1
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
2
|
Li W, Feng Y, Feng Z, Wang L, Whiteway M, Lu H, Jiang Y. Pitavastatin Calcium Confers Fungicidal Properties to Fluconazole by Inhibiting Ubiquinone Biosynthesis and Generating Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:667. [PMID: 38929106 PMCID: PMC11200976 DOI: 10.3390/antiox13060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fluconazole (FLC) is extensively employed for the prophylaxis and treatment of invasive fungal infections (IFIs). However, the fungistatic nature of FLC renders pathogenic fungi capable of developing tolerance towards it. Consequently, converting FLC into a fungicidal agent using adjuvants assumes significance to circumvent FLC resistance and the perpetuation of fungal infections. This drug repurposing study has successfully identified pitavastatin calcium (PIT) as a promising adjuvant for enhancing the fungicidal activity of FLC from a comprehensive library of 2372 FDA-approved drugs. PIT could render FLC fungicidal even at concentrations as low as 1 μM. The median lethal dose (LD50) of PIT was determined to be 103.6 mg/kg. We have discovered that PIT achieves its synergistic effect by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby impeding ubiquinone biosynthesis, inducing reactive oxygen species (ROS) generation, triggering apoptosis, and disrupting Golgi function. We employed a Candida albicans strain that demonstrated a notable tolerance to FLC to infect mice and found that PIT effectively augmented the antifungal efficacy of FLC against IFIs. This study is an illustrative example of how FDA-approved drugs can effectively eliminate fungal tolerance to FLC.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhe Feng
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Li Wang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
3
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
5
|
Hussain MK, Ahmed S, Khan A, Siddiqui AJ, Khatoon S, Jahan S. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. Eur J Med Chem 2023; 246:115010. [PMID: 36566630 PMCID: PMC9734071 DOI: 10.1016/j.ejmech.2022.115010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Mucormycosis is a fungal infection which got worsens with time if not diagnosed and treated. The current COVID-19 pandemic has association with fungal infection specifically with mucormycosis. Already immunocompromised patients are easy target for COVID-19 and mucormycosis as well. COVID-19 infection imparts in weak immune system so chances of infection is comparatively high in COVID-19 patients. Furthermore, diabetes, corticosteroid medicines, and a weakened immune system are the most prevalent risk factors for this infection as we discussed in case studies here. The steroid therapy for COVID-19 patients sometimes have negative impact on the patient health and this state encounters many infections including mucormycosis. There are treatments available but less promising and less effective. So, researchers are focusing on the promising agents against mucormycosis. It is reported that early treatment with liposomal amphotericin B (AmB), manogepix, echinocandins isavuconazole, posacanazole and other promising therapeutic agents have overcome the burden of mucormycosis. Lipid formulations of AmB have become the standard treatment for mucormycosis due to their greater safety and efficacy. In this review article, we have discussed case studies with the infection of mucormycosis in COVID-19 patients. Furthermore, we focused on anti-mucormycosis agents with mechanism of action of various therapeutics, including coverage of new antifungal agents being investigated as part of the urgent global response to control and combat this lethal infection, especially those with established risk factors.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza PG College, Rampur, 244901, India,M.J.P. Rohil Khand University, Bareilly, India
| | - Shaista Ahmed
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia,Corresponding author
| |
Collapse
|
6
|
Verdaguer IB, Crispim M, Hernández A, Katzin AM. The Biomedical Importance of the Missing Pathway for Farnesol and Geranylgeraniol Salvage. Molecules 2022; 27:molecules27248691. [PMID: 36557825 PMCID: PMC9782597 DOI: 10.3390/molecules27248691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Agustín Hernández
- Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +55-11-3091-7417
| |
Collapse
|
7
|
Holbrook‐Smith D, Durot S, Sauer U. High-throughput metabolomics predicts drug-target relationships for eukaryotic proteins. Mol Syst Biol 2022; 18:e10767. [PMID: 35194925 PMCID: PMC8864444 DOI: 10.15252/msb.202110767] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
Chemical probes are important tools for understanding biological systems. However, because of the huge combinatorial space of targets and potential compounds, traditional chemical screens cannot be applied systematically to find probes for all possible druggable targets. Here, we demonstrate a novel concept for overcoming this challenge by leveraging high-throughput metabolomics and overexpression to predict drug-target interactions. The metabolome profiles of yeast treated with 1,280 compounds from a chemical library were collected and compared with those of inducible yeast membrane protein overexpression strains. By matching metabolome profiles, we predicted which small molecules targeted which signaling systems and recovered known interactions. Drug-target predictions were generated across the 86 genes studied, including for difficult to study membrane proteins. A subset of those predictions were tested and validated, including the novel targeting of GPR1 signaling by ibuprofen. These results demonstrate the feasibility of predicting drug-target relationships for eukaryotic proteins using high-throughput metabolomics.
Collapse
Affiliation(s)
| | - Stephan Durot
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Uwe Sauer
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
8
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
9
|
Abstract
Fungal infections are estimated to be responsible for 1.5 million deaths annually. Global anti-microbial resistance is also observed for fungal pathogens, and scientists are looking for new antifungal agents to address this challenge. One potential strategy is to evaluate currently available drugs for their possible antifungal activity. One of the suggested drug classes are statins, which are commonly used to decrease plasma cholesterol and reduce cardiovascular risk associated with low density lipoprotein cholesterol (LDL-c). Statins are postulated to possess pleiotropic effects beyond cholesterol lowering; improving endothelial function, modulating inflammation, and potentially exerting anti-microbial effects. In this study, we reviewed in-vitro and in-vivo studies, as well as clinical reports pertaining to the antifungal efficacy of statins. In addition, we have addressed various modulators of statin anti-fungal activity and the potential mechanisms responsible for their anti-fungal effects. In general, statins do possess anti-fungal activity, targeting a broad spectrum of fungal organisms including human opportunistic pathogens such as Candida spp. and Zygomycetes, Dermatophytes, alimentary toxigenic species such as Aspergillus spp., and fungi found in device implants such as Saccharomyces cerevisiae. Statins have been shown to augment a number of antifungal drug classes, for example, the azoles and polyenes. Synthetic statins are generally considered more potent than the first generation of fungal metabolites. Fluvastatin is considered the most effective statin with the broadest and most potent fungal inhibitory activity, including fungicidal and/or fungistatic properties. This has been demonstrated with plasma concentrations that can easily be achieved in a clinical setting. Additionally, statins can potentiate the efficacy of available antifungal drugs in a synergistic fashion. Although only a limited number of animal and human studies have been reported to date, observational cohort studies have confirmed that patients using statins have a reduced risk of candidemia-related complications. Further studies are warranted to confirm our findings and expand current knowledge of the anti-fungal effects of statins.
Collapse
|
10
|
Irwin JC, Fenning AS, Vella RK. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Transl Res 2020; 215:17-30. [PMID: 31491372 DOI: 10.1016/j.trsl.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
The administration of geranylgeranyl pyrophosphate (GGPP) (or its precursor, geranylgeraniol [GGOH]) has been shown by several in vitro studies to be capable of abrogating statin-induced myotoxicity. Nonetheless, the potential of GGPP repletion to prevent statin-associated muscle symptoms (SAMS) in vivo is yet to be investigated. Therefore, this study aimed to evaluate the ability of GGOH to prevent SAMS in rodents. Female Wistar rats (12 weeks of age) were randomised to 1 of 4 treatment groups: control, control with GGOH, simvastatin or simvastatin with GGOH. Ex vivo assessment of force production was conducted in skeletal muscles of varying fiber composition. Ex vivo left ventricular performance and blood vessel function was also assessed to determine if the administration of GGOH caused adverse changes in these parameters. Statin administration was associated with reduced force production in fast-twitch glycolytic muscle, but coadministration with GGOH completely abrogated this effect. Additionally, GGOH improved the performance of muscles not adversely affected by simvastatin (ie, those with a greater proportion of slow-twitch oxidative fibers), and increased force production in the control animals. Neither control nor statin-treated rodents given GGOH exhibited adverse changes in cardiac function. Vascular relaxation was also maintained following treatment with GGOH. The findings of this study demonstrate that GGOH can prevent statin-induced skeletal muscle fatigue in rodents without causing adverse changes in cardiovascular function. Further studies to elucidate the exact mechanisms underlying the effects observed in this investigation are warranted.
Collapse
Affiliation(s)
- Jordon C Irwin
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia.
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| |
Collapse
|
11
|
Hussein HM, Al-Khoury DK, Abdelnoor AM, Rahal EA. Atorvastatin increases the production of proinflammatory cytokines and decreases the survival of Escherichia coli-infected mice. Sci Rep 2019; 9:11717. [PMID: 31406240 PMCID: PMC6690901 DOI: 10.1038/s41598-019-48282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
To assess whether the immunosuppressive effects of atorvastatin outweigh its antibacterial ones in an infection, mice were infected with Escherichia coli and administered atorvastatin; survival rates were then monitored. Mice treated with atorvastatin post-infection showed a remarkable decrease in their survival rate. On the other hand, the higher the level of serum IFN-γ in the infected mice treated with atorvastatin, the lower was the survival rate. Levels of IL-4 were markedly depressed in all groups infected with E. coli and treated with atorvastatin. Since atorvastatin inhibits IFN-γ expression in the absence of bacterial infection, we examined whether bacterial lipopolysaccharide (LPS) was the element capable of overriding this inhibition. Mouse peripheral blood mononuclear cells were treated with atorvastatin and lipopolysaccharide ex vivo then proinflammatory (IFN-γ, TNFα, IL-6) and prohumoral/regulatory (IL-4, IL-13, IL-10) cytokine levels were analyzed in culture supernatants. While proinflammatory cytokine levels were decreased upon treatment with atorvastatin alone, their levels were markedly elevated by treatment with LPS, bacterial lysate or bacterial culture supernatant. On the other hand, atorvastatin exerted an inhibitory effect on production of the prohumoral/regulatory cytokines. Our data indicates that any consideration for statins as antimicrobial treatment should assess the possible adverse outcomes.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Diva Kalash Al-Khoury
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Alexander M Abdelnoor
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon. .,Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
Gross AS, Zimmermann A, Pendl T, Schroeder S, Schoenlechner H, Knittelfelder O, Lamplmayr L, Santiso A, Aufschnaiter A, Waltenstorfer D, Ortonobes Lara S, Stryeck S, Kast C, Ruckenstuhl C, Hofer SJ, Michelitsch B, Woelflingseder M, Müller R, Carmona-Gutierrez D, Madl T, Büttner S, Fröhlich KU, Shevchenko A, Eisenberg T. Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK. J Biol Chem 2019; 294:12020-12039. [PMID: 31209110 PMCID: PMC6690696 DOI: 10.1074/jbc.ra118.007020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1S/A) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1S/A cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1S/A. Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.
Collapse
Affiliation(s)
- Angelina S Gross
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Central Lab Gracia, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Hannes Schoenlechner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Laura Lamplmayr
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Ana Santiso
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andreas Aufschnaiter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 114 19 Stockholm, Sweden
| | - Daniel Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sandra Ortonobes Lara
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sarah Stryeck
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Christina Kast
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Birgit Michelitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Division of Plastic, Aesthetic, and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | | | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany
| | | | - Tobias Madl
- BioTechMed-Graz, 8010 Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 114 19 Stockholm, Sweden
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Central Lab Gracia, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
13
|
|
14
|
Ranadive P, Mehta A, Chavan Y, Marx A, George S. Morphological and Molecular Differentiation of Sporidiobolus johnsonii ATCC 20490 and Its Coenzyme Q10 Overproducing Mutant Strain UF16. Indian J Microbiol 2014; 54:343-57. [PMID: 24891743 DOI: 10.1007/s12088-014-0466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/03/2014] [Indexed: 11/24/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an industrially important molecule having nutraceutical and cosmeceutical applications. CoQ10 is mainly produced by microbial fermentation and the process demands the use of strains with high productivity and yields of CoQ10. During strain improvement program consisting of sequential induced mutagenesis, rational selection and screening process, a mutant strain UF16 was generated from Sporidiobolus johnsonii ATCC 20490 with 2.3-fold improvements in CoQ10 content. EMS and UV rays were used as mutagenic agents for generating UF16 and it was rationally selected based on atorvastatin resistance as well as survival at free radicals exposure. We investigated the genotypic and phenotypic changes in UF16 in order to differentiate it from wild type strain. Morphologically it was distinct due to reduced pigmentation of colony, reduced cell size and significant reduction in mycelial growth forms with abundance of yeast forms. At molecular level, UF16 was differentiated based on PCR fingerprinting method of RAPD as well as large and small-subunit rRNA gene sequences. Rapid molecular technique of RAPD analysis using six primers showed 34 % polymorphic fragments with mean genetic distance of 0.235. The partial sequences of rRNA-gene revealed few mutation sites on nucleotide base pairs. However, the mutations detected on rRNA gene of UF16 were less than 1 % of total base pairs and its sequence showed 99 % homology with the wild type strain. These mutations in UF16 could not be linked to phenotypic or genotypic changes on CoQ10 biosynthetic pathway that resulted in improved yield. Hence, investigating the mutations responsible for deregulation of CoQ10 pathway is essential to understand the cause of overproduction in UF16. Phylogenetic analysis based on RAPD bands and rRNA gene sequences coupled with morphological variations, exhibited the novelty of mutant UF16 having potential for improved CoQ10 production.
Collapse
Affiliation(s)
- Prafull Ranadive
- Fermentation Technology Lab, Natural Products Department, Piramal Enterprises Limited, Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Alka Mehta
- School of Bio Science and Technology, VIT University, Vellore, 632014 Tamil Nadu India
| | - Yashwant Chavan
- geneOmbio Technologies Private Limited, Baner, Pune, 411045 Maharashtra India
| | - Anbukayalvizhi Marx
- Fermentation Technology Lab, Natural Products Department, Piramal Enterprises Limited, Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| | - Saji George
- Fermentation Technology Lab, Natural Products Department, Piramal Enterprises Limited, Nirlon Complex, Off Western Express Highway, Goregaon (East), Mumbai, 400063 India
| |
Collapse
|
15
|
Abdoli N, Azarmi Y, Eghbal MA. Protective Effects of N-acetylcysteine Against the Statins Cytotoxicity in Freshly Isolated Rat Hepatocytes. Adv Pharm Bull 2014; 4:249-54. [PMID: 24754008 DOI: 10.5681/apb.2014.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Hepatotoxicity is one of the most important side effects of the statins therapy as lipid-lowering agents. However, the mechanism(s) of hepatotoxicity induced by these drugs is not clearly understood yet, and no hepatoprotective agent has been developed against this complication. METHODS The protective effect of N-acetylcysteine (NAC) against statins-induced cytotoxicity was evaluated by using freshly isolated rat hepatocytes. Hepatocytes were prepared by the method of collagenase enzyme perfusion via portal vein. This technique is based on liver perfusion with collagenase after removal of calcium ion (Ca2+) with a chelator (ethylene glycol tetra acetic acid (EGTA) 0.5 mM). The level of parameters such as cell death, ROS formation, lipid peroxidation, mitochondrial membrane potential (MMP) in the statins-treated hepatocytes were determined. Additionally, the mentioned markers were assessed in the presence of NAC. RESULTS Incubation of hepatocytes with the statins resulted in cytotoxicity characterized by an elevation in cell death, increasing ROS generation and consequently lipid peroxidation and impairment of mitochondrial function. Administration of NAC caused reduction in amount of ROS formation, lipid peroxidation and finally, cell viability and mitochondrial membrane potential (MMP) were improved. CONCLUSION This study confirms that oxidative stress and consequently mitochondrial dysfunction is one of the mechanisms underlying the statins-induced liver injury and treating hepatocytes by NAC (200 μM) attenuates this cytotoxicity.
Collapse
Affiliation(s)
- Narges Abdoli
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Pharmacology and Toxicology Department, School of pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Pharmacology and Toxicology Department, School of pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Pharmacology and Toxicology Department, School of pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. Proc Natl Acad Sci U S A 2013; 110:5981-6. [PMID: 23530189 DOI: 10.1073/pnas.1218778110] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction.
Collapse
|
17
|
Ellesat KS, Holth TF, Wojewodzic MW, Hylland K. Atorvastatin up-regulate toxicologically relevant genes in rainbow trout gills. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1841-1856. [PMID: 22555812 DOI: 10.1007/s10646-012-0918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2012] [Indexed: 05/31/2023]
Abstract
There are large and increasing discharges of statins into the aquatic environment. Statins are cholesterol-lowering pharmaceuticals, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, an enzyme in the cholesterol synthesis pathway. Earlier studies have shown that statins will affect the expression of a range of genes in mammalian tissues and this group of pharmaceuticals has also been shown to affect membrane transporters. Changes in gene expression and ion transport in aquatic organisms may have dramatic consequences for the individual. The aim of the present study was to clarify whether waterborne exposure to a selected statin, atorvastatin, would affect gene expression in rainbow trout (Oncorhynchus mykiss) gill or liver or ion regulation in gills. Juvenile rainbow trout were exposed to two atorvastatin acid and atorvastatin lactone concentrations for 7 days (nominal concentrations 200 ng L(-1) and 10 μg L(-1)). The exposures caused up-regulated gene expression in gill, not liver, and only at the lowest concentration. Genes involved in membrane transport (pgp, mrp1), oxidative stress response (sod, mt), apoptosis (bax) and biotransformation (sult2b) were differentially expressed whereas the expression of genes involved in cholesterol biosynthesis (hmgr, fdps) or peroxisomal proliferation (ppar) were not affected. There were no significant changes in gill Na(+)/K(+) ATPase activity following exposure to atorvastatin. The pattern of differentially expressed genes in rainbow trout gills differ from responses previously observed in mammalian tissues following statin exposure.
Collapse
|
18
|
Callegari S, Gregory PA, Sykes MJ, Bellon J, Andrews S, McKinnon RA, de Barros Lopes MA. Polymorphisms in the mitochondrial ribosome recycling factor EF-G2mt/MEF2 compromise cell respiratory function and increase atorvastatin toxicity. PLoS Genet 2012; 8:e1002755. [PMID: 22719265 PMCID: PMC3375252 DOI: 10.1371/journal.pgen.1002755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/25/2012] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans. The mitochondria are responsible for producing the cell's energy. Energy production is the result of carefully orchestrated interactions between proteins encoded by the mitochondrial DNA and by nuclear DNA. Sequence variations in genes encoding these proteins have been shown to cause disease and adverse drug reactions in patients. The cholesterol-lowering drugs statins are one class of drugs that interfere with mitochondrial function. Statins are one of the most prescribed drugs in the western world, but many users suffer side effects, commonly muscle pain. In severe cases this can lead to muscle breakdown and liver failure. In this study, we discover that disruption of a mitochondrial translation gene, EF-G2mt, impedes respiration and increases cell death when exposed to statin. Using the simple unicellular organism yeast as a model, the activity of naturally occurring human EF-G2mt variants is tested. Three of these variants render yeast cells more sensitive to statin. Patients who possess these EF-G2mt variations may be more susceptible to statin side effects. Importantly, the test for statin sensitivity also led to the discovery of mutants that have a reduced energy production capacity. The decreased ability to produce energy is linked to a number of diseases, including myopathies and liver failure.
Collapse
Affiliation(s)
- Sylvie Callegari
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Philip A. Gregory
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- Discipline of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew J. Sykes
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jennifer Bellon
- Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Stuart Andrews
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross A. McKinnon
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Miguel A. de Barros Lopes
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
19
|
Fowler DM, Cooper SJ, Stephany JJ, Hendon N, Nelson S, Fields S. Suppression of statin effectiveness by copper and zinc in yeast and human cells. MOLECULAR BIOSYSTEMS 2010; 7:533-44. [PMID: 21085730 DOI: 10.1039/c0mb00166j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lovastatin and other statins inhibit HMG-CoA reductase, which carries out an early step in the sterol biosynthesis pathway. Statins lower cholesterol and are widely prescribed to prevent heart disease, but like many drugs, they can interact with nutritionally acquired metabolites. To probe these interactions, we explored the effect of a diverse library of metabolites on statin effectiveness using a Saccharomyces cerevisiae model. In yeast, treatment with lovastatin results in reduced growth. We combined lovastatin with the library of metabolites, and found that copper and zinc ions impaired the ability of the statin to inhibit yeast growth. Using an integrated genomic and metabolomic approach, we found that lovastatin plus metal synergistically upregulated some sterol biosynthesis genes. This altered pattern of gene expression resulted in greater flux through the sterol biosynthesis pathway and an increase in ergosterol levels. Each sterol intermediate level was correlated with expression of the upstream gene. Thus, the ergosterol biosynthetic response induced by statin is enhanced by copper and zinc. In cultured mammalian cells, these metals also rescued statin growth inhibition. Because copper and zinc impair the ability of statin to reduce sterol biosynthesis, dietary intake of these metals could have clinical relevance for statin treatment in humans.
Collapse
Affiliation(s)
- Douglas M Fowler
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|