studies that have been carried out so far suggest absolute declines in heritability estimates of up to 43% when accounting for space sharing by relatives. However, due to methodological limitations these estimates may not be representative. We used data from the St. Kilda Soay sheep population to estimate heritabilities with and without accounting for space sharing for five traits for which there is evidence for additive genetic variance (birthweight, birth date, lamb August weight, and female post-mortem jaw and metacarpal length). We accounted for space sharing by related females by separately incorporating spatial autocorrelation, and a home range similarity matrix. Although these terms accounted for up to 18% of the variance in these traits, heritability estimates were only reduced by up to 7%. Our results suggest that the bias caused by not accounting for space sharing may be lower than previously thought. This suggests that philopatry does not inevitably lead to a large bias if space sharing by relatives is not accounted for. We hope our work stimulates researchers to model shared space when relatives in their study population share space, as doing so will enable us to better understand when bias may be of particular concern.
Collapse
Affiliation(s)
- C E Regan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - C Bérénos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - P T Smiseth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - A J Wilson
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| |
Collapse
|
35
|
Boughman JW, Svanbäck R. Synergistic selection between ecological niche and mate preference primes diversification. Evolution 2016; 71:6-22. [DOI: 10.1111/evo.13089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Janette W. Boughman
- Department of Integrative Biology Michigan State University East Lansing Michigan 48824
| | - Richard Svanbäck
- Ecology, Evolutionary Biology & Behavior program; Animal Ecology, Department of Ecology and Genetics Uppsala University Norbyvägen 18D SE‐752 36 Uppsala Sweden
| |
Collapse
|
36
|
Ng J, Ossip-Klein AG, Glor RE. Adaptive signal coloration maintained in the face of gene flow in a Hispaniolan Anolis Lizard. BMC Evol Biol 2016; 16:193. [PMID: 27650469 PMCID: PMC5029017 DOI: 10.1186/s12862-016-0763-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
Background Studies of geographic variation can provide insight into the evolutionary processes involved in the early stages of biological diversification. In particular, multiple, replicated cases of geographic trait divergence present a powerful approach to study how patterns of introgression and adaptive divergence can vary with geographic space and time. In this study, we conduct replicated, fine-scaled molecular genetic analyses of striking geographic dewlap color variation of a Hispaniolan Anolis lizard, Anolis distichus, to investigate whether adaptive trait divergence is consistently associated with speciation, whereby genetic divergence is observed with neutral markers, or whether locally adapted traits are maintained in the face of continued gene flow. Results We find instances where shifts in adaptive dewlap coloration across short geographic distances are associated with reproductive isolation as well as maintained in the face of gene flow, suggesting the importance of both processes in maintaining geographic dewlap variation. Conclusion Our study suggests that adaptive dewlap color differences are maintained under strong divergent natural selection, but this divergence does not necessarily lead to anole speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0763-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | | | - Richard E Glor
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
37
|
Langerhans RB, Anderson CM, Heinen-Kay JL. Causes and Consequences of Genital Evolution. Integr Comp Biol 2016; 56:741-51. [DOI: 10.1093/icb/icw101] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Variation in Display Behavior, Ornament Morphology, Sexual Size Dimorphism, and Habitat Structure in the Fan-Throated Lizard (Sitana, Agamidae). J HERPETOL 2016. [DOI: 10.1670/15-040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Campbell‐Staton SC, Edwards SV, Losos JB. Climate‐mediated adaptation after mainland colonization of an ancestrally subtropical island lizard,
A
nolis carolinensis. J Evol Biol 2016; 29:2168-2180. [DOI: 10.1111/jeb.12935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023]
Affiliation(s)
| | - S. V. Edwards
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
- Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - J. B. Losos
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
- Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
40
|
Ng J, Smith SD. How to make a red flower: the combinatorial effect of pigments. AOB PLANTS 2016; 8:plw013. [PMID: 26933150 PMCID: PMC4804202 DOI: 10.1093/aobpla/plw013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/13/2016] [Indexed: 05/21/2023]
Abstract
Red flowers have evolved repeatedly across angiosperms and are frequently examined in an ecological context. However, less is known about the biochemical basis of red colouration in different taxa. In this study, we examine the spectral properties, anthocyanin composition and carotenoid expression of red flowers in the tomato family, Solanaceae, which have evolved independently multiple times across the group. Our study demonstrates that Solanaceae typically make red flowers either by the sole production of red anthocyanins or, more commonly, by the dual production of purple or blue anthocyanins and orange carotenoids. In using carotenoids to modify the effect of purple and/or blue anthocyanins, these Solanaceae species have converged on the same floral hue as those solely producing red anthocyanins, even when considering the visual system of pollinators. The use of blue anthocyanins in red flowers appears to differ from other groups, and suggests that the genetic changes underlying evolutionary shifts to red flowers may not be as predictable as previously suggested.
Collapse
Affiliation(s)
- Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
41
|
Ciccotto PJ, Mendelson TC. The ecological drivers of nuptial color evolution in darters (Percidae: Etheostomatinae). Evolution 2016; 70:745-56. [PMID: 27003224 DOI: 10.1111/evo.12901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/29/2022]
Abstract
Closely related animal lineages often vary in male coloration, and ecological selection is hypothesized to shape this variation. The role of ecological selection in inhibiting male color has been documented extensively at the population level, but relatively few studies have investigated the evolution of male coloration across a clade of closely related species. Darters are a diverse group of fishes that vary in the presence of elaborate male nuptial coloration, with some species exhibiting vivid color patterns and others mostly or entirely achromatic. We used phylogenetic logistic regression to test for correlations between the presence/absence of color traits across darter species and the ecological conditions in which these species occur. Environmental variables were correlated with the presence of nuptial color in darters with colorful species tending to inhabit environments that would support fewer predators and potentially transmit a broader spectrum of natural light compared to species lacking male coloration. We also tested the color preferences of a common darter predator, largemouth bass, and found that it exhibits a strong preference for red, providing further evidence of predation as a source of selection on color evolution in darters. Ecological selection therefore appears to be an important factor in dictating the presence or absence of male coloration in this group of fishes.
Collapse
Affiliation(s)
- Patrick J Ciccotto
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.
| | - Tamra C Mendelson
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, 21250
| |
Collapse
|
42
|
Pérez I de Lanuza G, Font E. The evolution of colour pattern complexity: selection for conspicuousness favours contrasting within-body colour combinations in lizards. J Evol Biol 2016; 29:942-51. [PMID: 26801820 DOI: 10.1111/jeb.12835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 02/04/2023]
Abstract
Many animals display complex colour patterns that comprise several adjacent, often contrasting colour patches. Combining patches of complementary colours increases the overall conspicuousness of the complex pattern, enhancing signal detection. Therefore, selection for conspicuousness may act not only on the design of single colour patches, but also on their combination. Contrasting long- and short-wavelength colour patches are located on the ventral and lateral surfaces of many lacertid lizards. As the combination of long- and short-wavelength-based colours generates local chromatic contrast, we hypothesized that selection may favour the co-occurrence of lateral and ventral contrasting patches, resulting in complex colour patterns that maximize the overall conspicuousness of the signal. To test this hypothesis, we performed a comparative phylogenetic study using a categorical colour classification based on spectral data and descriptive information on lacertid coloration collected from the literature. Our results demonstrate that conspicuous ventral (long-wavelength-based) and lateral (short-wavelength-based) colour patches co-occur throughout the lacertid phylogeny more often than expected by chance, especially in the subfamily Lacertini. These results suggest that selection promotes the evolution of the complex pattern rather than the acquisition of a single conspicuous colour patch, possibly due to the increased conspicuousness caused by the combination of colours with contrasting spectral properties.
Collapse
Affiliation(s)
- G Pérez I de Lanuza
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Vila do Conde, Portugal
| | - E Font
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
| |
Collapse
|
43
|
Ng J, Smith SD. Widespread flower color convergence in Solanaceae via alternate biochemical pathways. THE NEW PHYTOLOGIST 2016. [PMID: 26224118 DOI: 10.1111/nph.13576] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phenotypic convergence is rampant throughout the tree of life. While recent studies have made significant progress in ascertaining the proximate mechanisms underlying convergent phenotypes, less is known about the frequency and predictability with which convergent phenotypes arise via the same or multiple pathways at the macroevolutionary scale. We investigated the proximate causes and evolutionary patterns of red flower color in the tomato family, Solanaceae, using large-scale data mining and new sequence data to reconstruct a megaphylogeny of 1341 species. We then combined spectral and anatomical data to assess how many times red flowers have evolved, the relative contribution of different pathways to independent origins of red, and whether the underlying pathway is predicted by phylogenetic relatedness. We estimated at least 30 relatively recent origins of red flowers using anthocyanins, carotenoids, or a dual production of both pigments, with significant phylogenetic signal in the use of anthocyanins and dual production, indicating that closely related red-flowered species tend to employ the same mechanism for coloration. Our study is the first to test whether developmental pathways exhibit phylogenetic signal and implies that historical contingency strongly influences the evolution of new phenotypes.
Collapse
Affiliation(s)
- Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
44
|
Edwards DL, Melville J, Joseph L, Keogh JS. Ecological Divergence, Adaptive Diversification, and the Evolution of Social Signaling Traits: An Empirical Study in Arid Australian Lizards. Am Nat 2015; 186:E144-61. [DOI: 10.1086/683658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Ord TJ, Klomp DA, Garcia-Porta J, Hagman M. Repeated evolution of exaggerated dewlaps and other throat morphology in lizards. J Evol Biol 2015; 28:1948-64. [DOI: 10.1111/jeb.12709] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 07/29/2015] [Indexed: 01/16/2023]
Affiliation(s)
- T. J. Ord
- Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Sciences; The University of New South Wales; Kensington NSW Australia
| | - D. A. Klomp
- Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Sciences; The University of New South Wales; Kensington NSW Australia
| | - J. Garcia-Porta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra); Barcelona Spain
| | - M. Hagman
- Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Sciences; The University of New South Wales; Kensington NSW Australia
| |
Collapse
|
46
|
Geneva AJ, Hilton J, Noll S, Glor RE. Multilocus phylogenetic analyses of Hispaniolan and Bahamian trunk anoles (distichus species group). Mol Phylogenet Evol 2015; 87:105-17. [PMID: 25772800 DOI: 10.1016/j.ympev.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 01/31/2023]
Abstract
The distichus species group includes six species and 21 subspecies of trunk ecomorph anoles distributed across Hispaniola and its satellite islands as well as the northern Bahamas. Although this group has long served as a model system for studies of reproductive character displacement, adaptation, behavior and speciation, it has never been the subject of a comprehensive phylogenetic analysis. Our goal here is to generate a multilocus phylogenetic dataset (one mitochondrial and seven nuclear loci) and to use this dataset to infer phylogenetic relationships among the majority of the taxa assigned to the distichus species group. We use these phylogenetic trees to address three topics about the group's evolution. First, we consider longstanding taxonomic controversies about the status of several species and subspecies assigned to the distichus species group. Second, we investigate the biogeographic history of the group and specifically test the hypotheses that historical division of Hispaniola into two paleo-islands contributed to the group's diversification and that Bahamian and Hispaniolan satellite island populations are derived from colonists from the main Hispaniolan landmass. Finally, third, we use comparative phylogenetic analyses to test the hypothesis that divergence between pale yellow and darkly pigmented orange or red dewlap coloration has occurred repeatedly across the distichus species group.
Collapse
Affiliation(s)
- Anthony J Geneva
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Jared Hilton
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Sabina Noll
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Richard E Glor
- Herpetology Division, Biodiversity Institute, University of Kansas, Lawrence, KS 66045, United States; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
47
|
Macedonia JM, Clark DL, Tamasi AL. Does Selection Favor Dewlap Colors that Maximize Detectability? A Test with Five Species of JamaicanAnolisLizards. HERPETOLOGICA 2014. [DOI: 10.1655/herpetologica-d-13-00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Morgans CL, Cooke GM, Ord TJ. How populations differentiate despite gene flow: sexual and natural selection drive phenotypic divergence within a land fish, the Pacific leaping blenny. BMC Evol Biol 2014; 14:97. [PMID: 24884492 PMCID: PMC4055934 DOI: 10.1186/1471-2148-14-97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Divergence between populations in reproductively important features is often vital for speciation. Many studies attempt to identify the cause of population differentiation in phenotype through the study of a specific selection pressure. Holistic studies that consider the interaction of several contrasting forms of selection are more rare. Most studies also fail to consider the history of connectivity among populations and the potential for genetic drift or gene flow to facilitate or limit phenotypic divergence. We examined the interacting effects of natural selection, sexual selection and the history of connectivity on phenotypic differentiation among five populations of the Pacific leaping blenny (Alticus arnoldorum), a land fish endemic to the island of Guam. Results We found key differences among populations in two male ornaments—the size of a prominent head crest and conspicuousness of a coloured dorsal fin—that reflected a trade-off between the intensity of sexual selection (male biased sex ratios) and natural selection (exposure to predators). This differentiation in ornamentation has occurred despite evidence suggesting extensive gene flow among populations, which implies that the change in ornament expression has been recent (and potentially plastic). Conclusions Our study provides an early snapshot of divergence in reproductively important features that, regardless of whether it reflects genetic or plastic changes in phenotype, could ultimately form a reproductive barrier among populations.
Collapse
Affiliation(s)
- Courtney L Morgans
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia.
| | | | | |
Collapse
|
49
|
Boratyński Z, Brito JC, Campos JC, Karala M, Mappes T. Large spatial scale of the phenotype-environment color matching in two cryptic species of african desert jerboas (dipodidae: jaculus). PLoS One 2014; 9:e94342. [PMID: 24714509 PMCID: PMC3979769 DOI: 10.1371/journal.pone.0094342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
We tested the camouflage hypothesis, or the linkage between animal (Saharan rodent) and habitat coloration, on the largest geographical scale yet conducted. We aimed to determine whether phenotypic variation is explained by micro-habitat variation and/or genetic polymorphism to determine 1) the strength of linkage between fur color and local substrate color, and 2) the divergence in fur coloration between two genetic clades, representing cryptic species, throughout the complete range of the African desert jerboas (Jaculus jaculus). We used a combination of museum and field-collected specimens, remote sensing tools, satellite and digital photography and molecular genetic and phylogenetic methods to investigate the above hypotheses. Along with showing that the two divergent genetic clades of jerboas occur sympatrically throughout their African distribution, we showed significant covariation between dorsal fur coloration of the animals and the color of their habitat. We also described significant phenotypic divergence in fur color, consistent with genetic divergence between the sympatric clades. The linkage between environment and phenotype supports the idea that the selection promoting cryptic coloration is persistent in contemporary populations of jerboas, however the phenotypic divergence indicates that it has different strengths (or optima) in the two clades. The mosaic distribution of micro-habitats occupied by geographically sympatric clades suggests that it may influence both ecological and evolutionary dynamics between these two cryptic species.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - José Carlos Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - João Carlos Campos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maija Karala
- Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Division of Ecology and Evolutionary Biology, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
50
|
Ng J, Kelly AL, MacGuigan DJ, Glor RE. The role of heritable and dietary factors in the sexual signal of a Hispaniolan Anolis lizard, Anolis distichus. ACTA ACUST UNITED AC 2013; 104:862-73. [PMID: 24078680 DOI: 10.1093/jhered/est060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The diversity of sexual signals is astounding, and divergence in these traits is believed to be associated with the early stages of speciation. An increasing number of studies also suggest a role for natural selection in driving signal divergence for effective transmission in heterogeneous environments. Both speciation and adaptive divergence, however, are contingent on the sexual signal being heritable, yet this often remains assumed and untested. It is particularly critical that the heritability of carotenoid-based sexual signals is investigated because such traits may instead be phenotypically plastic indicators of an individual's quality that exhibit no or little heritable variation. We present the first study to investigate the relative contribution of genetic and environmental factors to the striking diversity of dewlap color and pattern in Anolis lizards. Using a breeding experiment with Anolis distichus populations exhibiting different dewlap phenotypes, we raise F1 offspring in a common garden experiment to assess whether dewlap color is inherited. We follow this with carotenoid supplementation to investigate the influence of dietary pigments to dewlap color variation. We find significant differences in several aspects of dewlap color and pattern to persist to the F1 generation (fathers: N = 19; F1 males: N = 50; P < 0.01) with no change in dewlap phenotype with carotenoid supplementation (N = 52; P > 0.05). These results strongly support that genetic differences underlie dewlap color variation, thereby satisfying a key requirement of natural selection. Our findings provide an important stepping-stone to understanding the evolution of an incredibly diverse signal important for sexual selection and species recognition.
Collapse
Affiliation(s)
- Julienne Ng
- the Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627. Richard Glor is now at the Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | | | | | | |
Collapse
|