1
|
Göritzer K, Melnik S, Schwestka J, Arcalis E, Drapal M, Fraser P, Ma JKC, Stoger E. Enhancing quality and yield of recombinant secretory IgA antibodies in Nicotiana benthamiana by endoplasmic reticulum engineering. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39822055 DOI: 10.1111/pbi.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N. benthamiana leaves by targeting the enzyme CTP:phosphocholine cytidylyltransferase (CCT), which catalyses the rate-limiting step in the synthesis of the key membrane component phosphatidylcholine (PC). We used CRISPR/Cas to perform site-directed mutagenesis of each of the three endogenous CCT genes in N. benthamiana by introducing frame-shifting indels to remove the auto-inhibitory C-terminal domains. We generated stable homozygous lines of N. benthamiana containing different combinations of the edited genes, including plants where all three isofunctional CCT homologues were modified. Changes in ER morphology in the mutant plants were confirmed by in vivo confocal imaging and substantially increased the yields of two fully assembled SIgAs by prolonging the ER residence time and boosting chaperone accumulation. Through a combination of ER engineering with chaperone overexpression, we increased the yields of fully assembled SIgA by an order of magnitude, reaching almost 1 g/kg fresh leaf weight. This strategy removes a major roadblock to producing SIgA and will likely facilitate the production of other complex multimeric biopharmaceutical proteins in plants.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Institute for Infection and Immunity, St George's University of London, London, UK
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paul Fraser
- Royal Holloway University of London, Egham, UK
| | - Julian K-C Ma
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Tøndervik A, Aune R, Degelmann A, Piontek M, Ertesvåg H, Skjåk-Bræk G, Sletta H. Strain Construction and Process Development for Efficient Recombinant Production of Mannuronan C-5 Epimerases in Hansenula polymorpha. FRONTIERS IN PLANT SCIENCE 2022; 13:837891. [PMID: 35734252 PMCID: PMC9208277 DOI: 10.3389/fpls.2022.837891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Alginates are linear polysaccharides produced by brown algae and some bacteria and are composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G). Alginate has numerous present and potential future applications within industrial, medical and pharmaceutical areas and G rich alginates are traditionally most valuable and frequently used due to their gelling and viscosifying properties. Mannuronan C-5 epimerases are enzymes converting M to G at the polymer level during the biosynthesis of alginate. The Azotobacter vinelandii epimerases AlgE1-AlgE7 share a common structure, containing one or two catalytic A-modules (A), and one to seven regulatory R-modules (R). Despite the structural similarity of the epimerases, they create different M-G patterns in the alginate; AlgE4 (AR) creates strictly alternating MG structures whereas AlgE1 (ARRRAR) and AlgE6 (ARRR) create predominantly G-blocks. These enzymes are therefore promising tools for producing in vitro tailor-made alginates. Efficient in vitro epimerization of alginates requires availability of recombinantly produced alginate epimerases, and for this purpose the methylotrophic yeast Hansenula polymorpha is an attractive host organism. The present study investigates whether H. polymorpha is a suitable expression system for future large-scale production of AlgE1, AlgE4, and AlgE6. H. polymorpha expression strains were constructed using synthetic genes with reduced repetitive sequences as well as optimized codon usage. High cell density cultivations revealed that the largest epimerases AlgE1 (147 kDa) and AlgE6 (90 kDa) are subject to proteolytic degradation by proteases secreted by the yeast cells. However, degradation could be controlled to a large extent either by co-expression of chaperones or by adjusting cultivation conditions. The smaller AlgE4 (58 kDa) was stable under all tested conditions. The results obtained thus point toward a future potential for using H. polymorpha in industrial production of mannuronan C-5 epimerases for in vitro tailoring of alginates.
Collapse
Affiliation(s)
- Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Randi Aune
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | | | | - Helga Ertesvåg
- Department of Biotechnology and Food Sciences, Trondheim, Norway
| | | | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| |
Collapse
|
3
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
4
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
5
|
Wang J, Wu Z, Zhang T, Wang Y, Yang B. High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies. 3 Biotech 2019; 9:62. [PMID: 30729086 DOI: 10.1007/s13205-019-1597-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, a combined strategy was used to improve the production of Thermomyces dupontii lipase (TDL) in Pichia pastoris. First, the native gene of TDL was optimized based on the codon usage of P. pastoris, ligated to pPICZαA and transformed in P. pastoris X33. A recombinant strain designated X33-T23 with the highest activity (1020 U/mL in shake flasks) amongst 216 recombinant colonies was selected for further investigations. To further increase the production of TDL, nine different secretion helper factor genes were transformed in the recombinant strain, X33-T23. The recombinant strain co-expression with the gene encoding protein disulfide isomerase, designated X33-T23-PDI, exhibited the highest activity in shake flasks (1760 U/mL) and in 5 L bioreactor (57521 U/mL) which were 1.67- and 1.46-fold higher, respectively, than for strain X33-T23. Additionally, the optimization of the inducers (temperature and pH) for the recombinant strain X33-T23-PDI in 5 L bioreactor produced, as expected, much higher lipase activity (81203 U/mL). The results of this study will provide an effective method to produce TDL and give some clues on how to improve production of heterologous proteins in P. pastoris.
Collapse
Affiliation(s)
- Jianrong Wang
- 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People's Republic of China
| | - Zongze Wu
- 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People's Republic of China
| | - Tianyu Zhang
- 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People's Republic of China
| | - Yonghua Wang
- 2School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 People's Republic of China
| | - Bo Yang
- 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People's Republic of China
| |
Collapse
|
6
|
Zirpel B, Degenhardt F, Zammarelli C, Wibberg D, Kalinowski J, Stehle F, Kayser O. Optimization of Δ 9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J Biotechnol 2018; 272-273:40-47. [PMID: 29549004 DOI: 10.1016/j.jbiotec.2018.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Δ9-Tetrahydrocannabinolic acid (THCA) is a secondary natural product from the plant Cannabis sativa L. with therapeutic indications like analgesics for cancer pain or reducing spasticity associated with multiple sclerosis. Here, we investigated the influence of the co-expression of 12 helper protein genes from Komagataella phaffii (formerly Pichia pastoris) on the functional expression of the Δ9-tetrahydrocannabinolic acid synthase (THCAS) heterologously expressed in K. phaffii by screening 21 clones of each transformation. Our findings substantiate the necessity of a suitable screening system when interfering with the secretory network of K. phaffii. We found that co-production of the chaperones CNE1p and Kar2p, the foldase PDI1p, the UPR-activator Hac1p as well as the FAD synthetase FAD1p enhanced THCAS activity levels within the K. phaffii cells. The strongest influence showed co-expression of Hac1s - increasing the volumetric THCAS activities 4.1-fold on average. We also combined co-production of Hac1p with the other beneficial helper proteins to further enhance THCAS activity levels. An optimized strain overexpressing Hac1s, FAD1 and CNE1 was isolated that showed 20-fold increased volumetric, intracellular THCAS activity compared to the starting strain. We used this strain for a whole cell bioconversion of cannabigerolic acid (CBGA) to THCA. After 8 h of incubation at 37 °C, the cells produced 3.05 g L-1 THCA corresponding to 12.5% gTHCA gCDW-1.
Collapse
Affiliation(s)
- Bastian Zirpel
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Friederike Degenhardt
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Chantale Zammarelli
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix Stehle
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
7
|
Hoßbach J, Bußwinkel F, Kranz A, Wattjes J, Cord-Landwehr S, Moerschbacher BM. A chitin deacetylase of Podospora anserina has two functional chitin binding domains and a unique mode of action. Carbohydr Polym 2018; 183:1-10. [DOI: 10.1016/j.carbpol.2017.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
|
8
|
Roongsawang N, Puseenam A, Kitikhun S, Sae-Tang K, Harnpicharnchai P, Ohashi T, Fujiyama K, Tirasophon W, Tanapongpipat S. A Novel Potential Signal Peptide Sequence and Overexpression of ER-Resident Chaperones Enhance Heterologous Protein Secretion in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica. Appl Biochem Biotechnol 2015; 178:710-24. [DOI: 10.1007/s12010-015-1904-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
9
|
Thomas DR, Walmsley AM. The effect of the unfolded protein response on the production of recombinant proteins in plants. PLANT CELL REPORTS 2015; 34:179-87. [PMID: 25187294 DOI: 10.1007/s00299-014-1680-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 05/16/2023]
Abstract
Recombinant proteins are currently produced through a wide variety of host systems, including yeast, E. coli, insect and mammalian cells. One of the most recent systems developed uses plant cells. While considerable advances have been made in the yields and fidelity of plant-made recombinant proteins, many of these gains have arisen from the development of recombinant factors. This includes elements such as highly effective promoters and untranslated regions, deconstructed viral vectors, silencing inhibitors, and improved DNA delivery techniques. However, unlike other host systems, much of the work on recombinant protein production in plants uses wild-type hosts that have not been modified to facilitate recombinant protein expression. As such, there are still endogenous mechanisms functioning to maintain the health of the cell. The result is that these pathways, such as the unfolded protein response, can actively work to reduce recombinant protein production to maintain the integrity of the cell. This review examines how issues arising from the unfolded protein response have been addressed in other systems, and how these methods may be transferable to plant systems. We further identify several areas of host plant biology that present attractive targets for modification to facilitate recombinant protein production.
Collapse
Affiliation(s)
- David Rhys Thomas
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
10
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
11
|
Gu L, Zhang J, Du G, Chen J. Multivariate modular engineering of the protein secretory pathway for production of heterologous glucose oxidase in Pichia pastoris. Enzyme Microb Technol 2014; 68:33-42. [PMID: 25435503 DOI: 10.1016/j.enzmictec.2014.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022]
Abstract
Limitations in protein production and secretion have been attributed to the inefficient folding rate of overexpressed proteins and the cellular response to the presence of overexpressed proteins in the endoplasmic reticulum (ER). In this study, we improved the yield of glucose oxidase (GOD) by manipulating genes involved in protein folding machinery and abnormal folding stress responses. First, genes with folding and secretion functions were used to modulate the folding rate of GOD in the ER and its secretion level in the cytoplasm. Next, the potential benefits of the ERAD elements were determined. Cellular resistance to ER derived stress was then strengthened by overexpressing the stress response gene GCN4. Furthermore, a module combination strategy, which co-expressed the SEC53, CNE1 and GCN4 genes, was employed to construct the Pichia pastoris strain S17. This increased the yield of GOD to 21.81g/L, with an activity of 1972.9U/mL, which were 2.53- and 5.11-fold higher, respectively, than the control strain. The work described here improved GOD production significantly, and the strategies employed in this study provide novel information for the large-scale production of heterologous proteins.
Collapse
Affiliation(s)
- Lei Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Gerlach T, Knaust J, Kaiser C, Körner M, Hettwer K, Uhlig S, Simon K, Baronian K, Kunze G. Development and assessment of a novel Arxula adeninivorans androgen screen (A-YAS) assay and its application in analysis of cattle urine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:1073-1081. [PMID: 24927152 DOI: 10.1016/j.scitotenv.2014.05.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The novel A-YAS assay for the detection of androgenic activity in liquid samples such as urine has been developed and assessed. The assay is based on transgenic Arxula adeninivorans yeast cells as the bio-component. The cells were engineered to co-express the human androgen receptor (hAR) gene and the inducible phytase reporter gene (phyK, derived from Klebsiella sp. ASR1), under the control of an Arxula derived glucoamylase (GAA) promoter, which had been modified by the insertion of hormone-responsive elements (HREs). The Arxula transformation/expression platform Xplor®2 was used to select stable mitotic resistance marker free transformants and the most suitable cells were characterized for performance as a sensor bio-component. The assay is easy-to-use, fast (6-25 h) and is currently the most sensitive yeast-based androgen screen with an EC50, limit of detection and of quantification values for 5α-dihydrotestosterone (DHT) of 277.1±53.0, 56.5±4.1 and 76.5±6.7 ng L(-1), respectively. Furthermore, the assay allows the determination of androgenic and anti-androgenic activity of various compounds such as naturally occurring androgens and estrogens, pharmaceuticals and biocides. The robustness of the A-YAS assay enables it to be used for analysis of complex samples such as urine. The results of the analysis of a number of cattle urine samples achieved by the A-YAS assay correlate well with GC-MS analysis of the same samples.
Collapse
Affiliation(s)
- Torsten Gerlach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Jacqueline Knaust
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Christian Kaiser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Martina Körner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Karina Hettwer
- Quo Data GmbH, Kaitzer Str. 135, D-01187 Dresden, Germany
| | - Steffen Uhlig
- Quo Data GmbH, Kaitzer Str. 135, D-01187 Dresden, Germany
| | - Kirsten Simon
- New Diagnostics GmbH, Moosstr. 92c, D-85356 Freising, Germany
| | - Keith Baronian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany.
| |
Collapse
|
13
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
14
|
Qian W, Aguilar F, Wang T, Qiu B. Secretion of truncated recombinant rabies virus glycoprotein with preserved antigenic properties using a co-expression system in Hansenula polymorpha. J Microbiol 2013; 51:234-40. [PMID: 23625226 DOI: 10.1007/s12275-013-2337-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Rabies virus infection remains a serious public health threat in the developing world, where cost-concerns make wide-scale public health interventions impractical. The development of novel and inexpensive ELISA diagnostic antigens is critical in early detection and prevention of complications. The transmembrane glycoprotein (G) of rabies virus (RV) contains an external domain capable of inducing the synthesis of anti-rabies, virus-neutralizing antibodies, in infected or immunized hosts. In our study, the external G domain was synthesized and fused in-frame with a polyhistidine-tag coding sequence present in the expression plasmid. Soluble truncated recombinant G was secreted in Hansenula polymorpha (H. polymorpha) using H. polymorpha-derived calnexin (HpCNE1) overproduction and found to be correctly N-glycosylated. The truncated recombinant G was purified from cell culture supernatant by Ni-agarose affinity chromatography and when compared with the full-length glycoprotein, found to be similarly immunogenic in vaccinated rabbits. These results subsequently led us to explore the potential of truncated recombinant G as a diagnostic antigen in ELISA. Our results show that the truncated recombinant G can detect antibodies directed to both whole virion and native glycoprotein. More sophisticated applications of truncated recombinant G would profit from the correctly N-glycosylated and soluble monomer.
Collapse
Affiliation(s)
- Weidong Qian
- Life Science and Engineering School, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | | | | | | |
Collapse
|
15
|
Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity. PLoS One 2012; 7:e37915. [PMID: 22685548 PMCID: PMC3369916 DOI: 10.1371/journal.pone.0037915] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/30/2012] [Indexed: 12/16/2022] Open
Abstract
Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.
Collapse
Affiliation(s)
- Kerry Routenberg Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Timothy J. Politano
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vasiliki Panagiotou
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bo Jiang
- GlycoFi, a wholly-owned subsidiary of Merck and Co., Lebanon, New Hampshire, United States of America
| | - Terrance A. Stadheim
- GlycoFi, a wholly-owned subsidiary of Merck and Co., Lebanon, New Hampshire, United States of America
| | - J. Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Čiplys E, Sasnauskas K, Slibinskas R. Overexpression of human calnexin in yeast improves measles surface glycoprotein solubility. FEMS Yeast Res 2011; 11:514-23. [DOI: 10.1111/j.1567-1364.2011.00742.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Pfeffer M, Maurer M, Köllensperger G, Hann S, Graf AB, Mattanovich D. Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure. Microb Cell Fact 2011; 10:47. [PMID: 21703020 PMCID: PMC3147017 DOI: 10.1186/1475-2859-10-47] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/26/2011] [Indexed: 12/24/2022] Open
Abstract
Background The budding yeast Pichia pastoris is widely used for protein production. To determine the best suitable strategy for strain improvement, especially for high secretion, quantitative data of intracellular fluxes of recombinant protein are very important. Especially the balance between intracellular protein formation, degradation and secretion defines the major bottleneck of the production system. Because these parameters are different for unlimited growth (shake flask) and carbon-limited growth (bioreactor) conditions, they should be determined under "production like" conditions. Thus labeling procedures must be compatible with minimal production media and the usage of bioreactors. The inorganic and non-radioactive 34S labeled sodium sulfate meets both demands. Results We used a novel labeling method with the stable sulfur isotope 34S, administered as sodium sulfate, which is performed during chemostat culivations. The intra- and extracellular sulfur 32 to 34 ratios of purified recombinant protein, the antibody fragment Fab3H6, are measured by HPLC-ICP-MS. The kinetic model described here is necessary to calculate the kinetic parameters from sulfur ratios of consecutive samples as well as for sensitivity analysis. From the total amount of protein produced intracellularly (143.1 μg g-1 h-1 protein per yeast dry mass and time) about 58% are degraded within the cell, 35% are secreted to the exterior and 7% are inherited to the daughter cells. Conclusions A novel 34S labeling procedure that enables in vivo quantification of intracellular fluxes of recombinant protein under "production like" conditions is described. Subsequent sensitivity analysis of the fluxes by using MATLAB, indicate the most promising approaches for strain improvement towards increased secretion.
Collapse
Affiliation(s)
- Martin Pfeffer
- University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Zhou X, Chandarajoti K, Pham TQ, Liu R, Liu J. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. Glycobiology 2011; 21:771-80. [PMID: 21224284 DOI: 10.1093/glycob/cwr001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate (HS) belongs to a major class of glycans that perform central physiological functions. Heparin is a specialized form of HS and is a clinically used anticoagulant drug. Heparin is a natural product isolated from pig intestine. There is a strong demand to replace natural heparin with a synthetic counterpart. Although a chemoenzymatic approach has been employed to prepare synthetic heparin, the scale of the synthesis is limited by the availability of sulfotransferases and the cofactor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Here, we present a novel method to produce secreted forms of sulfotransferases in the yeast cells, Kluyveromyces lactis. Five sulfotransferases including N-sulfotransferase, 2-O-sulfotransferase, 3-O-sulfotransferase 1 and 6-O-sulfotransferases 1 and 3 were expressed using this method. Unlike bacterial-expressed sulfotransferases, the yeast proteins can be directly used to modify polysaccharides without laborious purification. The yeast-expressed sulfotransferases also tend to have higher specific activity and thermostability. Furthermore, we demonstrated the possibility for the gram-scale synthesis of PAPS from adenosine 5'-triphosphate at only 1/5000th of the price purchased from a commercial source. Our results pave the way to conduct the enzymatic synthesis of heparin in large quantities.
Collapse
Affiliation(s)
- Xianxuan Zhou
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
19
|
Parente JA, Salem-Izacc SM, Santana JM, Pereira M, Borges CL, Bailão AM, Soares CMA. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins. BMC Microbiol 2010; 10:292. [PMID: 21080956 PMCID: PMC3000847 DOI: 10.1186/1471-2180-10-292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM). Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi. RESULTS A cDNA (Pbsp) encoding a secreted serine protease (PbSP), was isolated from a cDNA library constructed with RNAs of fungal yeast cells recovered from liver of infected mice. Recombinant PbSP was produced in Escherichia coli, and used to develop polyclonal antibodies that were able to detect a 66 kDa protein in the P. brasiliensis proteome. In vitro deglycosylation assays with endoglycosidase H demonstrated that PbSP is a N-glycosylated molecule. The Pbsp transcript and the protein were induced during nitrogen starvation. The Pbsp transcript was also induced in yeast cells infecting murine macrophages. Interactions of PbSP with P. brasiliensis proteins were evaluated by two-hybrid assay in the yeast Saccharomyces cerevisiae. PbSP interacts with a peptidyl prolyl cis-trans isomerase, calnexin, HSP70 and a cell wall protein PWP2. CONCLUSIONS A secreted subtilisin induced during nitrogen starvation was characterized indicating the possible role of this protein in the nitrogen acquisition. PbSP interactions with other P. brasiliensis proteins were reported. Proteins interacting with PbSP are related to folding process, protein trafficking and cytoskeleton reorganization.
Collapse
Affiliation(s)
- Juliana A Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sílvia M Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Jaime M Santana
- Laboratório de Interação Parasito-Hospedeiro, Faculdade de Medicina, Universidade de Brasília, Brasília, DF
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton L Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia MA Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
20
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
21
|
Noorwez SM, Sama RRK, Kaushal S. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 2009; 284:33333-42. [PMID: 19801547 DOI: 10.1074/jbc.m109.043364] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lectin chaperone calnexin (Cnx) is important for quality control of glycoproteins, and the chances of correct folding of a protein increase the longer the protein interacts with Cnx. Mutations in glycoproteins increase their association with Cnx, and these mutant proteins are retained in the endoplasmic reticulum. However, until now, the increased interaction with Cnx was not known to increase the folding of mutant glycoproteins. Because many human diseases result from glycoprotein misfolding, a Cnx-assisted folding of mutant glycoproteins could be beneficial. Mutations of rhodopsin, the glycoprotein pigment of rod photoreceptors, cause misfolding resulting in retinitis pigmentosa. Despite the critical role of Cnx in glycoprotein folding, surprisingly little is known about its interaction with rhodopsin or whether this interaction could be modulated to increase the folding of mutant rhodopsin. Here, we demonstrate that Cnx preferentially associates with misfolded mutant opsins associated with retinitis pigmentosa. Furthermore, the overexpression of Cnx leads to an increased accumulation of misfolded P23H opsin but not the correctly folded protein. Finally, we demonstrate that increased levels of Cnx in the presence of the pharmacological chaperone 11-cis-retinal increase the folding efficiency and result in an increase in correct folding of mutant rhodopsin. These results demonstrate that misfolded rather than correctly folded rhodopsin is a substrate for Cnx and that the interaction between Cnx and mutant, misfolded rhodopsin, can be targeted to increase the yield of folded mutant protein.
Collapse
Affiliation(s)
- Syed M Noorwez
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
22
|
Xplor 2--an optimized transformation/expression system for recombinant protein production in the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 2009; 84:583-94. [PMID: 19672589 DOI: 10.1007/s00253-009-2167-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/22/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
Combining ease of genetic manipulation and fermentation with the ability to secrete and to glycosylate proteins in the basic eukaryotic manner, Arxula adeninivorans provides an attractive expression platform. Based on a redesign of the basic vector, a new Arxula vector system, Xplor 2, for heterologous gene expression was established, which allows (1) the construction of expression plasmids for supertransformation of A. adeninivorans strains secreting target proteins of biotechnological interest and (2) the integration of small vector cassettes consisting of yeast DNA sequences only. For this purpose, a set of modules including the ATRP1m selection-marker module, expression modules for constitutive expression of the genes phyK (Klebsiella-derived phytase) and IFNalpha2a (human interferon alpha), the HARS (Hansenula polymorpha autonomous replication sequence) for autonomous replication and the chaperone module AHSB4 promoter -HpCNE1 gene (calnexin) -PHO5 terminator to improve secretion efficiency were constructed and integrated in various combinations in the basic vector Xplor 2. After removal of the complete Escherichia coli-based plasmid parts (resistance marker, ColE1 ori and f1(-) origin), the remaining yeast-based linear vector fragment with or without rDNA targeting sequences were transformed as yeast rDNA integrative expression cassettes and yeast integrative expression cassettes (YICs), respectively, and the resulting strains were tested for their capacity to secrete PhyK or IFNalpha2a. Maximal expression levels were consistently obtained using YICs for transformation irrespective of whether or not they carry HARS and/or calnexin modules. It is recommended that at least 50 such transformants be analyzed to ensure selection of the best transformants.
Collapse
|
23
|
Qian W, Liu Y, Zhang C, Niu Z, Song H, Qiu B. Expression of bovine follicle-stimulating hormone subunits in a Hansenula polymorpha expression system increases the secretion and bioactivity in vivo. Protein Expr Purif 2009; 68:183-9. [PMID: 19635568 DOI: 10.1016/j.pep.2009.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
Abstract
Bovine follicle-stimulating hormone (bFSH), a pituitary gonadotropin, is a heterodimer hormone that consists of a common alpha-subunit non-covalently associated with the hormone-specific beta-subunit. Unfortunately, expression levels of recombinant bFSH or its subunits are invariably low. We report here the secretory expression of biologically active bFSHalpha and bFSHbeta subunit in the methylotrophic yeast Hansenula polymorpha. A slightly higher level of expression of recombinant bFSH subunits was achieved by using the Saccharomyces cerevisiae-derived calnexin (ScCne1) as a chaperone in engineered H. polymorpha strains. The preliminary data also suggested that bFSH subunits expressed in H. polymorpha appeared to be less-glycosylated. This isoform had been shown to be 80% increase in in vivo bioactivity compared with the hyperglycosylated Pichia pastoris-derived recombinant bFSHalpha/beta. More sophisticated applications of bFSH would profit from the assembled less-glycosylated heterodimer.
Collapse
Affiliation(s)
- Weidong Qian
- Center for Agricultural Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
24
|
Chen Z, Wang Z, He X, Guo X, Li W, Zhang B. Uricase production by a recombinant Hansenula polymorpha strain harboring Candida utilis uricase gene. Appl Microbiol Biotechnol 2008; 79:545-54. [PMID: 18437374 DOI: 10.1007/s00253-008-1472-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 03/25/2008] [Accepted: 03/27/2008] [Indexed: 11/30/2022]
Abstract
Uricase is an important medical enzyme which can be used to determine urate in clinical analysis, to therapy gout, hyperuricemia, and tumor lysis syndrome. Uricase of Candida utilis was successfully expressed in Hansenula polymorpha under the control of methanol oxidase promoter using Saccharomyces cerevisiae alpha-factor signal peptide as the secretory sequence. Recombinant H. polymorpha MU200 with the highest extracellular uricase production was characterized with three copies of expression cassette and selected for process optimization for the production of recombinant enzyme. Among the parameters investigated in shaking flask cultures, the pH value of medium and inoculum size had great influence on the recombinant uricase production. The maximum extracellular uricase yield of 2.6 U/ml was obtained in shaking flask culture. The yield of recombinant uricase was significantly improved by the combined use of a high cell-density cultivation technique and a pH control strategy of switching culture pH from 5.5 to 6.5 in the induction phase. After induction for 58 h, the production of recombinant uricase reached 52.3 U/ml (about 2.1 g/l of protein) extracellularly and 60.3 U/ml (about 2.4 g/l) intracellularly in fed-batch fermentation, which are much higher than those expressed in other expression systems. To our knowledge, this is the first report about the heterologous expression of uricase in H. polymorpha.
Collapse
Affiliation(s)
- Zhiyu Chen
- Laboratory of Yeast Molecular Genetics and Breeding, Institute of Microbiology, Chinese Academy of Sciences, Datun Road, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008; 7:11. [PMID: 18394160 PMCID: PMC2322954 DOI: 10.1186/1475-2859-7-11] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/04/2008] [Indexed: 11/17/2022] Open
Abstract
Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | | | - Ursula Rinas
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Dragosits
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Escarlata Rodríguez-Carmona
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Kristin Baumann
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Giuliani
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Ermenegilda Parrilli
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Paola Branduardi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Christine Lang
- Technical University Berlin, Faculty III, Institute for Microbiology and Genetics, Berlin, Germany
| | - Danilo Porro
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Pau Ferrer
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Luisa Tutino
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Antonio Villaverde
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| |
Collapse
|
26
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|