1
|
Li X, de Assis Souza R, Heinemann M. The rate of glucose metabolism sets the cell morphology across yeast strains and species. Curr Biol 2025:S0960-9822(24)01707-X. [PMID: 39879976 DOI: 10.1016/j.cub.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species. We performed a quantitative analysis of the physiology and morphology of these strains and discovered a strong correlation between the glucose uptake rate (GUR) and the surface-area-to-volume ratio. 14C-glucose uptake experiments demonstrated that the GUR for a given strain is governed either by glucose transport capacity or glycolytic rate, indicating that it is rather the rate of glucose metabolism in general that correlates with cell morphology. Furthermore, perturbations in glucose metabolism influenced cell sizes, whereas manipulating cell size did not affect GUR, suggesting that glucose metabolism determines cell size rather than the reverse. Across the strains tested, we also found that the rate of glucose metabolism influenced ethanol production rate, biomass yield, and carbon dioxide transfer rate. Overall, our findings demonstrate that the rate of glucose metabolism is a key factor shaping yeast cell morphology and physiology, offering new insights into the fundamental principles of yeast biology.
Collapse
Affiliation(s)
- Xiang Li
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Robson de Assis Souza
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Wu Y, Li S, Sun B, Guo J, Zheng M, Li A. Enhancing Gastrodin Production in Yarrowia lipolytica by Metabolic Engineering. ACS Synth Biol 2024; 13:1332-1342. [PMID: 38563122 DOI: 10.1021/acssynbio.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrodin, 4-hydroxybenzyl alcohol-4-O-β-D-glucopyranoside, has been widely used in the treatment of neurogenic and cardiovascular diseases. Currently, gastrodin biosynthesis is being achieved in model microorganisms. However, the production levels are insufficient for industrial applications. In this study, we successfully engineered a Yarrowia lipolytica strain to overproduce gastrodin through metabolic engineering. Initially, the engineered strain expressing the heterologous gastrodin biosynthetic pathway, which comprises chorismate lyase, carboxylic acid reductase, phosphopantetheinyl transferase, endogenous alcohol dehydrogenases, and a UDP-glucosyltransferase, produced 1.05 g/L gastrodin from glucose in a shaking flask. Then, the production was further enhanced to 6.68 g/L with a productivity of 2.23 g/L/day by overexpressing the key node DAHP synthases of the shikimate pathway and alleviating the native tryptophan and phenylalanine biosynthetic pathways. Finally, the best strain, Gd07, produced 13.22 g/L gastrodin in a 5 L fermenter. This represents the highest reported production of gastrodin in an engineered microorganism to date, marking the first successful de novo production of gastrodin using Y. lipolytica.
Collapse
Affiliation(s)
- Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Shuocheng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Baijian Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Jingyi Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Meiyi Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| |
Collapse
|
3
|
Czajka JJ, Han Y, Kim J, Mondo SJ, Hofstad BA, Robles A, Haridas S, Riley R, LaButti K, Pangilinan J, Andreopoulos W, Lipzen A, Yan J, Wang M, Ng V, Grigoriev IV, Spatafora JW, Magnuson JK, Baker SE, Pomraning KR. Genome-scale model development and genomic sequencing of the oleaginous clade Lipomyces. Front Bioeng Biotechnol 2024; 12:1356551. [PMID: 38638323 PMCID: PMC11024372 DOI: 10.3389/fbioe.2024.1356551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.
Collapse
Affiliation(s)
- Jeffrey J. Czajka
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Yichao Han
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
| | - Stephen J. Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Beth A. Hofstad
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - AnaLaura Robles
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - William Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Juying Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jon K. Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
| | - Scott E. Baker
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
4
|
Tengölics R, Szappanos B, Mülleder M, Kalapis D, Grézal G, Sajben C, Agostini F, Mokochinski JB, Bálint B, Nagy LG, Ralser M, Papp B. The metabolic domestication syndrome of budding yeast. Proc Natl Acad Sci U S A 2024; 121:e2313354121. [PMID: 38457520 PMCID: PMC10945815 DOI: 10.1073/pnas.2313354121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 03/10/2024] Open
Abstract
Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.
Collapse
Affiliation(s)
- Roland Tengölics
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- Metabolomics Lab, Core facilities, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Balázs Szappanos
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged6726, Hungary
| | - Michael Mülleder
- Charité Universitätsmedizin, Core Facility High-Throughput Mass Spectrometry, Berlin10117, Germany
| | - Dorottya Kalapis
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Gábor Grézal
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Csilla Sajben
- Metabolomics Lab, Core facilities, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Federica Agostini
- Department of Biochemistry, Charité Universitätsmedizin, Berlin10117, Germany
| | - João Benhur Mokochinski
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Balázs Bálint
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - László G. Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin10117, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, LondonNW11AT, United Kingdom
| | - Balázs Papp
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- National Laboratory for Health Security, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| |
Collapse
|
5
|
Messina E, de Souza CP, Cappella C, Barile SN, Scarcia P, Pisano I, Palmieri L, Nicaud JM, Agrimi G. Genetic inactivation of the Carnitine/Acetyl-Carnitine mitochondrial carrier of Yarrowia lipolytica leads to enhanced odd-chain fatty acid production. Microb Cell Fact 2023; 22:128. [PMID: 37443049 DOI: 10.1186/s12934-023-02137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Mitochondrial carriers (MCs) can deeply affect the intracellular flux distribution of metabolic pathways. The manipulation of their expression level, to redirect the flux toward the production of a molecule of interest, is an attractive target for the metabolic engineering of eukaryotic microorganisms. The non-conventional yeast Yarrowia lipolytica is able to use a wide range of substrates. As oleaginous yeast, it directs most of the acetyl-CoA therefrom generated towards the synthesis of lipids, which occurs in the cytoplasm. Among them, the odd-chain fatty acids (OCFAs) are promising microbial-based compounds with several applications in the medical, cosmetic, chemical and agricultural industries. RESULTS In this study, we have identified the MC involved in the Carnitine/Acetyl-Carnitine shuttle in Y. lipolytica, YlCrc1. The Y. lipolytica Ylcrc1 knock-out strain failed to grow on ethanol, acetate and oleic acid, demonstrating the fundamental role of this MC in the transport of acetyl-CoA from peroxisomes and cytoplasm into mitochondria. A metabolic engineering strategy involving the deletion of YlCRC1, and the recombinant expression of propionyl-CoA transferase from Ralstonia eutropha (RePCT), improved propionate utilization and its conversion into OCFAs. These genetic modifications and a lipogenic medium supplemented with glucose and propionate as the sole carbon sources, led to enhanced accumulation of OCFAs in Y. lipolytica. CONCLUSIONS The Carnitine/Acetyl-Carnitine shuttle of Y. lipolytica involving YlCrc1, is the sole pathway for transporting peroxisomal or cytosolic acetyl-CoA to mitochondria. Manipulation of this carrier can be a promising target for metabolic engineering approaches involving cytosolic acetyl-CoA, as demonstrated by the effect of YlCRC1 deletion on OCFAs synthesis.
Collapse
Affiliation(s)
- Eugenia Messina
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, 78350, AgroParisTech, France
| | - Camilla Pires de Souza
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, 78350, AgroParisTech, France
| | - Claudia Cappella
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Isabella Pisano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy
- Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Institute of Biomembranes, Campus Universitario, via Orabona 4, Bari, 70125, Italy
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, 78350, AgroParisTech, France.
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Campus Universitario, via Orabona 4, Bari, 70125, Italy.
| |
Collapse
|
6
|
Bi H, Xu C, Bao Y, Zhang C, Wang K, Zhang Y, Wang M, Chen B, Fang Y, Tan T. Enhancing precursor supply and modulating metabolism to achieve high-level production of β-farnesene in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 382:129171. [PMID: 37196740 DOI: 10.1016/j.biortech.2023.129171] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
β-Farnesene is a sesquiterpene commonly found in essential oils of plants, with applications spanning from agricultural pest control and biofuels to industrial chemicals. The use of renewable substrates in microbial cell factories offers a sustainable approach to β-farnesene biosynthesis. In this study, malic enzyme from Mucor circinelloides was examined for NADPH regeneration, concomitant with the augmentation of cytosolic acetyl-CoA supply by expressing ATP-citrate lyase from Mus musculus and manipulating the citrate pathway via AMP deaminase and isocitrate dehydrogenase. Carbon flux was modulated through the elimination of native 6-phosphofructokinase, while the incorporation of an exogenous non-oxidative glycolysis pathway served to bridge the pentose phosphate pathway with the mevalonate pathway. The resulting orthogonal precursor supply pathway facilitated β-farnesene production, reaching 810 mg/L in shake-flask fermentation. Employing optimal fermentation conditions and feeding strategy, a titer of 28.9 g/L of β-farnesene was attained in a 2 L bioreactor.
Collapse
Affiliation(s)
- Haoran Bi
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chenchen Xu
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yufei Bao
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Changwei Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Kai Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Meng Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Biqiang Chen
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yunming Fang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianwei Tan
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
7
|
Dinh HV, Maranas CD. Evaluating proteome allocation of Saccharomyces cerevisiae phenotypes with resource balance analysis. Metab Eng 2023; 77:242-255. [PMID: 37080482 DOI: 10.1016/j.ymben.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Saccharomyces cerevisiae is an important model organism and a workhorse in bioproduction. Here, we reconstructed a compact and tractable genome-scale resource balance analysis (RBA) model (i.e., named scRBA) to analyze metabolic fluxes and proteome allocation in a computationally efficient manner. Resource capacity models such as scRBA provide the quantitative means to identify bottlenecks in biosynthetic pathways due to enzyme, compartment size, and/or ribosome availability limitations. ATP maintenance rate and in vivo apparent turnover numbers (kapp) were regressed from metabolic flux and protein concentration data to capture observed physiological growth yield and proteome efficiency and allocation, respectively. Estimated parameter values were found to vary with oxygen and nutrient availability. Overall, this work (i) provides condition-specific model parameters to recapitulate phenotypes corresponding to different extracellular environments, (ii) alludes to the enhancing effect of substrate channeling and post-translational activation on in vivo enzyme efficiency in glycolysis and electron transport chain, and (iii) reveals that the Crabtree effect is underpinned by specific limitations in mitochondrial proteome capacity and secondarily ribosome availability rather than overall proteome capacity.
Collapse
Affiliation(s)
- Hoang V Dinh
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Hu M, Dinh HV, Shen Y, Suthers PF, Foster CJ, Call CM, Ye X, Pratas J, Fatma Z, Zhao H, Rabinowitz JD, Maranas CD. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale. Metab Eng 2023; 76:1-17. [PMID: 36603705 DOI: 10.1016/j.ymben.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The parameterization of kinetic models requires measurement of fluxes and/or metabolite levels for a base strain and a few genetic perturbations thereof. Unlike stoichiometric models that are mostly invariant to the specific strain, it remains unclear whether kinetic models constructed for different strains of the same species have similar or significantly different kinetic parameters. This important question underpins the applicability range and prediction limits of kinetic reconstructions. To this end, herein we parameterize two separate large-scale kinetic models using K-FIT with genome-wide coverage corresponding to two distinct strains of Saccharomyces cerevisiae: CEN.PK 113-7D strain (model k-sacce306-CENPK), and growth-deficient BY4741 (isogenic to S288c; model k-sacce306-BY4741). The metabolic network for each model contains 306 reactions, 230 metabolites, and 119 substrate-level regulatory interactions. The two models (for CEN.PK and BY4741) recapitulate, within one standard deviation, 77% and 75% of the fitted dataset fluxes, respectively, determined by 13C metabolic flux analysis for wild-type and eight single-gene knockout mutants of each strain. Strain-specific kinetic parameterization results indicate that key enzymes in the TCA cycle, glycolysis, and arginine and proline metabolism drive the metabolic differences between these two strains of S. cerevisiae. Our results suggest that although kinetic models cannot be readily used across strains as stoichiometric models, they can capture species-specific information through the kinetic parameterization process.
Collapse
Affiliation(s)
- Mengqi Hu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Charles J Foster
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Catherine M Call
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Xuanjia Ye
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Zia Fatma
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA.
| |
Collapse
|
9
|
Arnesen JA, Borodina I. Engineering of Yarrowia lipolytica for terpenoid production. Metab Eng Commun 2022; 15:e00213. [PMID: 36387772 PMCID: PMC9663531 DOI: 10.1016/j.mec.2022.e00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast Yarrowia lipolytica demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing Y. lipolytica terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes. Proc Natl Acad Sci U S A 2022; 119:e2211052119. [PMID: 36161918 DOI: 10.1073/pnas.2211052119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptomyces bacteria have a complex life cycle that is intricately linked with their remarkable metabolic capabilities. Exploration is a recently discovered developmental innovation of these bacteria, that involves the rapid expansion of a structured colony on solid surfaces. Nutrient availability impacts exploration dynamics, and we have found that glycerol can dramatically increase exploration rates and alter the metabolic output of exploring colonies. We show here that glycerol-mediated growth acceleration is accompanied by distinct transcriptional signatures and by the activation of otherwise cryptic metabolites including the orange-pigmented coproporphyrin, the antibiotic chloramphenicol, and the uncommon, alternative siderophore foroxymithine. Exploring cultures are also known to produce the well-characterized desferrioxamine siderophore. Mutational studies of single and double siderophore mutants revealed functional redundancy when strains were cultured on their own; however, loss of the alternative foroxymithine siderophore imposed a more profound fitness penalty than loss of desferrioxamine during coculture with the yeast Saccharomyces cerevisiae. Notably, the two siderophores displayed distinct localization patterns, with desferrioxamine being confined within the colony area, and foroxymithine diffusing well beyond the colony boundary. The relative fitness advantage conferred by the alternative foroxymithine siderophore was abolished when the siderophore piracy capabilities of S. cerevisiae were eliminated (S. cerevisiae encodes a ferrioxamine-specific transporter). Our work suggests that exploring Streptomyces colonies can engage in nutrient-targeted metabolic arms races, deploying alternative siderophores that allow them to successfully outcompete other microbes for the limited bioavailable iron during coculture.
Collapse
|
11
|
Liu Z, Fu B, Duan X, Lv W, Kang S, Zhou M, Wang C, Li D, Xu N. Effects of cell-cell interactions between A. oryzae and Z. rouxii on morphology and secondary metabolites. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Gientka I, Wirkowska-Wojdyła M, Ostrowska-Ligęza E, Janowicz M, Reczek L, Synowiec A, Błażejak S. Enhancing Red Yeast Biomass Yield and Lipid Biosynthesis by Using Waste Nitrogen Source by Glucose Fed-Batch at Low Temperature. Microorganisms 2022; 10:microorganisms10061253. [PMID: 35744771 PMCID: PMC9229382 DOI: 10.3390/microorganisms10061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
This work reports the effect of simple feeding strategies and temperature to obtain high-cell-density cultures of Rhodotorula glutinis var. rubescens LOCKR13 maximizing the de novo lipid productivity using deproteinated potato wastewater (DPW) as a basic medium. Feeding DPW with glucose enables a high yield of Rhodotorula glutinis var. rubescens LOCKR13 biomass (52 g d.w. L−1) to be obtained. The highest values of lipid accumulation (34.15%, w/w), production (14.68 g L−1) and yield coefficients (YL/S: 0.242 g g−1), and volumetric productivity (PL: 0.1 g L−1 h−1) were reached by the strain in the two-stage fed-batch process at 20 °C. The lipid of yeast biomass was rich in oleic acid (Δ9C18:1) and palmitic acid (C16:0), and the lower temperature of incubation significantly increased the MUFA (especially oleic acid) content. For the first time, a unique set of thermal analyses of the microbial oil was performed. The isotherms of the oxidation kinetics (PDSC) showed that lipids extracted from the biomass of red yeast had high oxidative stability. This feature of the yeast oil can be useful for long-shelf-life food products and can be promising for the production of biodiesel.
Collapse
Affiliation(s)
- Iwona Gientka
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
- Correspondence:
| | - Magdalena Wirkowska-Wojdyła
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland; (M.W.-W.); (E.O.-L.)
| | - Ewa Ostrowska-Ligęza
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland; (M.W.-W.); (E.O.-L.)
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland;
| | - Lidia Reczek
- Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Nowoursynowska Str. 166, 02-787 Warsaw, Poland;
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Science, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (A.S.); (S.B.)
| |
Collapse
|
13
|
Li F, Yuan L, Lu H, Li G, Chen Y, Engqvist MKM, Kerkhoven EJ, Nielsen J. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00798-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractEnzyme turnover numbers (kcat) are key to understanding cellular metabolism, proteome allocation and physiological diversity, but experimentally measured kcat data are sparse and noisy. Here we provide a deep learning approach (DLKcat) for high-throughput kcat prediction for metabolic enzymes from any organism merely from substrate structures and protein sequences. DLKcat can capture kcat changes for mutated enzymes and identify amino acid residues with a strong impact on kcat values. We applied this approach to predict genome-scale kcat values for more than 300 yeast species. Additionally, we designed a Bayesian pipeline to parameterize enzyme-constrained genome-scale metabolic models from predicted kcat values. The resulting models outperformed the corresponding original enzyme-constrained genome-scale metabolic models from previous pipelines in predicting phenotypes and proteomes, and enabled us to explain phenotypic differences. DLKcat and the enzyme-constrained genome-scale metabolic model construction pipeline are valuable tools to uncover global trends of enzyme kinetics and physiological diversity, and to further elucidate cellular metabolism on a large scale.
Collapse
|
14
|
Arnesen JA, Belmonte Del Ama A, Jayachandran S, Dahlin J, Rago D, Andersen AJC, Borodina I. Engineering of Yarrowia lipolytica for the production of plant triterpenoids: Asiatic, madecassic, and arjunolic acids. Metab Eng Commun 2022; 14:e00197. [PMID: 35433265 PMCID: PMC9011116 DOI: 10.1016/j.mec.2022.e00197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Several plant triterpenoids have valuable pharmaceutical properties, but their production and usage is limited since extraction from plants can burden natural resources, and result in low yields and purity. Here, we engineered oleaginous yeast Yarrowia lipolytica to produce three valuable plant triterpenoids (asiatic, madecassic, and arjunolic acids) by fermentation. First, we established the recombinant production of precursors, ursolic and oleanolic acids, by expressing plant enzymes in free or fused versions in a Y. lipolytica strain previously optimized for squalene production. Engineered strains produced up to 11.6 mg/g DCW ursolic acid or 10.2 mg/g DCW oleanolic acid. The biosynthetic pathway from ursolic acid was extended by expressing the Centella asiatica cytochrome P450 monoxygenases CaCYP716C11p, CaCYP714E19p, and CaCYP716E41p, resulting in the production of trace amounts of asiatic acid and 0.12 mg/g DCW madecassic acid. Expressing the same C. asiatica cytochromes P450 in oleanolic acid-producing strain resulted in the production of oleanane triterpenoids. Expression of CaCYP716C11p in the oleanolic acid-producing strain yielded 8.9 mg/g DCW maslinic acid. Further expression of a codon-optimized CaCYP714E19p resulted in 4.4 mg/g DCW arjunolic acid. Lastly, arjunolic acid production was increased to 9.1 mg/g DCW by swapping the N-terminal domain of CaCYP714E19p with the N-terminal domain from a Kalopanax septemlobus cytochrome P450. In summary, we have demonstrated the production of asiatic, madecassic, and arjunolic acids in a microbial cell factory. The strains and fermentation processes need to be further improved before the production of these molecules by fermentation can be industrialized.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Arian Belmonte Del Ama
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Sidharth Jayachandran
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Aaron John Christian Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts plads 221, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Arnesen JA, Jacobsen IH, Dyekjær JD, Rago D, Kristensen M, Klitgaard AK, Randelovic M, Martinez JL, Borodina I. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 2022; 22:foac015. [PMID: 35274684 PMCID: PMC8992728 DOI: 10.1093/femsyr/foac015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone with applications in agriculture and human health. ABA can be produced by Botrytis cinerea, a plant pathogenic filamentous fungus. However, the cultivation process is lengthy and strain improvement by genetic engineering is difficult. Therefore, we engineered the oleaginous yeast Yarrowia lipolytica as an alternative host for ABA production. First, we expressed five B. cinerea genes involved in ABA biosynthesis (BcABA1,BcABA2,BcABA3,BcABA4 and BcCPR1) in a Y. lipolytica chassis with optimized mevalonate flux. The strain produced 59.2 mg/L of ABA in small-scale cultivation. Next, we expressed an additional copy of each gene in the strain, but only expression of additional copy of BcABA1 gene increased the ABA titer to 168.5 mg/L. We then integrated additional copies of the mevalonate pathway and ABA biosynthesis encoding genes, and we expressed plant ABA transporters resulting in an improved strain producing 263.5 mg/L and 9.1 mg/g dry cell weight (DCW) ABA. Bioreactor cultivation resulted in a specific yield of 12.8 mg/g DCW ABA; however, surprisingly, the biomass level obtained in bioreactors was only 10.5 g DCW/L, with a lower ABA titer of 133.6 mg/L. While further optimization is needed, this study confirms Y. lipolytica as a potential alternative host for the ABA production.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs Lyngby, Denmark
| | - Jane Dannow Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Andreas Koedfoed Klitgaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - José Luis Martinez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
16
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
17
|
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules 2022; 12:biom12020175. [PMID: 35204676 PMCID: PMC8961648 DOI: 10.3390/biom12020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.
Collapse
|
18
|
Tang R, Wen Q, Li M, Zhang W, Wang Z, Yang J. Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15468-15483. [PMID: 34905684 DOI: 10.1021/acs.jafc.1c06022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Farnesene, as an important sesquiterpene isoprenoid polymer of acetyl-CoA, is a renewable feedstock for diesel fuel, polymers, and cosmetics. It has been widely applied in agriculture, medicine, energy, and other fields. In recent years, farnesene biosynthesis is considered a green and economical approach because of its mild reaction conditions, low environmental pollution, and sustainability. Metabolic engineering has been widely applied to construct cell factories for farnesene biosynthesis. In this paper, the research progress, common problems, and strategies of farnesene biosynthesis are reviewed. They are mainly described from the perspectives of the current status of farnesene biosynthesis in different host cells, optimization of the metabolic pathway for farnesene biosynthesis, and key enzymes for farnesene biosynthesis. Furthermore, the challenges and prospects for future farnesene biosynthesis are discussed.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Qifeng Wen
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Meijie Li
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Wei Zhang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
19
|
van der Hoek SA, Rusnák M, Jacobsen IH, Martínez JL, Kell DB, Borodina I. Engineering ergothioneine production in Yarrowia lipolytica. FEBS Lett 2021; 596:1356-1364. [PMID: 34817066 PMCID: PMC9299812 DOI: 10.1002/1873-3468.14239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023]
Abstract
Ergothioneine is a naturally occurring antioxidant that has shown potential in ameliorating neurodegenerative and cardiovascular diseases. In this study, we investigated the potential of the Crabtree‐negative, oleaginous yeast Yarrowia lipolytica as an alternative host for ergothioneine production. We expressed the biosynthetic enzymes EGT1 from Neurospora crassa and EGT2 from Claviceps purpurea to obtain 158 mg·L−1 of ergothioneine in small‐scale cultivation, with an additional copy of each gene improving the titer to 205 mg·L−1. The effect of phosphate limitation on ergothioneine production was studied, and finally, a phosphate‐limited fed‐batch fermentation in 1 L bioreactors yielded 1.63 ± 0.04 g·L−1 ergothioneine in 220 h, corresponding to an overall volumetric productivity of 7.41 mg·L−1·h−1, showing that Y. lipolytica is a promising host for ergothioneine production.
Collapse
Affiliation(s)
- Steven A van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matej Rusnák
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José L Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Douglas B Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Zhu Y, Li Y, Xu Y, Zhang J, Ma L, Qi Q, Wang Q. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering. Metab Eng 2021; 68:142-151. [PMID: 34610458 DOI: 10.1016/j.ymben.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis. Here, we designed and constructed a bifunctional glycolysis flux biosensor that can dynamically regulate glycolysis flux for overproduction of desired biochemicals. A series of positive-and negative-response biosensors were created and modified for varied thresholds and dynamic ranges. These engineered glycolysis flux biosensors were verified to be able to characterize in vivo fructose-1,6-diphosphate concentration. Subsequently, the biosensors were applied for fine-tuning glycolysis flux to effectively balance the biosynthesis of two chemicals: mevalonate and N-acetylglucosamine. A glycolysis flux-dynamically controlled Escherichia coli strain achieved a 111.3 g/L mevalonate titer in a 1L fermenter.
Collapse
Affiliation(s)
- Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Li
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ya Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Linlin Ma
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
21
|
Lu H, Li F, Yuan L, Domenzain I, Yu R, Wang H, Li G, Chen Y, Ji B, Kerkhoven EJ, Nielsen J. Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Mol Syst Biol 2021; 17:e10427. [PMID: 34676984 PMCID: PMC8532513 DOI: 10.15252/msb.202110427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.
Collapse
Affiliation(s)
- Hongzhong Lu
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Feiran Li
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Le Yuan
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Iván Domenzain
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Rosemary Yu
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Hao Wang
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- National Bioinformatics Infrastructure SwedenScience for Life LaboratoryChalmers University of TechnologyGothenburgSweden
| | - Gang Li
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Yu Chen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Boyang Ji
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Eduard J Kerkhoven
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
- BioInnovation InstituteCopenhagen NDenmark
| |
Collapse
|
22
|
Kumar K, Bruheim P. Large dependency of intracellular NAD and CoA pools on cultivation conditions in Saccharomyces cerevisiae. BMC Res Notes 2021; 14:372. [PMID: 34556160 PMCID: PMC8461857 DOI: 10.1186/s13104-021-05783-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the variation of NAD and CoA metabolite pools in Saccharomyces cerevisiae cultivated under various cultivation conditions. This study complements a previous report on glycolytic, pentose phosphate pathway, tricarboxylic acid cycle, amino acids, and deoxy-/nucleoside phosphate pools determined under the same cultivation conditions. RESULTS S. cerevisiae pellets from batch (four carbohydrate sources) and chemostat (carbon-, nitrogen-, phosphate-limited and a range of dilution rates) bioreactor cultivations were extracted and analyzed with two recently established absolute quantitative liquid chromatography mass spectrometry (LC-MS/MS) methods for NAD and CoA metabolites. Both methods apply 13C internal standard dilution strategy for the enhanced analytical accuracy and precision. Individual metabolite pools were relatively constant for the different growth rates within the same mode of cultivation, but large differences were observed among some of the modes, i.e. NAD metabolites were 10 to 100-fold lower in nitrogen limited chemostats compared to the other modes, and phosphate limited chemostats were characterized with much lower CoA metabolite pools. The results complement the previous results and together provide a comprehensive insight into primary metabolite pools variations at a large range in growth and carbon source consumption rates.
Collapse
Affiliation(s)
- Kanhaiya Kumar
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491 Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491 Trondheim, Norway
| |
Collapse
|
23
|
Matsuda F, Maeda K, Taniguchi T, Kondo Y, Yatabe F, Okahashi N, Shimizu H. mfapy: An open-source Python package for 13C-based metabolic flux analysis. Metab Eng Commun 2021; 13:e00177. [PMID: 34354925 PMCID: PMC8322459 DOI: 10.1016/j.mec.2021.e00177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
13C-based metabolic flux analysis (13C-MFA) is an essential tool for estimating intracellular metabolic flux levels in metabolic engineering and biology. In 13C-MFA, a metabolic flux distribution that explains the observed isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report the development of mfapy, an open-source Python package developed for more flexibility and extensibility for 13C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by computer simulations of 13C-MFA experiments, and development of new data analysis techniques for stable isotope labeling experiments. mfapy is available to the public from the Github repository (https://github.com/fumiomatsuda/mfapy). An open-source Python package, mfapy, is developed for 13C-MFA. mfapy enables users to write Python codes for data analysis procedures of 13C-MFA. mfapy has a flexibility and extensibility to support various data analysis procedures. Computer simulations of 13C-MFA experiments is supported for experimental design.
Collapse
Affiliation(s)
- Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Maeda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeo Taniguchi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Kondo
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Futa Yatabe
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Kildegaard KR, Arnesen JA, Adiego-Pérez B, Rago D, Kristensen M, Klitgaard AK, Hansen EH, Hansen J, Borodina I. Tailored biosynthesis of gibberellin plant hormones in yeast. Metab Eng 2021; 66:1-11. [PMID: 33746070 PMCID: PMC8205117 DOI: 10.1016/j.ymben.2021.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/02/2021] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
The application of small amounts of natural plant growth hormones, such as gibberellins (GAs), can increase the productivity and quality of many vegetable and fruit crops. However, gibberellin growth hormones usage is limited by the high cost of their production, which is currently based on fermentation of a natural fungal producer Fusarium fujikuroi that produces a mix of several GAs. We explored the potential of the oleaginous yeast Yarrowia lipolytica to produce specific profiles of GAs. Firstly, the production of the GA-precursor ent-kaurenoic acid (KA) at 3.75 mg/L was achieved by expression of biosynthetic enzymes from the plant Arabidopsis thaliana and upregulation of the mevalonate (MVA) pathway. We then built a GA4-producing strain by extending the GA-biosynthetic pathway and upregulating the MVA-pathway further, resulting in 17.29 mg/L GA4. Additional expression of the F. fujikoroi GA-biosynthetic enzymes resulted in the production of GA7 (trace amounts) and GA3 (2.93 mg/L). Lastly, through protein engineering and the expression of additional KA-biosynthetic genes, we increased the GA3-production 4.4-fold resulting in 12.81 mg/L. The developed system presents a promising resource for the recombinant production of specific gibberellins, identifying bottlenecks in GA biosynthesis, and discovering new GA biosynthetic genes. Classification Biological Sciences, Applied Biological Sciences. A complete biosynthetic pathway towards gibberellins was reconstructed in a microbial host The pathway towards ent-kaurenoic acid consisted of Arabidopsis thaliana enzymes The pathway from ent-kaurenoic acid to gibberellins GA3, GA4 and GA7 consisted of Fusarium fujikuroi enzymes Y. lipolytica expressed 14 heterologous genes for gibberellins biosynthesis and had 5 genome edits for improved mevalonate flux The strains produced up to 12 mg/L of GA3 and up to 17 mg/L GA4 in small-scale cultivations
Collapse
Affiliation(s)
- Kanchana R Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Jonathan A Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Belén Adiego-Pérez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Andreas K Klitgaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Esben H Hansen
- River Stone Biotech ApS, Fruebjergvej 3, 2100, København Ø, Denmark
| | - Jørgen Hansen
- River Stone Biotech ApS, Fruebjergvej 3, 2100, København Ø, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
25
|
Chen H, Blum JE, Thalacker-Mercer A, Gu Z. Impact of the Whole Genome Duplication Event on PYK Activity and Effects of a PYK1 Mutation on Metabolism in S. cerevisiae. Front Mol Biosci 2021; 8:656461. [PMID: 33796550 PMCID: PMC8007964 DOI: 10.3389/fmolb.2021.656461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Evolution of aerobic fermentation (crabtree effect) in yeast is associated with the whole genome duplication (WGD) event, suggesting that duplication of certain genes may have altered yeast metabolism. The pyruvate kinase (PYK) gene is associated with alterations in cell metabolism, and duplicated during the WGD, generating PYK1 and PYK2. Thus, the impact of WGD on PYK activity and role of PYK in yeast metabolism were explored. Methods: PYK activity in the presence or absence of fructose-1,6-bisphosphate (FBP) was compared between pre- and post-WGD yeast. Glucose consumption, ethanol production, and oxygen consumption were measured in wildtype yeast and yeast with a T403E point mutation, which alters FBP binding affinity. Results: FBP stimulated increased PYK activity in pre-WGD yeast and in the PYK1 isoforms of post-WGD yeast, but not in the PYK2 isoforms of post-WGD yeast. Compared to wildtype, T403E mutant yeast displayed reduced glucose consumption, reduced ethanol production, and increased mitochondrial metabolism. Conclusion: The WGD event impacted the sensitivity of PYK activity to FBP. Mutations in the FBP binding domain of PYK induce metabolic shifts that favor respiration and suppress fermentation.
Collapse
Affiliation(s)
- Hong Chen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jamie E Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Kumar K, Venkatraman V, Bruheim P. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:64. [PMID: 33750414 PMCID: PMC7941957 DOI: 10.1186/s12934-021-01557-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Saccharomyces cerevisiae is a well-known popular model system for basic biological studies and serves as a host organism for the heterologous production of commercially interesting small molecules and proteins. The central metabolism is at the core to provide building blocks and energy to support growth and survival in normal situations as well as during exogenous stresses and forced heterologous protein production. Here, we present a comprehensive study of intracellular central metabolite pool profiling when growing S. cerevisiae on different carbon sources in batch cultivations and at different growth rates in nutrient-limited glucose chemostats. The latest versions of absolute quantitative mass spectrometry-based metabolite profiling methodology were applied to cover glycolytic and pentose phosphate pathway metabolites, tricarboxylic acid cycle (TCA), complete amino acid, and deoxy-/nucleoside phosphate pools. Results Glutamate, glutamine, alanine, and citrate were the four most abundant metabolites for most conditions tested. The amino acid is the dominant metabolite class even though a marked relative reduction compared to the other metabolite classes was observed for nitrogen and phosphate limited chemostats. Interestingly, glycolytic and pentose phosphate pathway (PPP) metabolites display the largest variation among the cultivation conditions while the nucleoside phosphate pools are more stable and vary within a closer concentration window. The overall trends for glucose and nitrogen-limited chemostats were increased metabolite pools with the increasing growth rate. Next, comparing the chosen chemostat reference growth rate (0.12 h−1, approximate one-fourth of maximal unlimited growth rate) illuminates an interesting pattern: almost all pools are lower in nitrogen and phosphate limited conditions compared to glucose limitation, except for the TCA metabolites citrate, isocitrate and α-ketoglutarate. Conclusions This study provides new knowledge-how the central metabolism is adapting to various cultivations conditions and growth rates which is essential for expanding our understanding of cellular metabolism and the development of improved phenotypes in metabolic engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01557-8.
Collapse
Affiliation(s)
- Kanhaiya Kumar
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| |
Collapse
|
27
|
Zha J, Yuwen M, Qian W, Wu X. Yeast-Based Biosynthesis of Natural Products From Xylose. Front Bioeng Biotechnol 2021; 9:634919. [PMID: 33614617 PMCID: PMC7886706 DOI: 10.3389/fbioe.2021.634919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022] Open
Abstract
Xylose is the second most abundant sugar in lignocellulosic hydrolysates. Transformation of xylose into valuable chemicals, such as plant natural products, is a feasible and sustainable route to industrializing biorefinery of biomass materials. Yeast strains, including Saccharomyces cerevisiae, Scheffersomyces stipitis, and Yarrowia lipolytica, display some paramount advantages in expressing heterologous enzymes and pathways from various sources and have been engineered extensively to produce natural products. In this review, we summarize the advances in the development of metabolically engineered yeasts to produce natural products from xylose, including aromatics, terpenoids, and flavonoids. The state-of-the-art metabolic engineering strategies and representative examples are reviewed. Future challenges and perspectives are also discussed on yeast engineering for commercial production of natural products using xylose as feedstocks.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | | | | | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
28
|
Sailwal M, Das AJ, Gazara RK, Dasgupta D, Bhaskar T, Hazra S, Ghosh D. Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnol Adv 2020; 44:107616. [DOI: 10.1016/j.biotechadv.2020.107616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
|
29
|
Zamani AI, Barig S, Ibrahim S, Mohd Yusof H, Ibrahim J, Low JYS, Kua SF, Baharum SN, Stahmann KP, Ng CL. Comparative metabolomics of Phialemonium curvatum as an omnipotent fungus cultivated on crude palm oil versus glucose. Microb Cell Fact 2020; 19:179. [PMID: 32907579 PMCID: PMC7487481 DOI: 10.1186/s12934-020-01434-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. RESULTS Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. CONCLUSIONS Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.
Collapse
Affiliation(s)
- Arief Izzairy Zamani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Susann Barig
- Institute of Biotechnology, Brandenburg University of Technology Cottbus -Senftenberg, Universitaetsplatz 1, 01968, Senftenberg, Germany
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Hirzun Mohd Yusof
- Sime Darby Technology Centre, 1st Floor Block B, UPM-MTDC Technology Centre III, Lebuh Silikon, UPM 43400, Serdang, Selangor, Malaysia
| | - Julia Ibrahim
- Sime Darby Technology Centre, 1st Floor Block B, UPM-MTDC Technology Centre III, Lebuh Silikon, UPM 43400, Serdang, Selangor, Malaysia
| | - Jaime Yoke Sum Low
- Sime Darby Technology Centre, 1st Floor Block B, UPM-MTDC Technology Centre III, Lebuh Silikon, UPM 43400, Serdang, Selangor, Malaysia
| | - Shwu Fun Kua
- Sime Darby Technology Centre, 1st Floor Block B, UPM-MTDC Technology Centre III, Lebuh Silikon, UPM 43400, Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| | - Klaus-Peter Stahmann
- Institute of Biotechnology, Brandenburg University of Technology Cottbus -Senftenberg, Universitaetsplatz 1, 01968, Senftenberg, Germany.
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
30
|
Chen X, Wang T, Jin M, Tan Y, Liu L, Liu L, Li C, Yang Y, Du P. Metabolomics analysis of growth inhibition of
Lactobacillus plantarum
under ethanol stress. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Tingting Wang
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Man Jin
- National Dairy Quality Supervision and Inspection Center Harbin150028China
| | - Ying Tan
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Libo Liu
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Lihua Liu
- Institute of Animal Science (IAS) Chinese Academy of Agricultural Sciences (CAAS) Beijing100193China
| | - Chun Li
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Yuzhuo Yang
- Heilongjiang Academy of Green Food Science Harbin150030China
| | - Peng Du
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| |
Collapse
|
31
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
32
|
Arnesen JA, Kildegaard KR, Cernuda Pastor M, Jayachandran S, Kristensen M, Borodina I. Yarrowia lipolytica Strains Engineered for the Production of Terpenoids. Front Bioeng Biotechnol 2020; 8:945. [PMID: 32923433 PMCID: PMC7456906 DOI: 10.3389/fbioe.2020.00945] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Terpenoids are a diverse group of over 55,000 compounds with potential applications as advanced fuels, bulk and fine chemicals, pharmaceutical ingredients, agricultural chemicals, etc. To facilitate their bio-based production, there is a need for plug-and-play hosts, capable of high-level production of different terpenoids. Here we engineer Yarrowia lipolytica platform strains for the overproduction of mono-, sesqui-, di-, tri-, and tetraterpenoids. The monoterpene platform strain was evaluated by expressing Perilla frutescens limonene synthase, which resulted in limonene titer of 35.9 mg/L and was 100-fold higher than when the same enzyme was expressed in the strain without mevalonate pathway improvement. Expression of Callitropsis nootkatensis valencene synthase in the sesquiterpene platform strain resulted in 113.9 mg/L valencene, an 8.4-fold increase over the control strain. Platform strains for production of squalene, complex triterpenes, or diterpenes and carotenoids were also constructed and resulted in the production of 402.4 mg/L squalene, 22 mg/L 2,3-oxidosqualene, or 164 mg/L β-carotene, respectively. The presented terpenoid platform strains can facilitate the evaluation of terpenoid biosynthetic pathways and are a convenient starting point for constructing efficient cell factories for the production of various terpenoids. The platform strains and exemplary terpenoid strains can be obtained from Euroscarf.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marc Cernuda Pastor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Zhang Z, Liu Z, Meng Y, Chen Z, Han J, Wei Y, Shen T, Yi Y, Xie X. Parallel isotope differential modeling for instationary 13C fluxomics at the genome scale. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:103. [PMID: 32523616 PMCID: PMC7278083 DOI: 10.1186/s13068-020-01737-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A precise map of the metabolic fluxome, the closest surrogate to the physiological phenotype, is becoming progressively more important in the metabolic engineering of photosynthetic organisms for biofuel and biomass production. For photosynthetic organisms, the state-of-the-art method for this purpose is instationary 13C fluxomics, which has arisen as a sibling of transcriptomics or proteomics. Instationary 13C data processing requires solving high-dimensional nonlinear differential equations and leads to large computational and time costs when its scope is expanded to a genome-scale metabolic network. RESULT Here, we present a parallelized method to model instationary 13C labeling data. The elementary metabolite unit (EMU) framework is reorganized to allow treating individual mass isotopomers and breaking up of their networks into strongly connected components (SCCs). A variable domain parallel algorithm is introduced to process ordinary differential equations in a parallel way. 15-fold acceleration is achieved for constant-step-size modeling and ~ fivefold acceleration for adaptive-step-size modeling. CONCLUSION This algorithm is universally applicable to isotope granules such as EMUs and cumomers and can substantially accelerate instationary 13C fluxomics modeling. It thus has great potential to be widely adopted in any instationary 13C fluxomics modeling.
Collapse
Affiliation(s)
- Zhengdong Zhang
- College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou China
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou China
| | - Zhentao Liu
- College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou China
| | - Yafei Meng
- College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou China
| | - Zhen Chen
- School of Mathematics and Sciences, Guizhou Normal University, Guiyang, Guizhou China
| | - Jiayu Han
- School of Mathematics and Sciences, Guizhou Normal University, Guiyang, Guizhou China
| | - Yimin Wei
- School of Mathematics Sciences and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai, China
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou China
| | - Yin Yi
- College of Life Science, Guizhou Normal University, Guiyang, Guizhou China
| | - Xiaoyao Xie
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou China
| |
Collapse
|
34
|
Kamrad S, Grossbach J, Rodríguez‐López M, Mülleder M, Townsend S, Cappelletti V, Stojanovski G, Correia‐Melo C, Picotti P, Beyer A, Ralser M, Bähler J. Pyruvate kinase variant of fission yeast tunes carbon metabolism, cell regulation, growth and stress resistance. Mol Syst Biol 2020; 16:e9270. [PMID: 32319721 PMCID: PMC7175467 DOI: 10.15252/msb.20199270] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cells balance glycolysis with respiration to support their metabolic needs in different environmental or physiological contexts. With abundant glucose, many cells prefer to grow by aerobic glycolysis or fermentation. Using 161 natural isolates of fission yeast, we investigated the genetic basis and phenotypic effects of the fermentation-respiration balance. The laboratory and a few other strains depended more on respiration. This trait was associated with a single nucleotide polymorphism in a conserved region of Pyk1, the sole pyruvate kinase in fission yeast. This variant reduced Pyk1 activity and glycolytic flux. Replacing the "low-activity" pyk1 allele in the laboratory strain with the "high-activity" allele was sufficient to increase fermentation and decrease respiration. This metabolic rebalancing triggered systems-level adjustments in the transcriptome and proteome and in cellular traits, including increased growth and chronological lifespan but decreased resistance to oxidative stress. Thus, low Pyk1 activity does not lead to a growth advantage but to stress tolerance. The genetic tuning of glycolytic flux may reflect an adaptive trade-off in a species lacking pyruvate kinase isoforms.
Collapse
Affiliation(s)
- Stephan Kamrad
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Jan Grossbach
- CECADMedical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
| | - Maria Rodríguez‐López
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Michael Mülleder
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Charité University MedicineBerlinGermany
| | - StJohn Townsend
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Valentina Cappelletti
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Gorjan Stojanovski
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Clara Correia‐Melo
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | - Paola Picotti
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Andreas Beyer
- CECADMedical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
- Center for Molecular Medicine CologneCologneGermany
| | - Markus Ralser
- Molecular Biology of Metabolism LaboratoryThe Francis Crick InstituteLondonUK
- Charité University MedicineBerlinGermany
| | - Jürg Bähler
- Department of Genetics, Evolution & EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| |
Collapse
|
35
|
Tran Q, Lee H, Kim C, Kong G, Gong N, Kwon SH, Park J, Kim SH, Park J. Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8105735. [PMID: 32802877 PMCID: PMC7426758 DOI: 10.1155/2020/8105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
It is widely acknowledged that cancer cell energy metabolism relies mainly on anaerobic glycolysis; this phenomenon is described as the Warburg effect. However, whether the Warburg effect is caused by genetic dysregulation in cancer or is the cause of cancer remains unknown. The exact reasons and physiology of this abnormal metabolism are unclear; therefore, many researchers have attempted to reduce malignant cell growth in tumors in preclinical and clinical studies. Anticancer strategies based on the Warburg effect have involved the use of drug compounds and dietary changes. We recently reviewed applications of the Warburg effect to understand the benefits of this unusual cancer-related metabolism. In the current article, we summarize diet strategies for cancer treatment based on the Warburg effect.
Collapse
Affiliation(s)
- Quangdon Tran
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyunji Lee
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeyeong Kim
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gyeyeong Kong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Nayoung Gong
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- 3College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisoo Park
- 4Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon 34520, Republic of Korea
| | - Seon-Hwan Kim
- 5Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jongsun Park
- 1Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- 2Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
36
|
Allen DK, Young JD. Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol 2019; 64:92-100. [PMID: 31864070 PMCID: PMC7302994 DOI: 10.1016/j.copbio.2019.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Metabolism is dynamic and must function in context-specific ways to adjust to changes in the surrounding cellular and ecological environment. When isotopic tracers are used, metabolite flow (i.e. metabolic flux) can be quantified through biochemical networks to assess metabolic pathway operation. The cellular activities considered across multiple tissues and organs result in the observed phenotype and can be analyzed to discover emergent, whole-system properties of biology and elucidate misconceptions about network operation. However, temporal and spatial challenges remain significant hurdles and require novel approaches and creative solutions. We survey current investigations in higher plant and animal systems focused on dynamic isotope labeling experiments, spatially resolved measurement strategies, and observations from re-analysis of our own studies that suggest prospects for future work. Related discoveries will be necessary to push the frontier of our understanding of metabolism to suggest novel solutions to cure disease and feed a growing future world population.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Jamey D Young
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States.
| |
Collapse
|
37
|
Monteiro F, Hubmann G, Takhaveev V, Vedelaar SR, Norder J, Hekelaar J, Saldida J, Litsios A, Wijma HJ, Schmidt A, Heinemann M. Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol Syst Biol 2019; 15:e9071. [PMID: 31885198 PMCID: PMC6920703 DOI: 10.15252/msb.20199071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic heterogeneity between individual cells of a population harbors significant challenges for fundamental and applied research. Identifying metabolic heterogeneity and investigating its emergence require tools to zoom into metabolism of individual cells. While methods exist to measure metabolite levels in single cells, we lack capability to measure metabolic flux, i.e., the ultimate functional output of metabolic activity, on the single-cell level. Here, combining promoter engineering, computational protein design, biochemical methods, proteomics, and metabolomics, we developed a biosensor to measure glycolytic flux in single yeast cells. Therefore, drawing on the robust cell-intrinsic correlation between glycolytic flux and levels of fructose-1,6-bisphosphate (FBP), we transplanted the B. subtilis FBP-binding transcription factor CggR into yeast. With the developed biosensor, we robustly identified cell subpopulations with different FBP levels in mixed cultures, when subjected to flow cytometry and microscopy. Employing microfluidics, we were also able to assess the temporal FBP/glycolytic flux dynamics during the cell cycle. We anticipate that our biosensor will become a valuable tool to identify and study metabolic heterogeneity in cell populations.
Collapse
Affiliation(s)
- Francisca Monteiro
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
cE3c‐Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Georg Hubmann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Laboratory of Molecular Cell BiologyDepartment of BiologyInstitute of Botany and MicrobiologyKU Leuven, & Center for Microbiology, VIBHeverlee, FlandersBelgium
| | - Vakil Takhaveev
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Silke R Vedelaar
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Justin Norder
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Johan Hekelaar
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Joana Saldida
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Athanasios Litsios
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Hein J Wijma
- Biotechnology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | | | - Matthias Heinemann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
38
|
Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019; 103:9251-9262. [DOI: 10.1007/s00253-019-10200-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
39
|
Christodoulou D, Kuehne A, Estermann A, Fuhrer T, Lang P, Sauer U. Reserve Flux Capacity in the Pentose Phosphate Pathway by NADPH Binding Is Conserved across Kingdoms. iScience 2019; 19:1133-1144. [PMID: 31536961 PMCID: PMC6831883 DOI: 10.1016/j.isci.2019.08.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/13/2019] [Accepted: 08/24/2019] [Indexed: 02/03/2023] Open
Abstract
All organisms evolved defense mechanisms to counteract oxidative stress and buildup of reactive oxygen species (ROS). To test whether a potentially conserved mechanism exists for the rapid response, we investigated immediate metabolic dynamics of Escherichia coli, yeast, and human dermal fibroblasts to oxidative stress that we found to be conserved between species. To elucidate the regulatory mechanisms that implement this metabolic response, we developed mechanistic kinetic models for each organism's central metabolism and systematically tested activation and inactivation of each irreversible reaction by each metabolite. This ensemble modeling predicts in vivo relevant metabolite-enzyme interactions based on their ability to quantitatively describe metabolite dynamics. All three species appear to inhibit their oxidative pentose phosphate pathway during normal growth by the redox cofactor NADPH and relieve this inhibition to increase the pathway flux for detoxification of ROS during stress, with the sole exception of yeast when exposed to high levels of stress.
Collapse
Affiliation(s)
- Dimitris Christodoulou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Systems Biology Graduate School, Zurich 8057, Switzerland
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Systems Biology Graduate School, Zurich 8057, Switzerland
| | | | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Lang
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Imura M, Nitta K, Iwakiri R, Matsuda F, Shimizu H, Fukusaki E. Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative. J Biosci Bioeng 2019; 129:52-58. [PMID: 31537452 DOI: 10.1016/j.jbiosc.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 01/11/2023]
Abstract
The Crabtree effect involves energy management in which yeasts utilize glycolysis as the terminal electron acceptor instead of oxygen, despite the presence of sufficient dissolved oxygen, when oxygen concentrations exceed a certain limit. The Crabtree effect is detrimental to bakery yeast production, because it results in lower cellular glucose yields. Batch culture of Saccharomyces cerevisiae, a Crabtree positive yeast, decreased the cell yield of glucose and produced large amounts of ethanol despite a high specific glucose consumption rate compared to Candida utilis, a Crabtree negative yeast. This study investigated the effect of these characteristics on metabolite levels. We performed metabolome analysis of both yeasts during each growth phase of batch culture using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Principle component analysis of metabolome data indicated that the Crabtree effect affected metabolites related to NADH synthesis in central metabolism. The amount of these metabolites in S. cerevisiae was lower than that in C. utilis. However, to maintain the specific glucose consumption rate at high levels, yeasts must avoid depletion of NAD+, which is essential for glucose utilization. Our results indicated that NADH was oxidized by converting acetaldehyde to ethanol in S. cerevisiae, which is in accordance with previous reports. Therefore, the specific NADH production rates of S. cerevisiae and C. utilis did not show a difference. This study suggested that NAD+/NADH ratio is disrupted by the Crabtree effect, which in turn influenced central metabolism and that S. cerevisiae maintained the NAD+/NADH ratio by producing ethanol.
Collapse
Affiliation(s)
- Makoto Imura
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsuaki Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryo Iwakiri
- Mitsubishi Corporation Life Sciences Limited, 1-6 Higashihama, Saiki, Oita 876-8580, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
41
|
Dahlin J, Holkenbrink C, Marella ER, Wang G, Liebal U, Lieven C, Weber D, McCloskey D, Ebert BE, Herrgård MJ, Blank LM, Borodina I, Wang HL. Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 2019; 10:747. [PMID: 31543895 PMCID: PMC6730484 DOI: 10.3389/fgene.2019.00747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/02/2022] Open
Abstract
Fatty alcohols are widely used in various applications within a diverse set of industries, such as the soap and detergent industry, the personal care, and cosmetics industry, as well as the food industry. The total world production of fatty alcohols is over 2 million tons with approximately equal parts derived from fossil oil and from plant oils or animal fats. Due to the environmental impact of these production methods, there is an interest in alternative methods for fatty alcohol production via microbial fermentation using cheap renewable feedstocks. In this study, we aimed to obtain a better understanding of how fatty alcohol biosynthesis impacts the host organism, baker’s yeast Saccharomyces cerevisiae or oleaginous yeast Yarrowia lipolytica. Producing and non-producing strains were compared in growth and nitrogen-depletion cultivation phases. The multi-omics analysis included physiological characterization, transcriptome analysis by RNAseq, 13Cmetabolic flux analysis, and intracellular metabolomics. Both species accumulated fatty alcohols under nitrogen-depletion conditions but not during growth. The fatty alcohol–producing Y. lipolytica strain had a higher fatty alcohol production rate than an analogous S. cerevisiae strain. Nitrogen-depletion phase was associated with lower glucose uptake rates and a decrease in the intracellular concentration of acetyl–CoA in both yeast species, as well as increased organic acid secretion rates in Y. lipolytica. Expression of the fatty alcohol–producing enzyme fatty acyl–CoA reductase alleviated the growth defect caused by deletion of hexadecenal dehydrogenase encoding genes (HFD1 and HFD4) in Y. lipolytica. RNAseq analysis showed that fatty alcohol production triggered a cell wall stress response in S. cerevisiae. RNAseq analysis also showed that both nitrogen-depletion and fatty alcohol production have substantial effects on the expression of transporter encoding genes in Y. lipolytica. In conclusion, through this multi-omics study, we uncovered some effects of fatty alcohol production on the host metabolism. This knowledge can be used as guidance for further strain improvement towards the production of fatty alcohols.
Collapse
Affiliation(s)
- Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eko Roy Marella
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulf Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Christian Lieven
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dieter Weber
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Douglas McCloskey
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgitta E Ebert
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Rollero S, Bloem A, Ortiz‐Julien A, Bauer FF, Camarasa C, Divol B. A comparison of the nitrogen metabolic networks of
Kluyveromyces marxianus
and
Saccharomyces cerevisiae. Environ Microbiol 2019; 21:4076-4091. [DOI: 10.1111/1462-2920.14756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Stéphanie Rollero
- Institute for Wine Biotechnology, Department of Viticulture and Oenology Stellenbosch University Stellenbosch South Africa
| | - Audrey Bloem
- UMR SPO, INRA, SupAgroM Université de Montpellier Montpellier France
| | | | - Florian F. Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology Stellenbosch University Stellenbosch South Africa
| | - Carole Camarasa
- UMR SPO, INRA, SupAgroM Université de Montpellier Montpellier France
| | - Benoit Divol
- Institute for Wine Biotechnology, Department of Viticulture and Oenology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
43
|
Correia K, Yu SM, Mahadevan R. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5403499. [PMID: 30893420 PMCID: PMC6425859 DOI: 10.1093/database/baz022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. Insight into the evolution of orthologs, paralogs and xenologs in the yeast pan-genome can help bridge these genotypes; however, existing phylogenomic databases do not span diverse yeasts, and sometimes cannot distinguish between these homologs. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML reconstructed the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://lmse.github.io/aybrah/), including functional annotations, predictions for mitochondrial localization and transmembrane domains, literature references and phylogenetic reconstructions. Ortholog assignments in AYbRAH were compared to HOGENOM, KEGG Orthology, OMA, eggNOG and PANTHER. PANTHER and OMA had the most congruent ortholog groups with AYbRAH, while the other phylogenomic databases had greater amounts of under-clustering, over-clustering or no ortholog annotations for proteins. Future plans are discussed for AYbRAH, and recommendations are made for other research communities seeking to create curated ortholog databases.
Collapse
Affiliation(s)
- Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, College Street, Toronto, ON, Canada
| | - Shi M Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, College Street, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, College Street, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, College Street, Toronto, ON, Canada
| |
Collapse
|
44
|
Lehnen M, Ebert BE, Blank LM. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol 2019; 19:100. [PMID: 31101012 PMCID: PMC6525440 DOI: 10.1186/s12866-019-1453-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.
Collapse
Affiliation(s)
- Mathias Lehnen
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Birgitta E. Ebert
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| |
Collapse
|
45
|
Leupold S, Hubmann G, Litsios A, Meinema AC, Takhaveev V, Papagiannakis A, Niebel B, Janssens G, Siegel D, Heinemann M. Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan. eLife 2019; 8:e41046. [PMID: 30963997 PMCID: PMC6467564 DOI: 10.7554/elife.41046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
A comprehensive description of the phenotypic changes during cellular aging is key towards unraveling its causal forces. Previously, we mapped age-related changes in the proteome and transcriptome (Janssens et al., 2015). Here, employing the same experimental procedure and model-based inference, we generate a comprehensive account of metabolic changes during the replicative life of Saccharomyces cerevisiae. With age, we found decreasing metabolite levels, decreasing growth and substrate uptake rates accompanied by a switch from aerobic fermentation to respiration, with glycerol and acetate production. The identified metabolic fluxes revealed an increase in redox cofactor turnover, likely to combat increased production of reactive oxygen species. The metabolic changes are possibly a result of the age-associated decrease in surface area per cell volume. With metabolism being an important factor of the cellular phenotype, this work complements our recent mapping of the transcriptomic and proteomic changes towards a holistic description of the cellular phenotype during aging.
Collapse
Affiliation(s)
- Simeon Leupold
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Georg Hubmann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Anne C Meinema
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Bastian Niebel
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| | - Georges Janssens
- European Research Institute for the Biology of AgeingUniversity of Groningen, University Medical Centre GroningenGroningenNetherlands
| | - David Siegel
- Analytical Biochemistry, Groningen Research Institute of PharmacyUniversity of GroningenGroningenNetherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
| |
Collapse
|
46
|
Lv Y, Edwards H, Zhou J, Xu P. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica. ACS Synth Biol 2019; 8:568-576. [PMID: 30695641 DOI: 10.1021/acssynbio.8b00535] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Conventional plasmid-based gene expression tends to introduce genetic instability and gene copy number variations that lead to degenerated production. The limited number of auxotrophic markers in Yarrowia lipolytica also restricts our ability to perform iterative genetic modifications and manipulate long gene clusters. To overcome these limitations, we combined the high recombination efficiency of the Cre-loxP system and the high integration rate of 26s rDNA, and developed a versatile framework to iteratively integrate multicopy metabolic pathways in Y. lipolytica. We demonstrated the efficient genome integration of a plant-derived flavonoid pathway at random sites with multiple copies. Transient expression of Cre recombinase enabled efficient marker removal and allowed for the next round of genome integration. Investigating the recombination events demonstrated that the iterative integration is happening at sufficiently high rates (more than 80%) without disrupting the previous integration. Both the flavonoid precursor pathway and the plant-derived cytochrome c P450 enzymes were functionally integrated to improve flavonoid and hydroxylated flavonoid production. The engineered strains produced 71.2 mg/L naringenin, 54.2 mg/L eriodyctiol, and 48.1 mg/L taxifolin. The reported work provides a versatile platform to iteratively integrate functional gene clusters at high copy numbers. This work may streamline and expand our capability to build efficient microbial cell factories for high-value natural products and commodity chemical production in Y. lipolytica.
Collapse
Affiliation(s)
- Yongkun Lv
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu China
| | - Harley Edwards
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
47
|
Hollands K, Baron CM, Gibson KJ, Kelly KJ, Krasley EA, Laffend LA, Lauchli RM, Maggio-Hall LA, Nelson MJ, Prasad JC, Ren Y, Rice BA, Rice GH, Rothman SC. Engineering two species of yeast as cell factories for 2'-fucosyllactose. Metab Eng 2019; 52:232-242. [PMID: 30557615 DOI: 10.1016/j.ymben.2018.12.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/05/2023]
Abstract
Oligosaccharides present in human breast milk have been linked to beneficial effects on infant health. Inclusion of these human milk oligosaccharides (HMOs) in infant formula can recapitulate these health benefits. As a result, there is substantial commercial interest in a cost-effective source of HMOs as infant formula ingredients. Here we demonstrate that the yeast species Saccharomyces cerevisiae and Yarrowia lipolytica both can be engineered to produce 2'-fucosyllactose (2'FL), which is the most abundant oligosaccharide in human breast milk, at high titer and productivity. Both yeast species were modified to enable uptake of lactose and synthesis of GDP-fucose - the two precursors of 2'FL - by installing a lactose transporter and enzymes that convert GDP-mannose to GDP-fucose. Production of 2'FL was then enabled by expression of α-1,2-fucosyltransferases from various organisms. By screening candidate transporters from a variety of sources, we identified transporters capable of exporting 2'FL from yeast, which is a key consideration for any biocatalyst for 2'FL production. In particular, we identified CDT2 from Neurospora crassa as a promising target for further engineering to improve 2'FL efflux. Finally, we demonstrated production of 2'FL in fermenters at rates and titers that indicate the potential of engineered S. cerevisiae and Y. lipolytica strains for commercial 2'FL production.
Collapse
Affiliation(s)
- Kerry Hollands
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Christopher M Baron
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Katharine J Gibson
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Kristen J Kelly
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Elizabeth A Krasley
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Lisa A Laffend
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Ryan M Lauchli
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Lori A Maggio-Hall
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA.
| | - Mark J Nelson
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA
| | - Jahnavi C Prasad
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Yixin Ren
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Barbara A Rice
- E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Gregory H Rice
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| | - Steven C Rothman
- E.I. du Pont de Nemours and Company (DuPont), Central Research and Development, Experimental Station, Wilmington, DE 19803, USA; E.I. du Pont de Nemours and Company (DuPont), Industrial Biosciences, Experimental Station, Wilmington, DE 19803, USA
| |
Collapse
|
48
|
Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv 2018; 37:284-305. [PMID: 30576718 DOI: 10.1016/j.biotechadv.2018.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
Overflow metabolism is a common phenomenon observed at higher glycolytic flux in many bacteria, yeast (known as Crabtree effect), and mammalian cells including cancer cells (known as Warburg effect). This phenomenon has recently been characterized as the trade-offs between protein costs and enzyme efficiencies based on coarse-graining approaches. Moreover, it has been recognized that the glycolytic flux increases as the source of energy generation changes from energetically efficient respiration to inefficient respiro-fermentative or fermentative metabolism causing overflow metabolism. It is highly desired to clarify the metabolic regulation mechanisms behind such phenomena. Metabolic fluxes are located on top of the hierarchical regulation systems, and represent the outcome of the integrated response of all levels of cellular regulation systems. In the present article, we discuss about the different levels of regulation systems for the modulation of fluxes depending on the growth rate, growth condition such as oxygen limitation that alters the metabolism towards fermentation, and genetic perturbation affecting the source of energy generation from respiration to respiro-fermentative metabolism in relation to overflow metabolism. The intracellular metabolite of the upper glycolysis such as fructose 1,6-bisphosphate (FBP) plays an important role not only for flux sensing, but also for the regulation of the respiratory activity either directly or indirectly (via transcription factors) at higher growth rate. The glycolytic flux regulation is backed up (enhanced) by unphosphorylated EIIA and HPr of the phosphotransferase system (PTS) components, together with the sugar-phosphate stress regulation, where the transcriptional regulation is further modulated by post-transcriptional regulation via the degradation of mRNA (stability of mRNA) in Escherichia coli. Moreover, the channeling may also play some role in modulating the glycolytic cascade reactions.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
49
|
Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 2018; 50:192-208. [PMID: 30056205 DOI: 10.1016/j.ymben.2018.07.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
The nonconventional, oleaginous yeast, Yarrowia lipolytica is rapidly emerging as a valuable host for the production of a variety of both lipid and nonlipid chemical products. While the unique genetics of this organism pose some challenges, many new metabolic engineering tools have emerged to facilitate improved genetic manipulation in this host. This review establishes a case for Y. lipolytica as a premier metabolic engineering host based on innate metabolic capacity, emerging synthetic tools, and engineering examples. The metabolism underlying the lipid accumulation phenotype of this yeast as well as high flux through acyl-CoA precursors and the TCA cycle provide a favorable metabolic environment for expression of relevant heterologous pathways. These properties allow Y. lipolytica to be successfully engineered for the production of both native and nonnative lipid, organic acid, sugar and acetyl-CoA derived products. Finally, this host has unique metabolic pathways enabling growth on a wide range of carbon sources, including waste products. The expansion of carbon sources, together with the improvement of tools as highlighted here, have allowed this nonconventional organism to act as a cellular factory for valuable chemicals and fuels.
Collapse
Affiliation(s)
- Ahmad M Abdel-Mawgoud
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States.
| |
Collapse
|
50
|
Litsios A, Ortega ÁD, Wit EC, Heinemann M. Metabolic-flux dependent regulation of microbial physiology. Curr Opin Microbiol 2018; 42:71-78. [DOI: 10.1016/j.mib.2017.10.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
|