1
|
Wang Y, Wang Y, Zhou K, Zhang H, Cheng M, Wang B, Yan X. Isolation of a facultative methanotroph Methylocystis iwaonis SD4 from rice rhizosphere and establishment of rapid genetic tools for it. Biotechnol Lett 2024; 46:713-724. [PMID: 38733438 DOI: 10.1007/s10529-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.
Collapse
Affiliation(s)
- Yinghui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Keyu Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Haili Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Baozhan Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
2
|
Beals DG, Puri AW. Linking methanotroph phenotypes to genotypes using a simple spatially resolved model ecosystem. THE ISME JOURNAL 2024; 18:wrae060. [PMID: 38622932 PMCID: PMC11072679 DOI: 10.1093/ismejo/wrae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Connecting genes to phenotypic traits in bacteria is often challenging because of a lack of environmental context in laboratory settings. Laboratory-based model ecosystems offer a means to better account for environmental conditions compared with standard planktonic cultures and can help link genotypes and phenotypes. Here, we present a simple, cost-effective, laboratory-based model ecosystem to study aerobic methane-oxidizing bacteria (methanotrophs) within the methane-oxygen counter gradient typically found in the natural environment of these organisms. Culturing the methanotroph Methylomonas sp. strain LW13 in this system resulted in the formation of a distinct horizontal band at the intersection of the counter gradient, which we discovered was not due to increased numbers of bacteria at this location but instead to an increased amount of polysaccharides. We also discovered that different methanotrophic taxa form polysaccharide bands with distinct locations and morphologies when grown in the methane-oxygen counter gradient. By comparing transcriptomic data from LW13 growing within and surrounding this band, we identified genes upregulated within the band and validated their involvement in growth and band formation within the model ecosystem using knockout strains. Notably, deletion of these genes did not negatively affect growth using standard planktonic culturing methods. This work highlights the use of a laboratory-based model ecosystem that more closely mimics the natural environment to uncover bacterial phenotypes missing from standard laboratory conditions, and to link these phenotypes with their genetic determinants.
Collapse
Affiliation(s)
- Delaney G Beals
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States
| | - Aaron W Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
3
|
Wang Y, Wu M, Lai CY, Lu X, Guo J. Methane Oxidation Coupled to Selenate Reduction in a Membrane Bioreactor under Oxygen-Limiting Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21715-21726. [PMID: 38079577 DOI: 10.1021/acs.est.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Microbial methane oxidation coupled to a selenate reduction process has been proposed as a promising solution to treat contaminated water, yet the underlying microbial mechanisms are still unclear. In this study, a novel methane-based membrane bioreactor system integrating hollow fiber membranes for efficient gas delivery and ultrafiltration membranes for biomass retention was established to successfully enrich abundant suspended cultures able to perform methane-dependent selenate reduction under oxygen-limiting conditions. The microbial metabolic mechanisms were then systematically investigated through a combination of short-term batch tests, DNA-based stable isotope probing (SIP) microcosm incubation, and high-throughput sequencing analyses of 16S rRNA gene and functional genes (pmoA and narG). We confirmed that the methane-supported selenate reduction process was accomplished by a microbial consortia consisting of type-II aerobic methanotrophs and several heterotrophic selenate reducers. The mass balance and validation tests on possible intermediates suggested that methane was partially oxidized into acetate under oxygen-limiting conditions, which was consumed as a carbon source for selenate-reducing bacteria. High-throughput 16S rRNA gene sequencing, DNA-SIP incubation with 13CH4, and subsequent functional gene (pmoA and narG) sequencing results collectively proved that Methylocystis actively executed partial methane oxidation and Acidovorax and Denitratisoma were dominant selenate-reducing bacteria, thus forming a syntrophic partnership to drive selenate reduction. The findings not only advance our understanding of methane oxidation coupled to selenate reduction under oxygen-limiting conditions but also offer useful information on developing methane-based biotechnology for bioremediation of selenate-contaminated water.
Collapse
Affiliation(s)
- Yulu Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xuanyu Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Sun Z, Li H, Hu J, Wu X, Su R, Yan L, Sun X, Shaaban M, Wang Y, Quénéa K, Hu R. Fe(III) stabilizing soil organic matter and reducing methane emissions in paddy fields under varying flooding conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:114999. [PMID: 37178613 DOI: 10.1016/j.ecoenv.2023.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
The role of iron (Fe) in soil organic matter (SOM) stabilization and decomposition in paddy soils has recently gained attention, but the underlying mechanisms during flooding and drying periods remain elusive. As the depth water layer is maintained in the fallow season, there will be more soluble Fe than during the wet and drainage seasons and the availability of oxygen (O2) will be different. To assess the influence of soluble Fe on SOM mineralization during flooding, an incubation experiment was designed under oxic and anoxic flooding conditions, with and without Fe(III) addition. The results showed that Fe(III) addition significantly (p < 0.05) decreased SOM mineralization by 14.4 % under oxic flooding conditions over 16 days. Under anoxic flooding incubation, Fe(III) addition significantly (p < 0.05) decreased 10.8 % SOM decomposition, mainly by 43.6 % methane (CH4) emission, while no difference in carbon dioxide (CO2) emission was noticed. These findings suggest that implementing appropriate water management strategies in paddy soils, considering the roles of Fe under both oxic and anoxic flooding conditions, can contribute to SOM preservation and mitigation of CH4 emissions.
Collapse
Affiliation(s)
- Zheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Sorbonne Universités, CNRS, EPHE, UMR 7619 METIS, 4 place Jussieu, 75252 Paris Cedex 05, France; IFP Energies Nouvelles, Geosciences Division, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France.
| | - Huabin Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinli Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xian Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ronglin Su
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, China
| | - Xiaolei Sun
- Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Yan Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Katell Quénéa
- Sorbonne Universités, CNRS, EPHE, UMR 7619 METIS, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Ronggui Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Reis PCJ, Thottathil SD, Prairie YT. The role of methanotrophy in the microbial carbon metabolism of temperate lakes. Nat Commun 2022; 13:43. [PMID: 35013226 PMCID: PMC8748455 DOI: 10.1038/s41467-021-27718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Previous stable isotope and biomarker evidence has indicated that methanotrophy is an important pathway in the microbial loop of freshwater ecosystems, despite the low cell abundance of methane-oxidizing bacteria (MOB) and the low methane concentrations relative to the more abundant dissolved organic carbon (DOC). However, quantitative estimations of the relative contribution of methanotrophy to the microbial carbon metabolism of lakes are scarce, and the mechanism allowing methanotrophy to be of comparable importance to DOC-consuming heterotrophy remained elusive. Using incubation experiments, microscopy, and multiple water column profiles in six temperate lakes, we show that MOB play a much larger role than their abundances alone suggest because of their larger cell size and higher specific activity. MOB activity is tightly constrained by the local methane:oxygen ratio, with DOC-rich lakes with large hypolimnetic volume fraction showing a higher carbon consumption through methanotrophy than heterotrophy at the whole water column level. Our findings suggest that methanotrophy could be a critical microbial carbon consumption pathway in many temperate lakes, challenging the prevailing view of a DOC-centric microbial metabolism in these ecosystems.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada.
| | - Shoji D Thottathil
- Department of Environmental Science, SRM University AP, Amaravati, Andhra Pradesh, 522 502, India
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
6
|
Rahalkar MC, Khatri K, Pandit P, Bahulikar RA, Mohite JA. Cultivation of Important Methanotrophs From Indian Rice Fields. Front Microbiol 2021; 12:669244. [PMID: 34539593 PMCID: PMC8447245 DOI: 10.3389/fmicb.2021.669244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022] Open
Abstract
Methanotrophs are aerobic to micro-aerophilic bacteria, which oxidize and utilize methane, the second most important greenhouse gas. The community structure of the methanotrophs in rice fields worldwide has been studied mainly using culture-independent methods. Very few studies have focused on culturing methanotrophs from rice fields. We developed a unique method for the cultivation of methanotrophs from rice field samples. Here, we used a modified dilute nitrate mineral salts (dNMS) medium, with two cycles of dilution till extinction series cultivation with prolonged incubation time, and used agarose in the solid medium. The cultivation approach resulted in the isolation of methanotrophs from seven genera from the three major groups: Type Ia (Methylomonas, Methylomicrobium, and Methylocucumis), Type Ib (Methylocaldum and Methylomagnum), and Type II (Methylocystis and Methylosinus). Growth was obtained till 10–6–10–8 dilutions in the first dilution series, indicating the culturing of dominant methanotrophs. Our study was supported by 16S rRNA gene-based next-generation sequencing (NGS) of three of the rice samples. Our analyses and comparison with the global scenario suggested that the cultured members represented the major detected taxa. Strain RS1, representing a putative novel species of Methylomicrobium, was cultured; and the draft genome sequence was obtained. Genome analysis indicated that RS1 represented a new putative Methylomicrobium species. Methylomicrobium has been detected globally in rice fields as a dominant genus, although no Methylomicrobium strains have been isolated from rice fields worldwide. Ours is one of the first extensive studies on cultured methanotrophs from Indian rice fields focusing on the tropical region, and a unique method was developed. A total of 29 strains were obtained, which could be used as models for studying methane mitigation from rice fields and for environmental and biotechnological applications.
Collapse
Affiliation(s)
- Monali C Rahalkar
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Kumal Khatri
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Pranitha Pandit
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Rahul A Bahulikar
- Central Research Station, BAIF Development Research Foundation, Pune, India
| | - Jyoti A Mohite
- C2, Bioenergy Group, MACS Agharkar Research Institute, Pune, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
7
|
Malison RL, DelVecchia AG, Woods HA, Hand BK, Luikart G, Stanford JA. Tolerance of aquifer stoneflies to repeated hypoxia exposure and oxygen dynamics in an alluvial aquifer. J Exp Biol 2020; 223:jeb225623. [PMID: 32616547 DOI: 10.1242/jeb.225623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
Abstract
Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l-1, and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l-1 (P>0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen (P<0.0001; 2.9-times lower at 2 vs. 12 mg l-1). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38-91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains.
Collapse
Affiliation(s)
- Rachel L Malison
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Amanda G DelVecchia
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - H Arthur Woods
- The University of Montana, Division of Biological Sciences, 32 Campus Drive, Missoula, MT 59812, USA
| | - Brian K Hand
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Gordon Luikart
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| | - Jack A Stanford
- The University of Montana, Division of Biological Sciences, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59801, USA
| |
Collapse
|
8
|
Islam MM, Le T, Daggumati SR, Saha R. Investigation of microbial community interactions between Lake Washington methanotrophs using -------genome-scale metabolic modeling. PeerJ 2020; 8:e9464. [PMID: 32655999 PMCID: PMC7333651 DOI: 10.7717/peerj.9464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background The role of methane in global warming has become paramount to the environment and the human society, especially in the past few decades. Methane cycling microbial communities play an important role in the global methane cycle, which is why the characterization of these communities is critical to understand and manipulate their behavior. Methanotrophs are a major player in these communities and are able to oxidize methane as their primary carbon source. Results Lake Washington is a freshwater lake characterized by a methane-oxygen countergradient that contains a methane cycling microbial community. Methanotrophs are a major part of this community involved in assimilating methane from lake water. Two significant methanotrophic species in this community are Methylobacter and Methylomonas. In this work, these methanotrophs are computationally studied via developing highly curated genome-scale metabolic models. Each model was then integrated to form a community model with a multi-level optimization framework. The competitive and mutualistic metabolic interactions among Methylobacter and Methylomonas were also characterized. The community model was next tested under carbon, oxygen, and nitrogen limited conditions in addition to a nutrient-rich condition to observe the systematic shifts in the internal metabolic pathways and extracellular metabolite exchanges. Each condition showed variations in the methane oxidation pathway, pyruvate metabolism, and the TCA cycle as well as the excretion of formaldehyde and carbon di-oxide in the community. Finally, the community model was simulated under fixed ratios of these two members to reflect the opposing behavior in the two-member synthetic community and in sediment-incubated communities. The community simulations predicted a noticeable switch in intracellular carbon metabolism and formaldehyde transfer between community members in sediment-incubated vs. synthetic condition. Conclusion In this work, we attempted to predict the response of a simplified methane cycling microbial community from Lake Washington to varying environments and also provide an insight into the difference of dynamics in sediment-incubated microcosm community and synthetic co-cultures. Overall, this study lays the ground for in silico systems-level studies of freshwater lake ecosystems, which can drive future efforts of understanding, engineering, and modifying these communities for dealing with global warming issues.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Tony Le
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Shardhat R Daggumati
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| |
Collapse
|
9
|
Malison RL, Ellis BK, DelVecchia AG, Jacobson H, Hand BK, Luikart G, Woods HA, Gamboa M, Watanabe K, Stanford JA. Remarkable anoxia tolerance by stoneflies from a floodplain aquifer. Ecology 2020; 101:e03127. [PMID: 32598026 DOI: 10.1002/ecy.3127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Alluvial aquifers are key components of river floodplains and biodiversity worldwide, but they contain extreme environmental conditions and have limited sources of carbon for sustaining food webs. Despite this, they support abundant populations of aquifer stoneflies that have large proportions of their biomass carbon derived from methane. Methane is typically produced in freshwater ecosystems in anoxic conditions, while stoneflies (Order: Plecoptera) are thought to require highly oxygenated water. The potential importance of methane-derived food resources raises the possibility that stonefly consumers have evolved anoxia-resistant behaviors and physiologies. Here we tested the anoxic and hypoxic responses of 2,445 stonefly individuals in three aquifer species and nine benthic species. We conducted experimental trials in which we reduced oxygen levels, documented locomotor activity, and measured survival rates. Compared to surface-dwelling benthic relatives, stoneflies from the alluvial aquifer on the Flathead River (Montana) performed better in hypoxic and anoxic conditions. Aquifer species sustained the ability to walk after 4-76 h of anoxia vs. 1 h for benthic species and survived on average three times longer than their benthic counterparts. Aquifer stoneflies also sustained aerobic respiration down to much lower levels of ambient oxygen. We show that aquifer taxa have gene sequences for hemocyanin, an oxygen transport respiratory protein, representing a possible mechanism for surviving low oxygen. This remarkable ability to perform well in low-oxygen conditions is unique within the entire order of stoneflies (Plecoptera) and uncommon in other freshwater invertebrates. These results show that aquifer stoneflies can exploit rich carbon resources available in anoxic zones, which may explain their extraordinarily high abundance in gravel-bed floodplain aquifers. These stoneflies are part of a novel food web contributing biodiversity to river floodplains.
Collapse
Affiliation(s)
- Rachel L Malison
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| | - Bonnie K Ellis
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| | - Amanda G DelVecchia
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| | - Hailey Jacobson
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| | - Brian K Hand
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| | - Gordon Luikart
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| | - H Arthur Woods
- Department of Biological Sciences, The University of Montana, Missoula, Montana, 59812, USA
| | - Maribet Gamboa
- Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan
| | - Kozo Watanabe
- Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan
| | - Jack A Stanford
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana, 59801, USA
| |
Collapse
|
10
|
Chu YX, Ma RC, Wang J, Zhu JT, Kang YR, He R. Effects of oxygen tension on the microbial community and functional gene expression of aerobic methane oxidation coupled to denitrification systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12280-12292. [PMID: 31993906 DOI: 10.1007/s11356-020-07767-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Aerobic CH4 oxidation coupled to denitrification (AME-D) can not only mitigate the emission of greenhouse gas (e.g., CH4) to the atmosphere, but also reduce NO3- and/or NO2- and alleviate nitrogen pollution. The effects of O2 tension on the community and functional gene expression of methanotrophs and denitrifiers were investigated in this study. Although higher CH4 oxidation occurred in the AME-D system with an initial O2 concentration of 21% (i.e., the O2-sufficient condition), more NO3--N was removed at the initial O2 concentration of 10% (i.e., the O2-limited environment). Type I methanotrophs, including Methylocaldum, Methylobacter, Methylococcus, Methylomonas, and Methylomicrobium, and type II methanotrophs, including Methylocystis and Methylosinus, dominated in the AME-D systems. Compared with type II methanotrophs, type I methanotrophs were more abundant in the AME-D systems. Proteobacteria and Actinobacteria were the main denitrifiers in the AME-D systems, and their compositions varied with the O2 tension. Quantitative PCR of the pmoA, nirS, and 16S rRNA genes showed that methanotrophs and denitrifiers were the main microorganisms in the AME-D systems, accounting for 46.4% and 24.1% in the O2-limited environment, respectively. However, the relative transcripts of the functional genes including pmoA, mmoX, nirK, nirS, and norZ were all less than 1%, especially the functional genes involved in denitrification under the O2-sufficient condition, likely due to the majority of the denitrifiers being dormant or even nonviable. These findings indicated that an optimal O2 concentration should be used to optimize the activity and functional gene expression of aerobic methanotrophs and denitrifiers in AME-D systems.
Collapse
Affiliation(s)
- Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Tian Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Ru Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Thriving in Wetlands: Ecophysiology of the Spiral-Shaped Methanotroph Methylospira mobilis as Revealed by the Complete Genome Sequence. Microorganisms 2019; 7:microorganisms7120683. [PMID: 31835835 PMCID: PMC6956133 DOI: 10.3390/microorganisms7120683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Candidatus Methylospira mobilis is a recently described spiral-shaped, micro-aerobic methanotroph, which inhabits northern freshwater wetlands and sediments. Due to difficulties of cultivation, it could not be obtained in a pure culture for a long time. Here, we report on the successful isolation of strain Shm1, the first axenic culture of this unique methanotroph. The complete genome sequence obtained for strain Shm1 was 4.7 Mb in size and contained over 4800 potential protein-coding genes. The array of genes encoding C1 metabolic capabilities in strain Shm1 was highly similar to that in the closely related non-motile, moderately thermophilic methanotroph Methylococcus capsulatus Bath. The genomes of both methanotrophs encoded both low- and high-affinity oxidases, which allow their survival in a wide range of oxygen concentrations. The repertoire of signal transduction systems encoded in the genome of strain Shm1, however, by far exceeded that in Methylococcus capsulatus Bath but was comparable to those in other motile gammaproteobacterial methanotrophs. The complete set of motility genes, the presence of both the molybdenum–iron and vanadium-iron nitrogenases, as well as a large number of insertion sequences were also among the features, which define environmental adaptation of Methylospira mobilis to water-saturated, micro-oxic, heterogeneous habitats depleted in available nitrogen.
Collapse
|
12
|
|
13
|
Shao Y, Hatzinger PB, Streger SH, Rezes RT, Chu KH. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 2019; 30:173-190. [DOI: 10.1007/s10532-019-09875-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
|
14
|
Rahalkar MC, Khatri K, Pandit PS, Dhakephalkar PK. A putative novel Methylobacter member (KRF1) from the globally important Methylobacter clade 2: cultivation and salient draft genome features. Antonie van Leeuwenhoek 2019; 112:1399-1408. [PMID: 30968234 DOI: 10.1007/s10482-019-01262-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022]
Abstract
Methane oxidation by methanotrophs is a very important environmental process in the mitigation of methane. Methylobacter (Mtb.) clade 2 members have been reported as dominant methane oxidisers in soils and sediments worldwide. We enriched and purified a methanotroph from a tropical rice field soil sample from India. The highly enriched culture showed the presence of motile, long and thick rods (3-5 µm × 0.9-1.2 µm) and minor presence of short, thin rods. The culture was purified on agarose medium and formed yellow colonies which showed the presence of only thick and long rods, henceforth termed as strain KRF1. Based on 16S rRNA gene sequence analysis, strain KRF1 shows close phylogenetic affiliation to Methylobacter tundripaludum SV96T (98.6% similarity). Due to the taxonomic novelty, and being the first member of Mtb. related to Mtb. tundripaludum from the tropics, the draft genome was sequenced. From the blastx analysis of the contigs, it was clear that the culture still had contamination of another organism, a Methylophilus species. The data binned in two clear bins: Mtb. related contigs and Methylophilus-related contigs. The binned draft genome of KRF1 shows features including the typical pathways for methane metabolism, denitrification and the presence of molybdenum iron and vanadium-iron nitrogenase genes. KRF1 is phylogenetically distinct from the five strains of Mtb. tundripaludum including SV96T, Lake Washington strains and OWC strains, showing ~ 26% DDH and ~ 81% ANIb values and a unique position in a phylogenomic tree. Subsequently, KRF1 has been completely purified from its methylotrophic partner and a pure culture has been established and maintained in a WDCM approved culture collection, the MACS Collection of Microorganisms (as MCM 1471). KRF1 is thus the first cultured member of a putative novel species of Methylobacter clade 2 isolated from the tropics.
Collapse
Affiliation(s)
- Monali C Rahalkar
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India. .,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| | - Kumal Khatri
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Pranitha S Pandit
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Prashant K Dhakephalkar
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| |
Collapse
|
15
|
Sun Z, Qian X, Shaaban M, Wu L, Hu J, Hu R. Effects of iron(III) reduction on organic carbon decomposition in two paddy soils under flooding conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12481-12490. [PMID: 30850984 DOI: 10.1007/s11356-019-04600-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Iron oxidation and reduction have important effects on soil organic carbon conversion in paddy soil during flooding and dry conditions. This study selected two paddy soil samples, one from the city of Yueyang of Hunan Province and one from the city of Haikou of Hainan Province, that differ significantly in iron content. During a 25-day incubation, the effects of Fe(II) and Fe(III) contents and changes in the levels of several major iron forms on soil dissolved organic carbon (DOC) levels and emission of CH4 and CO2 were observed. The ratio of Fe(II) content to all active Fe increased with an increase in Fe(II) content after soil flooding, and the proportion of all active Fe was significantly higher in the soil samples from Yueyang than in those from Haikou. In only 5 days, 92% of Fe(III) was converted to Fe(II) in Yueyang soil samples, and almost all Fe(III) had been transformed into Fe(II) by the end of incubation. Similar behaviors occurred in soil samples collected from Haikou, but Fe(II) represented only 59% of the active Fe by the end of incubation. In total, 2.2 g kg-1 of organic carbon in the Yueyang soil sample was converted to CO2 and CH4, and the DOC content increased to 410% of its initial value by the end of incubation. In the Haikou soil, only 0.7 g kg-1 of organic carbon was converted to CO2 and CH4, and its DOC content increased to 245% of its initial value by the end of incubation, which was a much smaller increase than observed for the Yueyang sample. Decomposition of organic carbon in the soil was closely related to iron reduction, and reduction of iron in soil significantly affected the conversion rate of organic carbon in soil.
Collapse
Affiliation(s)
- Zheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, Beijing, China
| | - Xiaying Qian
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, Beijing, China
| | - Muhammad Shaaban
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China
| | - Jinli Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, Beijing, China
| | - Ronggui Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the Yangtze River), Ministry of Agriculture, Beijing, China.
- College of Resources and Environment, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Genome-based insights into a putative novel Methylomonas species (strain Kb3), isolated from an Indian rice field. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Rahalkar MC, Bahulikar RA. Hemerythrins are widespread and conserved for methanotrophic guilds. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
He R, Ma RC, Yao XZ, Wei XM. Response of methanotrophic activity to extracellular polymeric substance production and its influencing factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:289-297. [PMID: 28803765 DOI: 10.1016/j.wasman.2017.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/25/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The accumulation of extracellular polymeric substance (EPS) is speculated to be related with the decrease of CH4 oxidation rate after a peak in long-term laboratory landfill covers and biofilters. However, few data have been reported about EPS production of methanotrophs and its feedback effects on methanotrophic activity. In this study, Methylosinus sporium was used asa model methanotroph to investigate EPS production and its influencing factors during CH4 oxidation. The results showed that methanotrophs could secret EPS into the habits during CH4 oxidation and had a negative feedback effect on CH4 oxidation. The EPS amount fitted well with the CH4 oxidation activity with the exponential model. The environmental factors such as pH, temperature, CH4, O2, NO3--N and NH4+-N could affect the EPS production of methanotrophs. When pH, temperature, CH4, O2 and N concentrations (including NO3--N and NH4+-N) were 6.5-7.5, 30-40°C, 10-15%, 10% and 20-140mgL-1, respectively, the high cell growth rate and CH4 oxidation activity of Methylosinus sporium occurred in the media with the low EPS production, which was beneficial to sustainable and efficient CH4 oxidation. In practice, O2-limited condition such as the O2 concentration of 10% might be a good way to control EPS production and enhance CH4 oxidation to mitigate CH4 emission from landfills.
Collapse
Affiliation(s)
- Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xing-Zhi Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Meng Wei
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase. J Microbiol 2017; 55:775-782. [DOI: 10.1007/s12275-017-7317-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
20
|
DelVecchia AG, Stanford JA, Xu X. Ancient and methane-derived carbon subsidizes contemporary food webs. Nat Commun 2016; 7:13163. [PMID: 27824032 PMCID: PMC5117835 DOI: 10.1038/ncomms13163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
While most global productivity is driven by modern photosynthesis, river ecosystems are supplied by locally fixed and imported carbon that spans a range of ages. Alluvial aquifers of gravel-bedded river floodplains present a conundrum: despite no possibility for photosynthesis in groundwater and extreme paucity of labile organic carbon, they support diverse and abundant large-bodied consumers (stoneflies, Insecta: Plecoptera). Here we show that up to a majority of the biomass carbon composition of these top consumers in four floodplain aquifers of Montana and Washington is methane-derived. The methane carbon ranges in age from modern to up to >50,000 years old and is mostly derived from biogenic sources, although a thermogenic contribution could not be excluded. We document one of the most expansive ecosystems to contain site-wide macroinvertebrate biomass comprised of methane-derived carbon and thereby advance contemporary understanding of basal resources supporting riverine productivity. Alluvial aquifers of river floodplains support abundant large-bodied consumers despite an absence of light and scarcity of organic carbon. DelVecchia et al. reveal that much of the biomass carbon in these freshwater consumers is ancient and derived from methane.
Collapse
Affiliation(s)
- Amanda G DelVecchia
- Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana 59860, USA
| | - Jack A Stanford
- Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, Montana 59860, USA
| | - Xiaomei Xu
- University of California Irvine, Earth System Science, 2222 Croul Hall, Irvine, California 92697-3100, USA
| |
Collapse
|
21
|
Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition. Antonie van Leeuwenhoek 2016; 110:281-289. [DOI: 10.1007/s10482-016-0787-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
22
|
Bornemann M, Bussmann I, Tichy L, Deutzmann J, Schink B, Pester M. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance. FEMS Microbiol Ecol 2016; 92:fiw123. [PMID: 27267930 DOI: 10.1093/femsec/fiw123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/14/2022] Open
Abstract
Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters.
Collapse
Affiliation(s)
- Maren Bornemann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Ingeborg Bussmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Meeresstation Helgoland, Kurpromenade 201, D-27498 Helgoland, Germany
| | - Lucas Tichy
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg Deutzmann
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Department of Civil and Environmental Engineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
23
|
Walkiewicz A, Bulak P, Brzezińska M, Wnuk E, Bieganowski A. Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:403-411. [PMID: 26946175 DOI: 10.1016/j.envpol.2016.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 05/26/2023]
Abstract
Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg(-1), respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status.
Collapse
Affiliation(s)
- A Walkiewicz
- Institute of Agrophysics, Polish Academy of Sciences, Department of Natural Environment Biogeochemistry, Doświadczalna 4, 20-290, Lublin, Poland.
| | - P Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Department of Natural Environment Biogeochemistry, Doświadczalna 4, 20-290, Lublin, Poland
| | - M Brzezińska
- Institute of Agrophysics, Polish Academy of Sciences, Department of Natural Environment Biogeochemistry, Doświadczalna 4, 20-290, Lublin, Poland
| | - E Wnuk
- Institute of Agrophysics, Polish Academy of Sciences, Department of Natural Environment Biogeochemistry, Doświadczalna 4, 20-290, Lublin, Poland
| | - A Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Department of Natural Environment Biogeochemistry, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
24
|
Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME JOURNAL 2016; 10:2734-2743. [PMID: 27058508 DOI: 10.1038/ismej.2016.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/29/2022]
Abstract
Although representatives with spiral-shaped cells are described for many functional groups of bacteria, this cell morphotype has never been observed among methanotrophs. Here, we show that spiral-shaped methanotrophic bacteria do exist in nature but elude isolation by conventional approaches due to the preference for growth under micro-oxic conditions. The helical cell shape may enable rapid motility of these bacteria in water-saturated, heterogeneous environments with high microbial biofilm content, therefore offering an advantage of fast cell positioning under desired high methane/low oxygen conditions. The pmoA genes encoding a subunit of particulate methane monooxygenase from these methanotrophs form a new genus-level lineage within the family Methylococcaceae, type Ib methanotrophs. Application of a pmoA-based microarray detected these bacteria in a variety of high-latitude freshwater environments including wetlands and lake sediments. As revealed by the environmental pmoA distribution analysis, type Ib methanotrophs tend to live very near the methane source, where oxygen is scarce. The former perception of type Ib methanotrophs as being typical for thermal habitats appears to be incorrect because only a minor proportion of pmoA sequences from these bacteria originated from environments with elevated temperatures.
Collapse
Affiliation(s)
- Olga V Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | - Mette M Svenning
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | | | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Pandit PS, Rahalkar MC, Dhakephalkar PK, Ranade DR, Pore S, Arora P, Kapse N. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches. MICROBIAL ECOLOGY 2016; 71:634-644. [PMID: 26547567 DOI: 10.1007/s00248-015-0697-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.
Collapse
Affiliation(s)
- Pranitha S Pandit
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Monali C Rahalkar
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
| | | | - Dilip R Ranade
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
- Microbial Culture Collection, NCCS, Sai-Trinity Building Garware Circle, Pashan, Pune, Maharashtra, 411021, India
| | - Soham Pore
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Preeti Arora
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Neelam Kapse
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| |
Collapse
|
26
|
Wei XM, Su Y, Zhang HT, Chen M, He R. Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 42:118-127. [PMID: 25921582 DOI: 10.1016/j.wasman.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
Biocover soils are known to be a good alternative material to mitigate CH4 emissions from landfills to the atmosphere. In this study, 16 treatments with four O2 concentrations (∼0%, 5%, 10% and 21%) and four CH4 concentrations (i.e. 1%, 10%, 20% and 50%) were conducted to estimate extracellular polymeric substances (EPS) production, methanotrophic activity and community in response to CH4 and O2 concentrations in waste biocover soil (WBS). When the CH4 concentration was saturated for CH4 oxidation in the WBS, the continuous exposure of CH4 above the saturated concentrations could not obviously enhance CH4 oxidation activity. In the WBS, extracellular protein (ECP) production was negatively related with the tested CH4 concentrations, while both ECP and extracellular polysaccharides (ECPS) productions were positively related with the tested O2 concentrations. Cloning and terminal restriction fragment length polymorphism analyses showed that type I methanotrophs (Methylocaldum, Methylococcaceae, Methylomicrobium and Methylobacter) and type II methanotrophs (Methylosinus) dominated in the WBS. Among them, Methylocaldum and/or Methylococcaceae were sensitive to low O2 concentrations of ∼0%. Methylobacter had propensity to grow at low O2 concentrations of ∼0% and 5%, while Methylosinus preferred environments with high concentrations of CH4 (⩾10%) and O2 (21%). In the tested five environmental variables of ECPS, O2, EPS, CH4 and ECP, only ECPS and O2 concentrations had significant effect on the methanotrophic communities. These results suggested that O2 concentration in landfill covers should be paid more attention to optimize and sustain CH4 oxidation for mitigating CH4 emission from landfills.
Collapse
Affiliation(s)
- Xiao-Meng Wei
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yao Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hong-Tao Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Chen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4001-18. [PMID: 25723373 DOI: 10.1021/es504242n] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - S Xie
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Deutzmann JS, Hoppert M, Schink B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 2014; 37:165-9. [PMID: 24685906 DOI: 10.1016/j.syapm.2014.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 11/18/2022]
Abstract
A novel methanotrophic gammaproteobacterium, strain KoM1, was isolated from the profundal sediment of Lake Constance after initial enrichment in opposing gradients of methane and oxygen. Strain KoM1 grows on methane or methanol as its sole source of carbon and energy. It is a Gram-negative methanotroph, often expressing red pigmentation. Cells are short rods and occur sometimes in pairs or short chains. Strain KoM1 grows preferably at reduced oxygen concentrations (pO2=0.05-0.1bar). It can fix nitrogen, and grows at neutral pH and at temperatures between 4 and 30°C. Phylogenetically, the closest relatives are Methylovulum miyakonense and Methylosoma difficile showing 91% 16S rRNA gene sequence identity. The only respiratory quinone is ubiquinone Q8; the main polar lipids are phosphatidyl ethanolamine and phosphatidyl glycerol. The major cellular fatty acids are summed feature 3 (presumably C16:1ω7c) and C16:1ω5c, and the G+C content of the DNA is 47.7mol%. Strain KoM1 is described as the type strain of a novel species within a new genus, Methyloglobulus morosus gen. nov., sp. nov.
Collapse
Affiliation(s)
- J S Deutzmann
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - M Hoppert
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - B Schink
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
29
|
Wang PL, Chiu YP, Cheng TW, Chang YH, Tu WX, Lin LH. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Front Microbiol 2014; 5:121. [PMID: 24723919 PMCID: PMC3971192 DOI: 10.3389/fmicb.2014.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/10/2014] [Indexed: 12/04/2022] Open
Abstract
This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes.
Collapse
Affiliation(s)
- Pei-Ling Wang
- Institute of Oceanography, National Taiwan University Taipei, Taiwan
| | - Yi-Ping Chiu
- Institute of Oceanography, National Taiwan University Taipei, Taiwan ; Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Ting-Wen Cheng
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Yung-Hsin Chang
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Wei-Xain Tu
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University Taipei, Taiwan
| |
Collapse
|
30
|
Yoshida N, Iguchi H, Yurimoto H, Murakami A, Sakai Y. Aquatic plant surface as a niche for methanotrophs. Front Microbiol 2014; 5:30. [PMID: 24550901 PMCID: PMC3909826 DOI: 10.3389/fmicb.2014.00030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 11/13/2022] Open
Abstract
This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7–37 μmol·h−1·g−1 dry weight, which was ca 5.7–370-fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105–107 copies·g−1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86–89%) to Methylocaldum gracile.
Collapse
Affiliation(s)
- Naoko Yoshida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan ; Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Nagoya Aichi, Japan
| | - Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas Awaji, Hyogo, Japan ; Japan Science and Technology Agency, CREST Awaji, Hyogo, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan ; Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency Tokyo, Japan
| |
Collapse
|
31
|
|
32
|
Aerobic Methanotrophs in Natural and Agricultural Soils of European Russia. DIVERSITY 2013. [DOI: 10.3390/d5030541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL, Rochman FF, Bodrossy L, Abell GC, Penner T, Dong X, Sensen CW, Dunfield PF. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME JOURNAL 2012; 7:908-21. [PMID: 23254511 DOI: 10.1038/ismej.2012.163] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4-8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km(2)) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml(-1) water d(-1). Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via (13)CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy (13)C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase.
Collapse
|
34
|
Bissett A, Abell GCJ, Bodrossy L, Richardson AE, Thrall PH. Methanotrophic communities in Australian woodland soils of varying salinity. FEMS Microbiol Ecol 2012; 80:685-95. [PMID: 22375901 DOI: 10.1111/j.1574-6941.2012.01341.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
Despite their large areas and potential importance as methane sinks, the role of methane-oxidizing bacteria (MOB) in native woodland soils is poorly understood. These environments are increasingly being altered by anthropogenic disturbances, which potentially alter ecosystem service provision. Dryland salinity is one such disturbance and is becoming increasingly prevalent in Australian soils. We used microarrays and analysis of soil physicochemical variables to investigate the methane-oxidizing communities of several Australian natural woodland soils affected to varying degrees by dryland salinity. Soils varied in terms of salinity, gravitational water content, NO(3)-N, SO(4)-S and Mg, all of which explained to a significant degree MOB community composition. Analysis of the relative abundance and diversity of the MOB communities also revealed significant differences between soils of different salinities. Type II and type Ib methanotrophs dominated the soils and differences in methanotroph communities existed between salinity groups. The low salinity soils possessed less diverse MOB communities, including most conspicuously, the low numbers or absence of type II Methylocystis phylotypes. The differences in MOB communities suggest niche separation of MOB across varying salinities, as has been observed in the closely related ammonia-oxidizing bacteria, and that anthropogenic disturbance, such as dryland salinity, has the potential to alter MOB community and therefore the methane uptake rates in soils in which disturbance occurs.
Collapse
|
35
|
Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol 2011; 5:368-78. [PMID: 22070783 PMCID: PMC3821679 DOI: 10.1111/j.1751-7915.2011.00314.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Methane‐oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (Methylomonas spp.) and type II (Methylosinus sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be linked to a highly active fast‐growing mixed MOB community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential.
Collapse
Affiliation(s)
- Sven Hoefman
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
36
|
Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC. Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 2011; 162:832-47. [DOI: 10.1016/j.resmic.2011.06.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
37
|
Kumaresan D, Stralis-Pavese N, Abell GCJ, Bodrossy L, Murrell JC. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:613-621. [PMID: 23761342 DOI: 10.1111/j.1758-2229.2011.00270.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation.
Collapse
Affiliation(s)
- Deepak Kumaresan
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK Austrian Institute of Technology, Department of Bioresources, A-2444 Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
38
|
Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 2011; 77:4429-36. [PMID: 21551281 DOI: 10.1128/aem.00340-11] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor has been reported for various environments, including freshwater habitats, and also, nitrate and nitrite were recently shown to act as electron acceptors for methane oxidation in eutrophic freshwater habitats. Radiotracer experiments with sediment material of Lake Constance, an oligotrophic freshwater lake, were performed to follow 14CO2 formation from 14CH4 in sediment incubations in the presence of different electron acceptors, namely, nitrate, nitrite, sulfate, or oxygen. Whereas 14CO2 formation without and with sulfate addition was negligible, addition of nitrate increased 14CO2 formation significantly, suggesting that AOM could be coupled to denitrification. Nonetheless, denitrification-dependent AOM rates remained at least 1 order of magnitude lower than rates of aerobic methane oxidation. Using molecular techniques, putative denitrifying methanotrophs belonging to the NC10 phylum were detected on the basis of the pmoA and 16S rRNA gene sequences. These findings show that sulfate-dependent AOM was insignificant in Lake constant sediments. However, AOM can also be coupled to denitrification in this oligotrophic freshwater habitat, providing first indications that this might be a widespread process that plays an important role in mitigating methane emissions.
Collapse
|
39
|
Freese HM, Eggert A, Garland JL, Schumann R. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany. MICROBIAL ECOLOGY 2010; 59:59-75. [PMID: 19936822 DOI: 10.1007/s00248-009-9608-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 10/20/2009] [Indexed: 05/28/2023]
Abstract
Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.
Collapse
Affiliation(s)
- Heike M Freese
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, Germany.
| | | | | | | |
Collapse
|
40
|
Zhao C, Zheng J, Li H, Wen G, He Y, Yang S, Dong C, Choi M. Characterization of a methane-utilizing strain and its application for monitoring methane. J Appl Microbiol 2009; 106:2024-30. [DOI: 10.1111/j.1365-2672.2009.04169.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake constance (Germany). Appl Environ Microbiol 2008; 75:119-26. [PMID: 18997033 DOI: 10.1128/aem.01350-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.
Collapse
|
42
|
Guiot SR, Cimpoia R, Kuhn R, Alaplantive A. Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:3011-3017. [PMID: 18497159 DOI: 10.1021/es702121u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Coupling of methanogenic and methanotrophic catabolisms was performed in a single-stage technology equipped with a water electrolysis cell placed in the effluent recirculation loop. The electrolysis-generated hydrogen served as an electron donor for both bicarbonate reduction into CH4 and reductive dechlorination, while the O2 and CH4, supported the cometabolic oxidation of chlorinated intermediates left over by the tetrachloroethylene (PCE) transformation. The electrolytical methanogenic/methanotrophic coupled (eMaMoC) process was tested in a laboratory-scale setup at PCE loads ranging from 5 to 50 micromol/L(rx) x d (inlet concentrations from 4 to 11 mg/L), and at various hydraulic residence times (HRT). Degradation followed essentially a reductive dechlorination pathway from PCE to cis-1,2-dichloroethene (DCE), and an oxidative pathway from DCE to CO2. PCE reductive dechlorination to DCE was consistently over 98% while a maximum oxidative DCE mineralization of 89% was obtained at a load of 4.3 micromol PCE/ L(rx) x d and an HRT of 6 days. Controlling dissolved oxygen concentrations within a relatively low range (2-3 mg/L) seemed instrumental to sustain the overall degradation capacity. Degradation kinetics were further evaluated: the apparent half-saturation constant (K(s)) had to be set relatively high (29 microM) for the simulated data to best fit the experimental ones. In spite of such kinetic limitations, the eMaMoC system, while fueled by water electrolysis, was effective in building and sustaining a functional methanogenic/methanotrophic consortium capable of significant PCE mineralization in a single-stage process. Hence, degradation standards are within reach so long as the methanotrophic DCE-oxidizing potential, including substrate affinity, are optimized and HRT accordingly adjusted.
Collapse
Affiliation(s)
- Serge R Guiot
- National Research Council, Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada.
| | | | | | | |
Collapse
|
43
|
Abstract
Methane oxidation is a key process controlling methane emission from anoxic habitats into the atmosphere. Methanotrophs, responsible for aerobic methane oxidation, do not only oxidize but also assimilate methane. Once assimilated, methane carbon may be utilized by other organisms. Here we report on a microbial food web in a rice field soil driven by methane. A thin layer of water-saturated rice field soil was incubated under opposing gradients of oxygen and (13)C-labelled methane. Bacterial and eukaryotic communities incorporating methane carbon were analysed by RNA-stable isotope probing (SIP). Terminal restriction fragment length polymorphism (T-RFLP) and cloning showed that methanotrophs were the most prominent group of bacteria incorporating methane carbon. In addition, a few Myxobacteria-related sequences were obtained from the 'heavy' rRNA fraction. Denaturing gradient gel electrophoresis (DGGE) targeting 18S rRNA detected various groups of protists in the 'heavy' rRNA fraction including naked amoeba (Lobosea and Heterolobosea), ciliates (Colpodea) and flagellates (Cercozoa). Incubation of soil under different methane concentrations in air resulted in the development of distinct protozoan communities. These results suggest that methane carbon is incorporated into non-methanotrophic pro- and microeukaryotes probably via grazing, and that methane oxidation is a shaping force of the microeukaryotic community depending on methane availability.
Collapse
Affiliation(s)
- Jun Murase
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | |
Collapse
|
44
|
Rahalkar M, Bussmann I, Schink B. Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 2007; 57:1073-1080. [PMID: 17473262 DOI: 10.1099/ijs.0.64574-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel methanotroph, strain LC 2(T), was isolated from the littoral sediment of Lake Constance by enrichment in opposing gradients of methane and oxygen, followed by traditional isolation methods. Strain LC 2(T) grows on methane or methanol as its sole carbon and energy source. It is a Gram-negative, non-motile, pale-pink-coloured methanotroph showing typical intracytoplasmic membranes arranged in stacks. Cells are coccoid, elliptical or rod-shaped and occur often in pairs. Strain LC 2(T) grows at low oxygen concentrations and in counter-gradients of methane and oxygen. It can grow on medium free of bound nitrogen, possesses the nifH gene and fixes atmospheric nitrogen at low oxygen pressure. It grows at neutral pH and at temperatures between 10 and 30 degrees C. Phylogenetically, it is most closely related to the genus Methylobacter, with the type strains of Methylobacter tundripaludum and Methylobacter psychrophilus showing 94 and 93.4 % 16S rRNA gene sequence similarity, respectively. Furthermore, the pmoA gene sequence of strain LC 2(T) is most closely related to pmoA gene sequences of Methylobacter strains (92 % similar to Methylobacter sp. LW 12 by deduced amino acid sequence identity). The DNA G+C content is 49.9 mol% and the major cellular fatty acid is 16 : 1omega7c (60 %). Strain LC 2(T) (=JCM 14076(T)=DSM 18750(T)) is described as the type strain of a novel species within a new genus, Methylosoma difficile gen. nov., sp. nov.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Composition
- Carbon/metabolism
- Cytoplasm/ultrastructure
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fresh Water/microbiology
- Genes, rRNA
- Geologic Sediments/microbiology
- Germany
- Hydrogen-Ion Concentration
- Membranes/ultrastructure
- Methane/metabolism
- Methanol/metabolism
- Methylococcaceae/classification
- Methylococcaceae/cytology
- Methylococcaceae/isolation & purification
- Methylococcaceae/physiology
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Movement
- Nitrogenase/metabolism
- Oxidoreductases/genetics
- Phylogeny
- Pigments, Biological/biosynthesis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sodium Chloride/metabolism
- Temperature
Collapse
Affiliation(s)
- Monali Rahalkar
- LS Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| | - Ingeborg Bussmann
- LS Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| | - Bernhard Schink
- LS Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, 78457 Konstanz, Germany
| |
Collapse
|
45
|
. TH, . RK, . MT, . TN. Molecular Diversity of the Genes Encoding Ammonia Monooxygenase and Particulate Methane Monooxygenase from Deep-sea Sediments. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jm.2007.530.537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Rahalkar M, Schink B. Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Appl Environ Microbiol 2007; 73:4389-94. [PMID: 17483263 PMCID: PMC1932771 DOI: 10.1128/aem.02602-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of pmoA and 16S rRNA gene clone libraries of methanotrophic bacteria in Lake Constance revealed an overall dominance of type I methanotrophs in both littoral and profundal sediments. The sediments exhibited minor differences in their methanotrophic community structures. Type X methanotrophs made up a significant part of the clone libraries only in the profundal sediment and were also found only there as a prominent peak by T-RFLP analyses.
Collapse
Affiliation(s)
- Monali Rahalkar
- LS Mikrobielle Okologie, Fachbereich Biologie, Universität Konstanz, Fach M 654, Konstanz, Germany
| | | |
Collapse
|