1
|
Response to substrate limitation by a marine sulfate-reducing bacterium. THE ISME JOURNAL 2022; 16:200-210. [PMID: 34285365 PMCID: PMC8692349 DOI: 10.1038/s41396-021-01061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.
Collapse
|
2
|
Zhao Y, Wu S, Yu M, Zhang Z, Wang X, Zhang S, Wang G. Seasonal iron‑sulfur interactions and the stimulated phosphorus mobilization in freshwater lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144336. [PMID: 33453539 DOI: 10.1016/j.scitotenv.2020.144336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Sulfur reduction in freshwater ecosystems has previously been considered as negligible because of often very low sulfate concentrations and generally low sulfate reducing capacity in freshwater sediments. In this study, seasonal variations on three types of sediments from central lake, dredged and algae accumulated areas in a eutrophic lake in China, Lake Taihu, were investigated. The high temperature in summer and the accumulation of algae are conducive to the reduction processes in freshwater lake sediments. Iron reduction was observed as the major anaerobic process in all types of sediments, while sulfate reduction was weak in central and dredged lake areas. However, strong sulfate reduction with increase of sulfate reducing bacteria and sulfides generation (119.5 ± 0.2 μmol L-1) was found in surface sediments in algae accumulated areas. Based on the results of Fe reduction rate and the quantity of Fe reducing bacteria, extensive sulfate reduction in algae accumulated sediments inhibited the microbial Fe reduction, and the ΣS2--mediated chemical Fe reduction (SCIR) dominated instead. Iron was principally stored in the sediments as Fe sulfide compounds, which weakened the rebinding of phosphorus and stimulated phosphorus mobilization. Therefore, attention should be paid to the alteration of Fe cycling and phosphorus mobility caused by the SCIR in algae accumulated sediments and the consequent effects on the eutrophication of freshwater lakes.
Collapse
Affiliation(s)
- Yanping Zhao
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China
| | - Songjun Wu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China
| | - Miaotong Yu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China
| | - Zhongqian Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China
| | - Xuan Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China
| | - Siyuan Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210,023, China..
| |
Collapse
|
3
|
Pellerin A, Antler G, Marietou A, Turchyn AV, Jørgensen BB. The effect of temperature on sulfur and oxygen isotope fractionation by sulfate reducing bacteria (Desulfococcus multivorans). FEMS Microbiol Lett 2020; 367:5817845. [PMID: 32267916 DOI: 10.1093/femsle/fnaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/04/2020] [Indexed: 11/14/2022] Open
Abstract
Temperature influences microbiological growth and catabolic rates. Between 15 and 35 °C the growth rate and cell specific sulfate reduction rate of the sulfate reducing bacterium Desulfococcus multivorans increased with temperature. Sulfur isotope fractionation during sulfate reduction decreased with increasing temperature from 27.2 ‰ at 15 °C to 18.8 ‰ at 35 °C which is consistent with a decreasing reversibility of the metabolic pathway as the catabolic rate increases. Oxygen isotope fractionation, in contrast, decreased between 15 and 25 °C and then increased again between 25 and 35 °C, suggesting increasing reversibility in the first steps of the sulfate reducing pathway at higher temperatures. This points to a decoupling in the reversibility of sulfate reduction between the steps from the uptake of sulfate into the cell to the formation of sulfite, relative to the whole pathway from sulfate to sulfide. This observation is consistent with observations of increasing sulfur isotope fractionation when sulfate reducing bacteria are living near their upper temperature limit. The oxygen isotope decoupling may be a first signal of changing physiology as the bacteria cope with higher temperatures.
Collapse
Affiliation(s)
- André Pellerin
- Center for Geomicrobiology, Ny Munkegade 116, Aarhus C 8000, Aarhus University, Department of Bioscience, Denmark.,Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P. O. Box 653, Beer-Sheva 84105, Israel
| | - Gilad Antler
- Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P. O. Box 653, Beer-Sheva 84105, Israel.,The Interuniversity Institute for Marine Sciences of Eilat, PO Box 469, Eilat 88103, Israel
| | - Angeliki Marietou
- Center for Geomicrobiology, Ny Munkegade 116, Aarhus C 8000, Aarhus University, Department of Bioscience, Denmark
| | - Alexandra V Turchyn
- Cambridge University, Downing Street, Cambridge, CB2 3EQ, Departement of Earth Sciences, Cambridge, UK
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Ny Munkegade 116, Aarhus C 8000, Aarhus University, Department of Bioscience, Denmark
| |
Collapse
|
4
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
5
|
Collier CJ, Langlois L, Ow Y, Johansson C, Giammusso M, Adams MP, O'Brien KR, Uthicke S. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. THE NEW PHYTOLOGIST 2018; 219:1005-1017. [PMID: 29855044 DOI: 10.1111/nph.15234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 05/21/2023]
Abstract
Seagrasses are globally important coastal habitat-forming species, yet it is unknown how seagrasses respond to the combined pressures of ocean acidification and warming of sea surface temperature. We exposed three tropical species of seagrass (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri) to increasing temperature (21, 25, 30, and 35°C) and pCO2 (401, 1014, and 1949 μatm) for 7 wk in mesocosms using a controlled factorial design. Shoot density and leaf extension rates were recorded, and plant productivity and respiration were measured at increasing light levels (photosynthesis-irradiance curves) using oxygen optodes. Shoot density, growth, photosynthetic rates, and plant-scale net productivity occurred at 25°C or 30°C under saturating light levels. High pCO2 enhanced maximum net productivity for Z. muelleri, but not in other species. Z. muelleri was the most thermally tolerant as it maintained positive net production to 35°C, yet for the other species there was a sharp decline in productivity, growth, and shoot density at 35°C, which was exacerbated by pCO2 . These results suggest that thermal stress will not be offset by ocean acidification during future extreme heat events and challenges the current hypothesis that tropical seagrass will be a 'winner' under future climate change conditions.
Collapse
Affiliation(s)
- Catherine J Collier
- Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER), James Cook University, Cairns, Qld, 4870, Australia
| | - Lucas Langlois
- Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER), James Cook University, Cairns, Qld, 4870, Australia
| | - Yan Ow
- School of Marine and Tropical Biology, James Cook University, Townsville, Qld, 4811, Australia
- Australian Institute of Marine Science, PMB No. 3, Townsville, 4810, Qld, Australia
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Charlotte Johansson
- Australian Institute of Marine Science, PMB No. 3, Townsville, 4810, Qld, Australia
| | - Manuela Giammusso
- Australian Institute of Marine Science, PMB No. 3, Townsville, 4810, Qld, Australia
| | - Matthew P Adams
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Qld, Australia
| | - Katherine R O'Brien
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Qld, Australia
| | - Sven Uthicke
- Australian Institute of Marine Science, PMB No. 3, Townsville, 4810, Qld, Australia
| |
Collapse
|
6
|
Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World J Microbiol Biotechnol 2015; 31:1675-81. [DOI: 10.1007/s11274-015-1935-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
7
|
Characterization of the Bacterial and Sulphate Reducing Community in the Alkaline and Constantly Cold Water of the Closed Kotalahti Mine. MINERALS 2015. [DOI: 10.3390/min5030452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
9
|
Abstract
Environmental bacteria play a central role in the Earth's elemental cycles and represent a mostly untapped reservoir for novel metabolic capacities and biocatalysts. Over the last 15 years, the author's laboratory has focused on three major switches in the breakdown of organic carbon defined by the abundance and recalcitrance of the substrates: carbohydrates and amino acids by aerobic heterotrophs, fermentation end products by sulphate reducers and anaerobic degradation of aromatic compounds and hydrocarbons by denitrifiers and sulphate reducers. As these bacteria are novel isolates mostly not accessibly by molecular genetics, genomics combined with differential proteomics was early on applied to obtain molecular-functional insights into degradation pathways, catabolic and regulatory networks, as well as mechanisms and strategies for adapting to changing environmental conditions. This review provides some background on research motivations and briefly summarizes insights into studied model organisms, e.g. "Aromatoleum aromaticum" EbN1, Desulfobacula toluolica Tol2 and Phaeobacter inhibens DSM 17395.
Collapse
Affiliation(s)
- R Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg , Oldenburg , Germany
| |
Collapse
|
10
|
van den Brand TPH, Roest K, Brdjanovic D, Chen GH, van Loosdrecht MCM. Temperature effect on acetate and propionate consumption by sulfate-reducing bacteria in saline wastewater. Appl Microbiol Biotechnol 2014; 98:4245-55. [DOI: 10.1007/s00253-013-5482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
11
|
Klein R, Tischler JS, Mühling M, Schlömann M. Bioremediation of mine water. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 141:109-72. [PMID: 24357145 DOI: 10.1007/10_2013_265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Caused by the oxidative dissolution of sulfide minerals, mine waters are often acidic and contaminated with high concentrations of sulfates, metals, and metalloids. Because the so-called acid mine drainage (AMD) affects the environment or poses severe problems for later use, treatment of these waters is required. Therefore, various remediation strategies have been developed to remove soluble metals and sulfates through immobilization using physical, chemical, and biological approaches. Conventionally, iron and sulfate-the main pollutants in mine waters-are removed by addition of neutralization reagents and subsequent chemical iron oxidation and sulfate mineral precipitation. Biological treatment strategies take advantage of the ability of microorganisms that occur in mine waters to metabolize iron and sulfate. As a rule, these can be grouped into oxidative and reductive processes, reflecting the redox state of mobilized iron (reduced form) and sulfur (oxidized form) in AMD. Changing the redox states of iron and sulfur results in iron and sulfur compounds with low solubility, thus leading to their precipitation and removal. Various techniques have been developed to enhance the efficacy of these microbial processes, as outlined in this review.
Collapse
Affiliation(s)
- Robert Klein
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | | | | | | |
Collapse
|
12
|
Lee K, Pi K. Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri. BIOCHEMISTRY (MOSCOW) 2010; 75:460-5. [DOI: 10.1134/s0006297910040097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Freese E, Rütters H, Köster J, Rullkötter J, Sass H. Gammaproteobacteria as a possible source of eicosapentaenoic acid in anoxic intertidal sediments. MICROBIAL ECOLOGY 2009; 57:444-454. [PMID: 18777187 DOI: 10.1007/s00248-008-9443-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
Eicosapentaenoic acid (EPA; n-20:5omega3) was found to be a constituent of phospholipids in three mesophilic strains of Gammaproteobacteria, which were isolated from anoxic most probable number series prepared with sediments from an intertidal flat of the German North Sea coast. Their partial 16S rRNA gene sequences identified the isolates as close relatives of Shewanella colwelliana, Vibrio splendidus, and Photobacterium lipolyticum. So far, eicosapentaenoic acid has mainly been reported to occur in eukaryotes and some piezophilic or psychrophilic bacteria. With decreasing temperature, relative contents of EPA (up to 14% of total fatty acids) increased in all strains. Additionally, Shewanella and Vibrio spp. showed a significant increase in monounsaturated fatty acids with lower growth temperature. Analysis of the phospholipid compositions revealed that EPA was present in all three major phospholipid types, namely, phosphatidyl glycerol (PG), cardiolipin and phosphatidyl ethanolamine (PE). However, EPA was enriched in PG and cardiolipin relative to PE. In the tidal flat sediments from which the isolates were obtained, substantial amounts of EPA-containing PG were detected, whereas other typical microeukaryotic phospholipids-being also a possible source of EPA-were abundant at the sediment surface but were present in clearly lower amounts in the anoxic layers beneath 5 cm depth. Therefore, the EPA-containing PG species in the deeper layers in these sediments may indicate the presence of Gammaproteobacteria closely related to the isolates. These bacteria appear to be an important source of EPA in buried, anoxic sediments beneath the layers harboring significant populations of benthic eukaryotes.
Collapse
Affiliation(s)
- Elke Freese
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Shamseldin A, Nyalwidhe J, Werner D. A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains. Curr Microbiol 2006; 52:333-9. [PMID: 16604415 DOI: 10.1007/s00284-005-6472-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 09/25/2005] [Indexed: 11/24/2022]
Abstract
Soluble proteins from the salt-tolerant Rhizobium etli strain EBRI 26 were separated by two-dimensional (2D) gel electrophoresis and visualised by Commassie staining. Six proteins are highly expressed after induction by 4% NaCl compared to the non-salt-stressed cells. These proteins have pI between 5 and 5.5 and masses of approximately 22, 25, 40, 65, 70, and 95 kDa. These proteins were analysed by Matrix-assisted laser adsorption ionization time of flight (MALDI-TOF) after digestion with trypsin. Despite having very good peptide mass fingerprint data, these proteins could not be identified, because the genome sequence of R. etli is not yet published. In a second approach, soluble proteins from salt-induced or non-salt-induced cultures from R. etli strain EBRI 26 were separately labelled with different fluorescent cyano-dyes prior to 2D difference in gel electrophoresis. Results revealed that 49 proteins are differentially expressed after the addition of sodium chloride. Fourteen proteins are overexpressed and 35 were downregulated. The genome of Sinorhizobium meliloti, a closely related species to R. etli, has been published. Similar experiments using Sinorhizobium meliloti strain 2011 identified four overexpressed and six downregulated proteins. Among the overexpressed protein is a carboxynospermidin decarboxylase, which plays an important role in the biosynthesis of spermidin (polyamine). The enzyme catalase is among the downregulated proteins. These proteins may play a role in salt tolerance.
Collapse
Affiliation(s)
- Abdelaal Shamseldin
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | | | | |
Collapse
|
15
|
Tarpgaard IH, Boetius A, Finster K. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie van Leeuwenhoek 2005; 89:109-24. [PMID: 16328859 DOI: 10.1007/s10482-005-9014-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvb(T)) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 degrees C. Of the various substrates tested, strain akvb(T) grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvb(T) grew at temperatures ranging from -3.6 to 26.3 degrees C. Optimal growth was observed at 20 degrees C. The highest cell specific sulfate reduction rate of 6.2 fmol cell(-1) d(-1) determined by the (35)SO(2-)(40) method was measured at 26 degrees C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 degrees C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 degrees C. The highest growth yield (4.3-4.5 g dry weight mol(-1) acetate) was determined at temperatures between 5 and 15 degrees C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 degrees C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1omega7c) was higher in cells grown at 4 degrees C than in cells grown at 20 degrees C. The physiological responses to temperature changes showed that strain akvb(T) was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvb(T) is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA-DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvb(T). Based on phenotypic and DNA-based characteristics we propose that strain akvb(T) is a member of a new species, Desulfobacter psychrotolerans sp. nov.
Collapse
Affiliation(s)
- Irene H Tarpgaard
- Department of Microbiology, Bldg. 540, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus, Denmark
| | | | | |
Collapse
|
16
|
Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 2004; 53:309-21. [PMID: 15225324 DOI: 10.1111/j.1365-2958.2004.04130.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A global view of the biology of the cold-adapted archaeon Methanococcoides burtonii was achieved using proteomics. Proteins specific to growth at 4 degrees C versus T(opt) (23 degrees C) were identified by mass spectrometry using the draft genome sequence of M. burtonii. mRNA levels were determined for all genes identified by proteomics, and specific enzyme assays confirmed the protein expression results. Key aspects of cold adaptation related to transcription, protein folding and metabolism, including specific roles for RNA polymerase subunit E, a response regulator and peptidyl prolyl cis/trans isomerase. Heat shock protein DnaK was expressed during growth at T(opt), indicating that growth at 'optimal' temperatures was stressful for this cold-adapted organism. Expression of trimethylamine methyltransferase involves contiguous translation of two open reading frames, which is likely to result from incorporation of pyrrolysine at an amber stop codon. Thermal regulation in M. burtonii is achieved through complex gene expression events involving gene clusters and operons, through to protein modifications.
Collapse
Affiliation(s)
- Amber Goodchild
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|