1
|
Pedroza-Camacho LD, Ospina-Sánchez PA, Romero-Perdomo FA, Infante-González NG, Paredes-Céspedes DM, Quevedo-Hidalgo B, Gutiérrez-Romero V, Rivera-Hoyos CM, Pedroza-Rodríguez AM. Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria. 3 Biotech 2024; 14:129. [PMID: 38601881 PMCID: PMC11003938 DOI: 10.1007/s13205-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
During and after the pandemic caused by the SARS-CoV-2 virus, the use of personal care products and disinfectants increased in universities worldwide. Among these, quaternary ammonium-based products stand out; these compounds and their intermediates caused substantial changes in the chemical composition of the wastewater produced by these institutions. For this reason, improvements and environmentally sustainable biological alternatives were introduced in the existing treatment systems so that these institutions could continue their research and teaching activities. For this reason, the objective of this study was to develop an improved culture medium to cultivate ammonium oxidising bacteria (AOB) to increase the biomass and use them in the treatment of wastewater produced in a faculty of sciences in Bogotá, D.C., Colombia. A Plackett Burman Experimental Design (PBED) and growth curves served for oligotrophic culture medium, and production conditions improved for the AOB. Finally, these bacteria were used with total heterotrophic bacteria (THB) for wastewater treatment in a pilot plant. Modification of base ammonium broth and culture conditions (6607 mg L-1 of (NH4)2SO4, 84 mg L-1 CaCO3, 40 mg L-1 MgSO4·7H2O, 40 mg L-1 CaCl2·2H2O and 200 mg L-1 KH2PO4, 10% (w/v) inoculum, no copper addition, pH 7.0 ± 0.2, 200 r.p.m., 30 days) favoured the growth of Nitrosomonas europea, Nitrosococcus oceani, and Nitrosospira multiformis with values of 8.23 ± 1.9, 7.56 ± 0.7 and 4.2 ± 0.4 Log10 CFU mL-1, respectively. NO2- production was 0.396 ± 0.0264, 0.247 ± 0.013 and 0.185 ± 0.003 mg L-1 for Nitrosomonas europea, Nitrosococcus oceani and Nitrosospira multiformis. After the 5-day wastewater treatment (WW) by co-inoculating the three studied bacteria in the wastewater (with their self-microorganisms), the concentrations of AOB and THB were 5.92 and 9.3 Log10 CFU mL-1, respectively. These values were related to the oxidative decrease of Chemical Oxygen Demand (COD), (39.5 mg L-1), Ammonium ion (NH4+), (6.5 mg L-1) Nitrite (NO2-), (2.0 mg L-1) and Nitrate (NO3-), (1.5 mg L-1), respectively in the five days of treatment. It was concluded, with the improvement of a culture medium and production conditions for three AOB through biotechnological strategies at the laboratory scale, being a promising alternative to bio-augment of the biomass of the studied bacteria under controlled conditions that allow the aerobic removal of COD and nitrogen cycle intermediates present in the studied wastewater. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03961-4.
Collapse
Affiliation(s)
- Lucas D. Pedroza-Camacho
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Paula A. Ospina-Sánchez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Felipe A. Romero-Perdomo
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nury G. Infante-González
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Diana M. Paredes-Céspedes
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
2
|
Woo HE, Jeong I, Kim JO, Kim YR, Lee IC, Kim K. Field experiments on chemical and biological changes of thin-layer oyster shells capping sediments in dense aquaculture area. ENVIRONMENTAL RESEARCH 2023; 237:116893. [PMID: 37586451 DOI: 10.1016/j.envres.2023.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Thin-layer oyster shell capping has been proposed as a method for improving contaminated coastal environments. Field experiments were conducted to investigate the effects of oyster shell capping on nutrient concentrations, microorganisms, and macrobenthic communities. The concentration of PO4-Pin the experimental area decreased by approximately 38% more than in the control, due to phosphorus fixation of oyster shells and the presence of Proteobacteria. Ammonia-oxidizing bacteria such as the order Pirellulales (phylum Planctomycetes) were related to the low ratio of NH3-N found in dissolved inorganic nitrogen in the experimental area, indicating nitrification promotion. The reduction in annular benthic organisms observed in the experimental area indicates a decline in sediment organic matter, which could potentially mitigate eutrophication. Oyster shell capping was confirmed to be an effective material for restoring coastal sediments by improving their chemical and biological properties.
Collapse
Affiliation(s)
- Hee-Eun Woo
- Research Center for Ocean Industrial Development, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Ilwon Jeong
- Research Center for Ocean Industrial Development, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea; School of Marine and Fisheries Life Science, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Young-Ryun Kim
- Marine Eco-Technology Institute, 406 Sinseon-ro, Nam-Gu, Busan, 48520, Republic of Korea
| | - In-Cheol Lee
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Kyunghoi Kim
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea; Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kota Surabaya, 60115, Indonesia.
| |
Collapse
|
3
|
Urakawa H, Andrews GA, Lopez JV, Martens-Habbena W, Klotz MG, Stahl DA. Nitrosomonas supralitoralis sp. nov., an ammonia-oxidizing bacterium from beach sand in a supralittoral zone. Arch Microbiol 2022; 204:560. [PMID: 35978059 DOI: 10.1007/s00203-022-03173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
A betaproteobacterial chemolithotrophic ammonia-oxidizing bacterium designated APG5T was isolated from supralittoral sand of the Edmonds City Beach, WA, USA. Growth was observed at 10-35 °C (optimum, 30 °C), pH 5-9 (optimum, pH 8) and ammonia concentrations as high as 100 mM (optimum, 1-30 mM NH4Cl). The strain grows optimally in a freshwater medium but tolerates up to 400 mM NaCl. It is most closely related to 'Nitrosomonas ureae' (96.7% 16S rRNA and 92.4% amoA sequence identity). The 3.75-Mbp of AGP5T draft genome contained a single rRNA operon and all necessary tRNA genes and has the lowest G+C content (43.5%) when compared to the previously reported genomes of reference strains in cluster 6 Nitrosomonas. Based on an average nucleotide identity of 82% with its closest relative ('N. ureae' Nm10T) and the suggested species boundary of 95-96%, a new species Nitrosomonas supralitoralis sp. nov. is proposed. The type strain of Nitrosomonas supralitoralis is APG5T (= NCIMB 14870T = ATCC TSD-116T).
Collapse
Affiliation(s)
- Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA. .,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Gabrianna A Andrews
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, University of Florida, Davie, FL, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Martin G Klotz
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Newton K, Gonzalez E, Pitre FE, Brereton NJB. Microbial community origin and fate through a rural wastewater treatment plant. Environ Microbiol 2022; 24:2516-2542. [PMID: 35466495 DOI: 10.1111/1462-2920.16025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Conventional wastewater treatment relies on a complex microbiota; however, much of this community is still to be characterised. To better understand the origin, dynamics and fate of bacteria within a wastewater treatment plant: untreated primary wastewater, activated sludge, and post-treatment effluent were characterised. From 3,163 Exact Sequence Variants (ESVs), 860 were annotated to species-level. In primary wastewater, 28% of ESVs were putative bacterial species previously associated with humans, 14% with animals and 5% as common to the environment. Differential abundance analysis revealed significant relative reductions in ESVs from potentially humans-associated species from primary wastewater to activated sludge, and significant increases in ESVs from species associated with nutrient cycling. Between primary wastewater and effluent, 51% of ESVs from human-associated species did not significantly differ, and species such as Bacteroides massiliensis and Bacteroides dorei increased. These findings illustrate that activated sludge increased extracellular protease and urease-producing species, ammonia and nitrite oxidizers, denitrifiers and specific phosphorus accumulators. Although many human-associated species declined, some persisted in effluent, including strains of potential health or environmental concern. Species-level microbial assessment may be useful for understanding variation in wastewater treatment efficiency as well as for monitoring the release of microbes into surface water and the wider ecosystem. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kymberly Newton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| | - Emmanuel Gonzalez
- Canadian Center for Computational Genomics, Department of Human Genetics, McGill University, Montréal, H3A 1A4, Canada
| | - Frederic E Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| |
Collapse
|
5
|
Sun X, Zhao J, Zhou X, Bei Q, Xia W, Zhao B, Zhang J, Jia Z. Salt tolerance-based niche differentiation of soil ammonia oxidizers. THE ISME JOURNAL 2022; 16:412-422. [PMID: 34389794 PMCID: PMC8776802 DOI: 10.1038/s41396-021-01079-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023]
Abstract
Ammonia oxidizers are key players in the global nitrogen cycle, yet little is known about their ecological performances and adaptation strategies for growth in saline terrestrial ecosystems. This study combined 13C-DNA stable-isotope probing (SIP) microcosms with amplicon and shotgun sequencing to reveal the composition and genomic adaptations of active ammonia oxidizers in a saline-sodic (solonetz) soil with high salinity and pH (20.9 cmolc exchangeable Na+ kg-1 soil and pH 9.64). Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) exhibited strong nitrification activities, although AOB performed most of the ammonia oxidation observed in the solonetz soil and in the farmland soil converted from solonetz soil. Members of the Nitrosococcus, which are more often associated with aquatic habitats, were identified as the dominant ammonia oxidizers in the solonetz soil with the first direct labeling evidence, while members of the Nitrosospira were the dominant ammonia oxidizers in the farmland soil, which had much lower salinity and pH. Metagenomic analysis of "Candidatus Nitrosococcus sp. Sol14", a new species within the Nitrosococcus lineage, revealed multiple genomic adaptations predicted to facilitate osmotic and pH homeostasis in this extreme habitat, including direct Na+ extrusion/H+ import and the ability to increase intracellular osmotic pressure by accumulating compatible solutes. Comparative genomic analysis revealed that variation in salt-tolerance mechanisms was the primary driver for the niche differentiation of ammonia oxidizers in saline-sodic soils. These results demonstrate how ammonia oxidizers can adapt to saline-sodic soil with excessive Na+ content and provide new insights on the nitrogen cycle in extreme terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiangxin Sun
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- grid.15276.370000 0004 1936 8091Institute for Food and Agricultural Sciences (IFAS), Department of Microbiology & Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL USA
| | - Xue Zhou
- grid.257065.30000 0004 1760 3465College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu Province China
| | - Qicheng Bei
- grid.419554.80000 0004 0491 8361Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Weiwei Xia
- grid.260478.f0000 0000 9249 2313College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province China
| | - Bingzi Zhao
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jiabao Zhang
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Zhongjun Jia
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
7
|
Effects of Different Land Use Types on Active Autotrophic Ammonia and Nitrite Oxidizers in Cinnamon Soils. Appl Environ Microbiol 2021; 87:e0009221. [PMID: 33837020 DOI: 10.1128/aem.00092-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Land use types with different disturbance gradients show many variations in soil properties, but the effects of different land use types on soil nitrifying communities and their ecological implications remain poorly understood. Using 13CO2-DNA-based stable isotope probing (DNA-SIP), we examined the relative importance and active community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in soils under three land use types, forest, cropland, and greenhouse vegetable soil, representing three interference gradients. Soil net nitrification rate was in the order forest soil > cropland soil > greenhouse vegetable soil. DNA-SIP showed that active AOA outcompeted AOB in the forest soil, whereas AOB outperformed AOA in the cropland and greenhouse vegetable soils. Cropland soil was richer in NOB than in AOA and AOB. Phylogenetic analysis revealed that ammonia oxidation in the forest soil was predominantly catalyzed by the AOA Nitrosocosmicus franklandus cluster within the group 1.1b lineage. The 13C-labeled AOB were overwhelmingly dominated by Nitrosospira cluster 3 in the cropland soil. The active AOB Nitrosococcus watsonii lineage was observed in the greenhouse vegetable soil, and it played an important role in nitrification. Active NOB communities were closely affiliated with Nitrospira in the forest and cropland soils, and with Nitrolancea and Nitrococcus in the greenhouse vegetable soil. Canonical correlation analysis showed that soil pH and organic matter content significantly affected the active nitrifier community composition. These results suggest that land use types with different disturbance gradients alter the distribution of active nitrifier communities by affecting soil physicochemical properties. IMPORTANCE Nitrification plays an important role in the soil N cycle, and land use management has a profound effect on soil nitrifiers. It is unclear how different gradients of land use affect active ammonia-oxidizing archaea and bacteria and nitrite-oxidizing bacteria. Our research is significant because we determined the response of nitrifiers to human disturbance, which will greatly improve our understanding of the niche of nitrifiers and the differences in their physiology.
Collapse
|
8
|
Wang Z, Ni G, Maulani N, Xia J, De Clippeleir H, Hu S, Yuan Z, Zheng M. Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer 'Candidatus Nitrosoglobus'. WATER RESEARCH 2021; 196:117026. [PMID: 33751975 DOI: 10.1016/j.watres.2021.117026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Recently, acidic (i.e. pH<5) nitrification in activated-sludge is attracting attention because it enables stable nitritation (NH4+ → NO2-), and enhances sludge reduction and stabilization. However, the key acid-tolerant ammonia oxidizers involved are poorly understood. In this study, we performed stoichiometric and kinetic characterization of a new acid-tolerant ammonia-oxidizing bacterium (AOB) belonging to gamma-proteobacterium, Candidatus Nitrosoglobus. Ca. Nitrosoglobus was cultivated in activated-sludge in a laboratory membrane bioreactor over 200 days, with a relative abundance of 55.1 ± 0.5% (indicated by 16S rRNA gene amplicon sequencing) at the time of the characterization experiments. Among all known nitrifiers, Ca. Nitrosoglobus bears the highest resistance to nitrite, low pH, and free nitrous acid (FNA). These traits define Ca. Nitrosoglobus as an adversity-strategist that tends to prosper in acidic activated-sludge, where the low pH (< 5.0) and high levels of FNA (at parts per million levels) sustained and inhibited all other nitrifiers. In contrast, in the conventional pH-neutral activated-sludge process, Ca. Nitrosoglobus is less competitive with canonical AOB (e.g. Nitrosomonas) due to the relatively slow specific growth rate and low affinities to both oxygen and total ammonia. These results advance our understanding of acid-tolerant ammonia oxidizers, and support further development of the acidic activated-sludge process in which Ca. Nitrosoglobus can play a critical role.
Collapse
Affiliation(s)
- Zhiyao Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gaofeng Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nova Maulani
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haydée De Clippeleir
- District of Columbia Water and Sewer Authority, 5000 Overlook Ave. SW, Washington, DC 20032, USA
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
Patil PK, Baskaran V, Vinay TN, Avunje S, Leo-Antony M, Shekhar MS, Alavandi SV, Vijayan KK. Abundance, community structure and diversity of nitrifying bacterial enrichments from low and high saline brackishwater environments. Lett Appl Microbiol 2021; 73:96-106. [PMID: 33780023 DOI: 10.1111/lam.13480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
The study reports diversity in nitrifying microbial enrichments from low (0·5-5‰) and high (18-35‰) saline ecosystems. Microbial community profiling of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) enrichments was analysed by sequencing 16S rRNA and was processed using Mothur pipeline. The α-diversity indices showed the richness of nitrifying bacterial consortia from the high saline environment and were clustering based on the source of the sample. AOB and NOB enrichments from both the environments showed diverse lineages of phyla distributed in both groups with 38 and 34 phyla from low saline and 53 and 40 phyla in high saline sources, respectively. At class level, α- and γ-proteobacteria were found to be more dominant in both the enrichments. AOBs and NOBs in enrichments from low saline environments were dominated by Nitrosomonadaceae, Gallionellaceae (Nitrotoga sp.) and Ectothiorhodospiraceae and Nitrospira, respectively. Though Chromatiaceae were present in both AOB and NOB enrichments, Nitrosoglobus and Nitrosococcus dominated the AOBs while NOBs were dominated by uncultured genera, whereas Rhizobiales were found in both the enrichments. AOBs and NOBs in enrichments from high saline environments were dominated by Nitrospira-like AOBs, Nitrosomonas and Nitrosococcus genera, whereas ammonia-oxidizing archaea (AOA) group included Nitrosopumilus and Nitrososphaera genera comprising and Nitrospirae, respectively. The majority of the genera obtained in both the salinities were found to be either uncultured or unclassified groups. Results of the study suggest that the AOB and NOB consortia have unique and diverse microbes in each of the enrichments, capable of functioning in aquaculture systems practised at different salinities (0-60 ppt).
Collapse
Affiliation(s)
- P K Patil
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - V Baskaran
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - T-N Vinay
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - S Avunje
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - M Leo-Antony
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - M S Shekhar
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - S V Alavandi
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| | - K K Vijayan
- Central Institute of Brackishwater Aquaculture, ICAR, Chennai, India
| |
Collapse
|
10
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
11
|
Talà A, Buccolieri A, Calcagnile M, Ciccarese G, Onorato M, Onorato R, Serra A, Spedicato F, Tredici SM, Alifano P, Belmonte G. Chemotrophic profiling of prokaryotic communities thriving on organic and mineral nutrients in a submerged coastal cave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142514. [PMID: 33038840 DOI: 10.1016/j.scitotenv.2020.142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The geothermal system of the Salento peninsula (Italy) is characterized by the presence of many hydrogen sulfide-rich underground waters and thermal springs. We focused our attention on the submerged section of Zinzulùsa (Castro, Italy), a cave of both naturalistic and archaeological interest. In pioneer studies, some hypotheses about the origin of the sulfurous waters of this area were proposed. The most accredited one is that sulfate-enriched waters of marine origin infiltrate deep along bands with greater permeability, and warm-up going upwards, due to the geothermal gradient. During their route, marine waters interact with organic deposits and generate hydrogen sulfide as a result of sulfate reduction. To date, no studies have been conducted to elucidate the hydrogen sulfide origin in this site. The nature of reducing power and energy sources supporting microbial life in this submerged habitat is currently unknown. Here we present a multidisciplinary experimental approach aimed at defining geochemical features and microbiological diversity of the submerged habitat of Zinzulùsa cave. Our integrated data provide strong evidence that the sulfate content of the marine water and the activity of sulfate-reducing bacteria may account for the hydrogen sulfide content of the thermal springs. Anaerobic, sulfate-reducing, thermophilic Thermodesulfovibrio and hyperthermophilic Fervidobacterium genera show a high percentage contribution in 16S rRNA gene metabarcoding analyses, despite the mesophilic conditions of the sampling site. Besides, supported by PICRUSt functional analysis, we propose a chemotrophic model in which hydrocarbon deposits, entrapped in the stratifications of the seafloor, may be exploited by anaerobic oil-degrading bacteria as carbon and energy sources to sustain efficient hydrogen, sulfur, and nitrogen biogeochemical cycles. The Zinzulùsa hydrothermal site represents an ecosystem useful to obtain new insights into prokaryotic mutual interactions in oligotrophic and aphotic conditions, which constitute the largest environment of the biosphere.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Buccolieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gaetano Ciccarese
- Gruppo Speleologico Salentino "P. De Lorentiis", Piazza C. Colombo, Castro, 73030 Lecce, Italy
| | - Michele Onorato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; Scuba Speleodiving Association APOGON Onlus, 73048 Nardò, Italy
| | | | - Antonio Serra
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Salvatore Maurizio Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Genuario Belmonte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
12
|
Freitas L, Appolinario L, Calegario G, Campeão M, Tschoeke D, Garcia G, Venancio IM, Cosenza CAN, Leomil L, Bernardes M, Albuquerque AL, Thompson C, Thompson F. Glacial-interglacial transitions in microbiomes recorded in deep-sea sediments from the western equatorial Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140904. [PMID: 32763595 DOI: 10.1016/j.scitotenv.2020.140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
In the late Quaternary, glacial-interglacial transitions are marked by major environmental changes. Glacial periods in the western equatorial Atlantic (WEA) are characterized by high continental terrigenous input, which increases the proportion of terrestrial organic matter (e.g. lignin, alkanes), nutrients (e.g. iron and sulphur), and lower primary productivity. On the other hand, interglacials are characterized by lower continental contribution and maxima in primary productivity. Microbes can serve as biosensors of past conditions, but scarce information is available on deep-sea sediments in the WEA. The hypothesis put forward in this study is that past changes in climate conditions modulated the taxonomic/functional composition of microbes from deep sediment layers. To address this hypothesis, we collected samples from a marine sediment core located in the WEA, which covered the last 130 kyr. This region is influenced by the presence of the Amazon River plume, which outputs dissolved and particulate nutrients in vast oceanic regions, as well as the Parnaiba river plume. Core GL-1248 was analysed by shotgun metagenomics and geochemical analyses (alkane, lignin, perylene, sulphur). Two clusters (glacial and interglacial-deglacial) were found based on taxonomic and functional profiles of metagenomes. The interglacial period had a higher abundance of genes belonging to several sub-systems (e.g. DNA, RNA metabolism, cell division, chemotaxis, and respiration) that are consistent with a past environment with enhanced primary productivity. On the other hand, the abundance of Alcanivorax, Marinobacter, Kangiella and aromatic compounds that may serve as energy sources for these bacteria were higher in the glacial. The glacial period was enriched in genes for the metabolism of aromatic compounds, lipids, isoprenoids, iron, and Sulphur, consistent with enhanced fluvial input during the last glacial period. In contrast, interglacials have increased contents of more labile materials originating from phytoplankton (e.g. Prochlorococcus). This study provides new insights into the microbiome as climatic archives at geological timescales.
Collapse
Affiliation(s)
- Lucas Freitas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Mariana Campeão
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Igor Martins Venancio
- Center for Weather Forecasting and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, Brazil; Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | | | | | - Marcelo Bernardes
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza Albuquerque
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil.
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Lukumbuzya M, Kristensen JM, Kitzinger K, Pommerening-Röser A, Nielsen PH, Wagner M, Daims H, Pjevac P. A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. WATER RESEARCH 2020; 186:116372. [PMID: 32916620 DOI: 10.1016/j.watres.2020.116372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) of the betaproteobacterial genera Nitrosomonas and Nitrosospira are key nitrifying microorganisms in many natural and engineered ecosystems. Since many AOB remain uncultured, fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has been one of the most widely used approaches to study the community composition, abundance, and other features of AOB directly in environmental samples. However, the established and widely used AOB-specific 16S rRNA-targeted FISH probes were designed up to two decades ago, based on much smaller rRNA gene sequence datasets than available today. Several of these probes cover their target AOB lineages incompletely and suffer from a weak target specificity, which causes cross-hybridization of probes that should detect different AOB lineages. Here, a set of new highly specific 16S rRNA-targeted oligonucleotide probes was developed and experimentally evaluated that complements the existing probes and enables the specific detection and differentiation of the known, major phylogenetic clusters of betaproteobacterial AOB. The new probes were successfully applied to visualize and quantify AOB in activated sludge and biofilm samples from seven pilot- and full-scale wastewater treatment systems. Based on its improved target group coverage and specificity, the refined probe set will facilitate future in situ analyses of AOB.
Collapse
Affiliation(s)
- Michael Lukumbuzya
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jannie Munk Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Andreas Pommerening-Röser
- University of Hamburg, Institute of Plant Science and Microbiology, Microbiology and Biotechnology, Hamburg, Germany
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria.
| | - Petra Pjevac
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe. Sci Rep 2020; 10:17165. [PMID: 33051504 PMCID: PMC7555866 DOI: 10.1038/s41598-020-74163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/24/2020] [Indexed: 11/25/2022] Open
Abstract
The community composition of betaproteobacterial ammonia-oxidizing bacteria (ß-AOB) in the River Elbe Estuary was investigated by high throughput sequencing of ammonia monooxygenase subunit A gene (amoA) amplicons. In the course of the seasons surface sediment samples from seven sites along the longitudinal profile of the upper Estuary of the Elbe were investigated. We observed striking shifts of the ß-AOB community composition according to space and time. Members of the Nitrosomonas oligotropha-lineage and the genus Nitrosospira were found to be the dominant ß-AOB within the river transect, investigated. However, continuous shifts of balance between members of both lineages along the longitudinal profile were determined. A noticeable feature was a substantial increase of proportion of Nitrosospira-like sequences in autumn and of sequences affiliated with the Nitrosomonas marina-lineage at downstream sites in spring and summer. Slightly raised relative abundances of sequences affiliated with the Nitrosomonas europaea/Nitrosomonas mobilis-lineage and the Nitrosomonas communis-lineage were found at sampling sites located in the port of Hamburg. Comparisons between environmental parameters and AOB-lineage (ecotype) composition revealed promising clues that processes happening in the fluvial to marine transition zone of the Elbe estuary are reflected by shifts in the relative proportion of ammonia monooxygenase sequence abundance, and hence, we propose ß-AOB as appropriate indicators for environmental dynamics and the ecological condition of the Elbe Estuary.
Collapse
|
15
|
Year-long assessment of a pilot-scale thin-layer reactor for microalgae wastewater treatment. Variation in the microalgae-bacteria consortium and the impact of environmental conditions. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101983] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Martínez-Núñez MA, Rodríguez-Escamilla Z. Mining the Yucatan Coastal Microbiome for the Identification of Non-Ribosomal Peptides Synthetase (NRPS) Genes. Toxins (Basel) 2020; 12:E349. [PMID: 32466531 PMCID: PMC7354552 DOI: 10.3390/toxins12060349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes represent a source of both biotechnological and pharmaceutical molecules of importance, such as nonribosomal peptides (NRPs). NRPs are secondary metabolites which their synthesis is independent of ribosomes. Traditionally, obtaining NRPs had focused on organisms from terrestrial environments, but in recent years marine and coastal environments have emerged as an important source for the search and obtaining of nonribosomal compounds. In this study, we carried out a metataxonomic analysis of sediment of the coast of Yucatan in order to evaluate the potential of the microbial communities to contain bacteria involved in the synthesis of NRPs in two sites: one contaminated and the other conserved. As well as a metatranscriptomic analysis to discover nonribosomal peptide synthetases (NRPSs) genes. We found that the phyla with the highest representation of NRPs producing organisms were the Proteobacteria and Firmicutes present in the sediments of the conserved site. Similarly, the metatranscriptomic analysis showed that 52% of the sequences identified as catalytic domains of NRPSs were found in the conserved site sample, mostly (82%) belonging to Proteobacteria and Firmicutes; while the representation of Actinobacteria traditionally described as the major producers of secondary metabolites was low. It is important to highlight the prediction of metabolic pathways for siderophores production, as well as the identification of NRPS's condensation domain in organisms of the Archaea domain. Because this opens the possibility to the search for new nonribosomal structures in these organisms. This is the first mining study using high throughput sequencing technologies conducted in the sediments of the Yucatan coast to search for bacteria producing NRPs, and genes that encode NRPSs enzymes.
Collapse
Affiliation(s)
- Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán CP 97355, Mexico
| | - Zuemy Rodríguez-Escamilla
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán CP 97355, Mexico
| |
Collapse
|
17
|
Wang L, Lim CK, Klotz MG. High Synteny and Sequence Identity between Genomes of Nitrosococcus oceani Strains Isolated from Different Oceanic Gyres Reveals Genome Economization and Autochthonous Clonal Evolution. Microorganisms 2020; 8:E693. [PMID: 32397339 PMCID: PMC7285500 DOI: 10.3390/microorganisms8050693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
The ammonia-oxidizing obligate aerobic chemolithoautotrophic gammaproteobacterium, Nitrosococcus oceani, is omnipresent in the world's oceans and as such important to the global nitrogen cycle. We generated and compared high quality draft genome sequences of N. oceani strains isolated from the Northeast (AFC27) and Southeast (AFC132) Pacific Ocean and the coastal waters near Barbados at the interface between the Caribbean Sea and the North Atlantic Ocean (C-27) with the recently published Draft Genome Sequence of N. oceani Strain NS58 (West Pacific Ocean) and the complete genome sequence of N. oceani C-107, the type strain (ATCC 19707) isolated from the open North Atlantic, with the goal to identify indicators for the evolutionary origin of the species. The genomes of strains C-107, NS58, C-27, and AFC27 were highly conserved in content and synteny, and these four genomes contained one nearly sequence-identical plasmid. The genome of strain AFC132 revealed the presence of genetic inventory unknown from other marine ammonia-oxidizing bacteria such as genes encoding NiFe-hydrogenase and a non-ribosomal peptide synthetase (NRPS)-like siderophore biosynthesis module. Comparative genome analysis in context with the literature suggests that AFC132 represents a metabolically more diverse ancestral lineage to the other strains with C-107 and NS58 potentially being the youngest. The results suggest that the N. oceani species evolved by genome economization characterized by the loss of genes encoding catabolic diversity while acquiring a higher redundancy in inventory dedicated to nitrogen catabolism, both of which could have been facilitated by their rich complements of CRISPR/Cas and Restriction Modification systems.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biological Sciences, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA; (L.W.); (C.K.L.)
| | - Chee Kent Lim
- Department of Biological Sciences, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA; (L.W.); (C.K.L.)
| | - Martin G. Klotz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| |
Collapse
|
18
|
Taylor HB, Kurtz HD. Composition, diversity, and activity of aerobic ammonia-oxidizing Bacteria and Archaea in the intertidal sands of a grand strand South Carolina beach. Microbiologyopen 2020; 9:e1011. [PMID: 32126588 PMCID: PMC7221436 DOI: 10.1002/mbo3.1011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/22/2023] Open
Abstract
Aerobic ammonia oxidation to nitrite has been established as an important ecosystem process in regulating the level of nitrogen in marine ecosystems. This process is carried out by ammonia-oxidizing bacteria (AOB) within the classes Betaproteobacteria and Gammaproteobacteria and ammonia-oxidizing Archaea (AOA) from the phylum Thaumarchaeota, and the latter of which has been established as more prevalent in marine systems. This study investigated the presence, abundance, and activity of these groups of microbes at a beach near Springmaid Pier in Myrtle Beach, South Carolina, through the implementation of next generation sequencing, quantitative PCR (qPCR), and microcosm experiments to monitor activity. Sequencing analysis revealed a diverse community of ammonia-oxidizing microbes dominated by AOA classified within the family Nitrosopumilaceae, and qPCR revealed the abundance of AOA amoA genes over AOB by at least an order of magnitude in most samples. Microcosm studies indicate that the rates of potential ammonia oxidation in these communities satisfy Michaelis-Menten substrate kinetics and this process is more active at temperatures corresponding to summer months than winter. Potential rates in AOA medium were higher than that of AOB medium, indicating a potentially greater contribution of AOA to this process in this environment. In conclusion, this study provides further evidence of the dominance of AOA in these environments compared with AOB and highlights the overall efficiency of this process at turning over excess ammonium that may be present in these environments.
Collapse
Affiliation(s)
- Harrison B Taylor
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| | - Harry D Kurtz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| |
Collapse
|
19
|
Prosser JI, Hink L, Gubry-Rangin C, Nicol GW. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. GLOBAL CHANGE BIOLOGY 2020; 26:103-118. [PMID: 31638306 DOI: 10.1111/gcb.14877] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 05/02/2023]
Abstract
Oxidation of ammonia to nitrite by bacteria and archaea is responsible for global emissions of nitrous oxide directly and indirectly through provision of nitrite and, after further oxidation, nitrate to denitrifiers. Their contributions to increasing N2 O emissions are greatest in terrestrial environments, due to the dramatic and continuing increases in use of ammonia-based fertilizers, which have been driven by requirement for increased food production, but which also provide a source of energy for ammonia oxidizers (AO), leading to an imbalance in the terrestrial nitrogen cycle. Direct N2 O production by AO results from several metabolic processes, sometimes combined with abiotic reactions. Physiological characteristics, including mechanisms for N2 O production, vary within and between ammonia-oxidizing archaea (AOA) and bacteria (AOB) and comammox bacteria and N2 O yield of AOB is higher than in the other two groups. There is also strong evidence for niche differentiation between AOA and AOB with respect to environmental conditions in natural and engineered environments. In particular, AOA are favored by low soil pH and AOA and AOB are, respectively, favored by low rates of ammonium supply, equivalent to application of slow-release fertilizer, or high rates of supply, equivalent to addition of high concentrations of inorganic ammonium or urea. These differences between AOA and AOB provide the potential for better fertilization strategies that could both increase fertilizer use efficiency and reduce N2 O emissions from agricultural soils. This article reviews research on the biochemistry, physiology and ecology of AO and discusses the consequences for AO communities subjected to different agricultural practices and the ways in which this knowledge, coupled with improved methods for characterizing communities, might lead to improved fertilizer use efficiency and mitigation of N2 O emissions.
Collapse
Affiliation(s)
- James I Prosser
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Linda Hink
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | | | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
20
|
Glamoclija M, Ramirez S, Sirisena K, Widanagamage I. Subsurface Microbial Ecology at Sediment-Groundwater Interface in Sulfate-Rich Playa; White Sands National Monument, New Mexico. Front Microbiol 2019; 10:2595. [PMID: 31781077 PMCID: PMC6861310 DOI: 10.3389/fmicb.2019.02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
The hypersaline sediment and groundwater of playa lake, Lake Lucero, at the White Sands National Monument in New Mexico were examined for microbial community composition, geochemical gradients, and mineralogy during the dry season along a meter and a half depth profile of the sediment vs. the groundwater interface. Lake Lucero is a highly dynamic environment, strongly characterized by the capillary action of the groundwater, the extreme seasonality of the climate, and the hypersalinity. Sediments are predominantly composed of gypsum with minor quartz, thenardite, halite, quartz, epsomite, celestine, and clays. Geochemical analysis has revealed the predominance of nitrates over ammonium in all of the analyzed samples, indicating oxygenated conditions throughout the sediment column and in groundwater. Conversely, the microbial communities are primarily aerobic, gram-negative, and are largely characterized by their survival adaptations. Halophiles and oligotrophs are ubiquitous for all the samples. The very diverse communities contain methanogens, phototrophs, heterotrophs, saprophytes, ammonia-oxidizers, sulfur-oxidizers, sulfate-reducers, iron-reducers, and nitrifiers. The microbial diversity varied significantly between groundwater and sediment samples as their temperature adaptation inferences that revealed potential psychrophiles inhabiting the groundwater and thermophiles and mesophiles being present in the sediment. The dynamism of this environment manifests in the relatively even character of the sediment hosted microbial communities, where significant taxonomic distinctions were observed. Therefore, sediment and groundwater substrates are considered as separate ecological entities. We hope that the variety of the discussed playa environments and the microorganisms may be considered a useful terrestrial analog providing valuable information to aid future astrobiological explorations.
Collapse
Affiliation(s)
- Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Steven Ramirez
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Kosala Sirisena
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, United States.,Department of Environmental Technology, Faculty of Technology, University of Colombo, Colombo, Sri Lanka
| | - Inoka Widanagamage
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Department of Geology and Geological Engineering, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
21
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
22
|
Zoss R, Medina Ferrer F, Flood BE, Jones DS, Louw DC, Bailey J. Microbial communities associated with phosphogenic sediments and phosphoclast-associated DNA of the Benguela upwelling system. GEOBIOLOGY 2019; 17:76-90. [PMID: 30369004 DOI: 10.1111/gbi.12318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The processes that lead to the precipitation of authigenic calcium phosphate minerals in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating bacteria. These bacteria are believed to concentrate phosphate in sediment pore waters, creating supersaturated conditions with respect to apatite precursors. However, the relationship between microbes and phosphorite formation is not fully resolved. To further study this association, we examined microbial community data generated from two sources: sediment cores recovered from the shelf of the Benguela upwelling region where phosphorites are currently forming, and DNA preserved within phosphoclasts recovered from a phosphorite deposit along the Benguela shelf. iTag and clone library sequencing of the 16S rRNA gene showed that many of our sediment-hosted communities shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfate-reducing bacteria and sulfur-oxidizing bacteria were particularly abundant in our datasets, as were phylotypes that are known to carry out nitrification and the anaerobic oxidation of ammonium. The DNA extracted from phosphoclasts contained the signature of a distinct microbial community from those observed in the modern sediments. While some aspects of the modern and phosphoclast communities were similar, we observed both an enrichment of certain common microbial classes found in the modern phosphogenic sediments and a relative depletion of others. The phosphoclast-associated DNA could represent a relict signature of one or more microbial assemblages that were present when the apatite or its precursors precipitated. While these taxa may or may not have contributed to the precipitation of the apatite that now hosts their genetic remains, several groups represented in the phosphoclast extract dataset have the genetic potential to metabolize polyphosphate, and perhaps modulate phosphate concentrations in pore waters where carbonate fluorapatite (or its precursors) are known to be precipitating.
Collapse
Affiliation(s)
- Roman Zoss
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
| | | | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
| | - Daniel S Jones
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
- BioTechnology Institute, University of Minnesota, St. Paul, Minneapolis
| | - Deon C Louw
- Ministry of Fisheries and Marine Resources, National Marine Information and Research Centre, Swakopmund, Namibia
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
| |
Collapse
|
23
|
Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary History of Copper Membrane Monooxygenases. Front Microbiol 2018; 9:2493. [PMID: 30420840 PMCID: PMC6215863 DOI: 10.3389/fmicb.2018.02493] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022] Open
Abstract
Copper membrane monooxygenases (CuMMOs) oxidize ammonia, methane and some short-chain alkanes and alkenes. They are encoded by three genes, usually in an operon of xmoCAB. We aligned xmo operons from 66 microbial genomes, including members of the Alpha-, Beta-, and Gamma-proteobacteria, Verrucomicrobia, Actinobacteria, Thaumarchaeota and the candidate phylum NC10. Phylogenetic and compositional analyses were used to reconstruct the evolutionary history of the enzyme and detect potential lateral gene transfer (LGT) events. The phylogenetic analyses showed at least 10 clusters corresponding to a combination of substrate specificity and bacterial taxonomy, but with no overriding structure based on either function or taxonomy alone. Adaptation of the enzyme to preferentially oxidize either ammonia or methane has occurred more than once. Individual phylogenies of all three genes, xmoA, xmoB and xmoC, closely matched, indicating that this operon evolved or was consistently transferred as a unit, with the possible exception of the methane monooxygenase operons in Verrucomicrobia, where the pmoB gene has a distinct phylogeny from pmoA and pmoC. Compositional analyses indicated that some clusters of xmoCAB operons (for example, the pmoCAB in gammaproteobacterial methanotrophs and the amoCAB in betaproteobacterial nitrifiers) were compositionally very different from their genomes, possibly indicating recent lateral transfer of these operons. The combined phylogenetic and compositional analyses support the hypothesis that an ancestor of the nitrifying bacterium Nitrosococcus was the donor of methane monooxygenase (pMMO) to both the alphaproteobacterial and gammaproteobacterial methanotrophs, but that before this event the gammaproteobacterial methanotrophs originally possessed another CuMMO (Pxm), which has since been lost in many species.
Collapse
Affiliation(s)
- Roshan Khadka
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lindsay Clothier
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lin Wang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Chee Kent Lim
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Martin G Klotz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Richland, WA, United States.,State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Urakawa H, Rajan S, Feeney ME, Sobecky PA, Mortazavi B. Ecological response of nitrification to oil spills and its impact on the nitrogen cycle. Environ Microbiol 2018; 21:18-33. [DOI: 10.1111/1462-2920.14391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hidetoshi Urakawa
- Department of Marine and Ecological Sciences Florida Gulf Coast University Fort Myers FL, 33965 USA
| | - Suja Rajan
- Department of Biological Sciences University of Alabama Tuscaloosa AL, 35487 USA
| | - Megan E. Feeney
- Department of Marine and Ecological Sciences Florida Gulf Coast University Fort Myers FL, 33965 USA
| | - Patricia A. Sobecky
- Department of Biological Sciences University of Alabama Tuscaloosa AL, 35487 USA
| | - Behzad Mortazavi
- Department of Biological Sciences University of Alabama Tuscaloosa AL, 35487 USA
- Dauphin Island Sea Lab Dauphin Island AL, 36528 USA
| |
Collapse
|
25
|
Pan H, Liu H, Liu Y, Zhang Q, Luo Y, Liu X, Liu Y, Xu J, Di H, Li Y. Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1157-1164. [PMID: 29660872 DOI: 10.1016/j.scitotenv.2018.04.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Nitrifying microbes are of critical importance in regulating efficient nitrogen (N) cycling, which plays a crucial role in plant productivity and maintaining soil sustainability. Long-term different intensities of grazing can strongly influence the microbial communities, while our understanding of the complex nitrifying community in the grazed grassland soil environment is still limited. To investigate whether and how long-term grazing with different intensities influence soil nitrifying communities, high-throughput sequencing and quantitative PCR analyses were performed on soil samples from permanent grassland soils under four grazing intensities: 0 (G0), 1.5 (G1), 6 (G2) and 9 (G3) sheepha-1. Results showed that the G3 treatment significantly reduced the soil nutrient content and increased the soil bulk density, changes that are not sustainable in the long run. The G1 treatment, on the other hand, significantly increased the soil nutrient content and would improve soil fertility. Some functional microbes were specifically enriched after long term grazing, like Nitrospirae (phylum) to Nitrospira (class) in the G2 samples and Chromatiales (order) to Nitrosococcus (genus) in the G3 soils. The numerically dominant Nitrosococcus watsonii lineage of ammonia oxidizing bacteria (AOB) was observed in this grassland soil. The redundancy analysis (RDA) together with the structural equation modeling (SEM) analysis showed that grazing intensity was important in mediating the distribution of soil microorganisms and affected nitrifying communities by impacting soil physicochemical characteristics (e.g., bulk density, NH4+-N). These results showed the shifts of nitrifying communities across different grazing intensities, and could aid in the determination of an optimal grazing intensity for these grazed grassland soils.
Collapse
Affiliation(s)
- Hong Pan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaowei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yimeng Liu
- School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Hongjie Di
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
26
|
Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci Rep 2018; 8:10386. [PMID: 29991752 PMCID: PMC6039533 DOI: 10.1038/s41598-018-28613-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean’s seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
Collapse
|
27
|
Nacke H, Schöning I, Schindler M, Schrumpf M, Daniel R, Nicol GW, Prosser JI. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiol Ecol 2017; 93:4563574. [DOI: 10.1093/femsec/fix144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/23/2017] [Indexed: 11/13/2022] Open
|
28
|
Hink L, Lycus P, Gubry-Rangin C, Frostegård Å, Nicol GW, Prosser JI, Bakken LR. Kinetics of NH 3 -oxidation, NO-turnover, N 2 O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environ Microbiol 2017; 19:4882-4896. [PMID: 28892283 DOI: 10.1111/1462-2920.13914] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 11/28/2022]
Abstract
Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N2 O) than ammonia oxidising archaea (AOA), due to their higher N2 O yield under oxic conditions and denitrification in response to oxygen (O2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH3 + NH4+) and O2 . Half-saturation constants for O2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N2 O production reached maxima near O2 half-saturation constant concentration (2-10 μM O2 ) and decreased to zero in response to complete O2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration.
Collapse
Affiliation(s)
- Linda Hink
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Pawel Lycus
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully CEDEX 69134, France
| | - James I Prosser
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| |
Collapse
|
29
|
Cerqueira T, Pinho D, Froufe H, Santos RS, Bettencourt R, Egas C. Sediment Microbial Diversity of Three Deep-Sea Hydrothermal Vents Southwest of the Azores. MICROBIAL ECOLOGY 2017; 74:332-349. [PMID: 28144700 DOI: 10.1007/s00248-017-0943-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Menez Gwen, Lucky Strike and Rainbow are the three most visited and well-known deep-sea hydrothermal vent fields in the Azores region, located in the Mid-Atlantic Ridge. Their distinct geological and ecological features allow them to support a diversity of vent communities, which are largely dependent on Bacteria and Archaea capable of anaerobic or microaerophilic metabolism. These communities play important ecological roles through chemoautotrophy, feeding and in establishing symbiotic associations. However, the occurrence and distribution of these microbes remain poorly understood, especially in deep-sea sediments. In this study, we provide for the first time a comparative survey of the sediment-associated microbial communities from these three neighbouring vent fields. Sediment samples collected in the Menez Gwen, Lucky Strike and Rainbow vent fields showed significant differences in trace-metal concentrations and associated microbiomes. The taxonomic profiles of bacterial, archaeal and eukaryotic representatives were assessed by rRNA gene-tag pyrosequencing, identified anaerobic methanogens and microaerobic Epsilonproteobacteria, particularly at the Menez Gwen site, suggesting sediment communities potentially enriched in sub-seafloor microbes rather than from pelagic microbial taxa. Cosmopolitan OTUs were also detected mostly at Lucky Strike and Rainbow sites and affiliated with the bacterial clades JTB255, Sh765B-TzT-29, Rhodospirillaceae and OCS155 marine group and with the archaeal Marine Group I. Some variations in the community composition along the sediment depth were revealed. Elemental contents and hydrothermal influence are suggested as being reflected in the composition of the microbial assemblages in the sediments of the three vent fields. Altogether, these findings represent valuable information for the understanding of the microbial distribution and potential ecological roles in deep-sea hydrothermal fields.
Collapse
Affiliation(s)
- Teresa Cerqueira
- Department of Oceanography and Fisheries, University of the Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal.
- MARE-Marine and Environmental Sciences Centre-Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal.
| | - Diogo Pinho
- Next Generation Sequencing Unit, UCBiotech-CNC, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197, Cantanhede, Portugal
| | - Hugo Froufe
- Next Generation Sequencing Unit, UCBiotech-CNC, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197, Cantanhede, Portugal
| | - Ricardo S Santos
- Department of Oceanography and Fisheries, University of the Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal
- MARE-Marine and Environmental Sciences Centre-Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal
- OKEANOS Centre, Department of Oceanography and Fisheries, Faculty of Sciences and Technology, University of the Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal
| | - Raul Bettencourt
- MARE-Marine and Environmental Sciences Centre-Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal
- OKEANOS Centre, Department of Oceanography and Fisheries, Faculty of Sciences and Technology, University of the Azores, Rua Prof. Dr. Frederico Machado, 4, 9901-862, Horta, Portugal
| | - Conceição Egas
- Next Generation Sequencing Unit, UCBiotech-CNC, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197, Cantanhede, Portugal
| |
Collapse
|
30
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
31
|
Corteselli EM, Aitken MD, Singleton DR. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol 2017; 67:925-931. [PMID: 27926817 DOI: 10.1099/ijsem.0.001714] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain TR3.2T was isolated from aerobic bioreactor-treated soil from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Salisbury, NC, USA. Strain TR3.2T was identified as a member of 'Pyrene Group 2' or 'PG2', a previously uncultivated cluster of organisms associated with the degradation of high-molecular-weight PAHs by stable-isotope probing. Based on its 16S rRNA gene sequence, the strain was classified as a member of the class Gammaproteobacteria but possessed only 90.5 % gene identity to its closest described relative, Methylococcus capsulatus strain Bath. Strain TR3.2T grew on the PAHs pyrene, phenanthrene, anthracene, benz[a]anthracene and fluorene, as well as the azaarene carbazole, and could additionally metabolize a limited number of organic acids. Optimal growth occurred aerobically under mesophilic temperature, neutral pH and low salinity conditions. Strain TR3.2T was catalase and oxidase positive. Predominant fatty acids were C17 : 0 cyclo and C16 : 0. Genomic G+C content of the single chromosome was 67.79 mol% as determined by complete genome sequencing. Due to the high sequence divergence from any cultivated species and its unique physiological properties compared to its closest relatives, strain TR3.2T is proposed as a representative of a novel order, family, genus and species within the class Gammaproteobacteria, for which the name Immundisolibacter cernigliae gen. nov., sp. nov. is proposed. The associated order and family are therefore proposed as Immundisolibacteralesord. nov. and Immundisolibacteraceaefam. nov. The type strain of the species is TR3.2T (=ATCC TSD-58T=DSM 103040T).
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
32
|
Hayatsu M, Tago K, Uchiyama I, Toyoda A, Wang Y, Shimomura Y, Okubo T, Kurisu F, Hirono Y, Nonaka K, Akiyama H, Itoh T, Takami H. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME JOURNAL 2017; 11:1130-1141. [PMID: 28072419 DOI: 10.1038/ismej.2016.191] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.
Collapse
Affiliation(s)
- Masahito Hayatsu
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kanako Tago
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Ikuo Uchiyama
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yong Wang
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yumi Shimomura
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Okubo
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuhei Hirono
- Institute of Fruit Tree and Tea Science, NARO, Shimada, Shizuoka, Japan
| | - Kunihiko Nonaka
- Institute of Fruit Tree and Tea Science, NARO, Shimada, Shizuoka, Japan
| | - Hiroko Akiyama
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology,Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Hideto Takami
- Yokohama Institute, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| |
Collapse
|
33
|
Thandar SM, Ushiki N, Fujitani H, Sekiguchi Y, Tsuneda S. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor. Front Microbiol 2016; 7:1869. [PMID: 27920767 PMCID: PMC5118430 DOI: 10.3389/fmicb.2016.01869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023] Open
Abstract
Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L-1 (2.14 mM) of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05–0.07 h-1, which corresponded to a generation time of 10–14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70 ± 0.51 μM NH4+ and 0.01 ± 0.002 pmol NH4+ cells-1 h-1, respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were Km(O2) = 21.74 ± 4.01 μM O2 and V max(O2) = 0.06 ± 0.02 pmol O2 cells-1 h-1. Ms1 grew well at ammonium and NaCl concentrations of up to 100 and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM) compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current study provides a needed physiological and genomic characterization of N. mobilis-like bacteria and a better understanding of their ecophysiological properties, enabling comparison of these bacteria with other AOB in wastewater treatment systems and natural ecosystems.
Collapse
Affiliation(s)
- Soe Myat Thandar
- Tsuneda Laboratory, Department of Life Science and Medical Bioscience, Waseda UniversityTokyo, Japan; Department of Biotechnology, Mandalay Technological University, Ministry of EducationMandalay, Myanmar
| | - Norisuke Ushiki
- Tsuneda Laboratory, Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Hirotsugu Fujitani
- Tsuneda Laboratory, Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Yuji Sekiguchi
- Advanced Biomeasurements Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Ibaraki, Japan
| | - Satoshi Tsuneda
- Tsuneda Laboratory, Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| |
Collapse
|
34
|
Chistoserdova L. Wide Distribution of Genes for Tetrahydromethanopterin/Methanofuran-Linked C1 Transfer Reactions Argues for Their Presence in the Common Ancestor of Bacteria and Archaea. Front Microbiol 2016; 7:1425. [PMID: 27679616 PMCID: PMC5020050 DOI: 10.3389/fmicb.2016.01425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
|
35
|
Kozlowski JA, Kits KD, Stein LY. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria. Front Microbiol 2016; 7:1090. [PMID: 27462312 PMCID: PMC4940428 DOI: 10.3389/fmicb.2016.01090] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity.
Collapse
Affiliation(s)
- Jessica A Kozlowski
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, AB Canada
| | - K Dimitri Kits
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, AB Canada
| | - Lisa Y Stein
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
36
|
Mustafa GA, Abd-Elgawad A, Ouf A, Siam R. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:892-902. [PMID: 27179234 DOI: 10.1016/j.envpol.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants.
Collapse
Affiliation(s)
- Ghada A Mustafa
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, New Cairo Campus, AUC Avenue, PO Box 74, New Cairo 11835, Egypt
| | - Amr Abd-Elgawad
- Tourism Development Authority, Ministry of Tourism, Cairo, Egypt
| | - Amged Ouf
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, New Cairo Campus, AUC Avenue, PO Box 74, New Cairo 11835, Egypt
| | - Rania Siam
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, New Cairo Campus, AUC Avenue, PO Box 74, New Cairo 11835, Egypt
| |
Collapse
|
37
|
Johnston ER, Rodriguez-R LM, Luo C, Yuan MM, Wu L, He Z, Schuur EAG, Luo Y, Tiedje JM, Zhou J, Konstantinidis KT. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem. Front Microbiol 2016; 7:579. [PMID: 27199914 PMCID: PMC4842900 DOI: 10.3389/fmicb.2016.00579] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/08/2016] [Indexed: 01/19/2023] Open
Abstract
How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.
Collapse
Affiliation(s)
- Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA, USA
| | - Luis M Rodriguez-R
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, AtlantaGA, USA; School of Biology, Georgia Institute of Technology, AtlantaGA, USA
| | - Chengwei Luo
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta GA, USA
| | - Mengting M Yuan
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Zhili He
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Edward A G Schuur
- Department of Biological Sciences, Northern Arizona University, Flagstaff AZ, USA
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing MI, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, NormanOK, USA; Earth Science Division, Lawrence Berkeley National Laboratory, BerkeleyCA, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, AtlantaGA, USA; Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, AtlantaGA, USA; School of Biology, Georgia Institute of Technology, AtlantaGA, USA
| |
Collapse
|
38
|
Wang L, Lim CK, Dang H, Hanson TE, Klotz MG. D1FHS, the Type Strain of the Ammonia-Oxidizing Bacterium Nitrosococcus wardiae spec. nov.: Enrichment, Isolation, Phylogenetic, and Growth Physiological Characterization. Front Microbiol 2016; 7:512. [PMID: 27148201 PMCID: PMC4830845 DOI: 10.3389/fmicb.2016.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/29/2016] [Indexed: 11/30/2022] Open
Abstract
An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4(T). The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100-200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28-32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance.
Collapse
Affiliation(s)
- Lin Wang
- Evolutionary and Genomic Microbiology, Department of Biological Sciences, University of North Carolina at CharlotteCharlotte, NC, USA
| | - Chee Kent Lim
- Evolutionary and Genomic Microbiology, Department of Biological Sciences, University of North Carolina at CharlotteCharlotte, NC, USA
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
- Joint Research Center for Carbon Sink: The Institute of Marine Microbes and Ecospheres, Xiamen University and the Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Thomas E. Hanson
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of DelawareNewark, DE, USA
- Delaware Biotechnology Institute, University of DelawareNewark, DE, USA
| | - Martin G. Klotz
- Evolutionary and Genomic Microbiology, Department of Biological Sciences, University of North Carolina at CharlotteCharlotte, NC, USA
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
- Joint Research Center for Carbon Sink: The Institute of Marine Microbes and Ecospheres, Xiamen University and the Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Evolutionary and Genomic Microbiology, Department of Biology and School of Earth and Environmental Sciences, Queens College, The City University of New YorkFlushing, NY, USA
| |
Collapse
|
39
|
Gagliano AL, Tagliavia M, D'Alessandro W, Franzetti A, Parello F, Quatrini P. So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites. GEOBIOLOGY 2016; 14:150-162. [PMID: 26560641 DOI: 10.1111/gbi.12167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4(+) concentration. At the same time, abundant availability of NH4(+) and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils.
Collapse
Affiliation(s)
- A L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Sezione di Palermo, Palermo, Italy
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - M Tagliavia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Institute for Coastal Marine Environment (CNR-IAMC) U.O.S. of Capo Granitola, Campobello di Mazara, Italy
| | - W D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Sezione di Palermo, Palermo, Italy
| | - A Franzetti
- Department of Earth and Environmental Sciences, University of Milano- Bicocca, Milano, Italy
| | - F Parello
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - P Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Evolution of the methyl directed mismatch repair system in Escherichia coli. DNA Repair (Amst) 2015; 38:32-41. [PMID: 26698649 DOI: 10.1016/j.dnarep.2015.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.
Collapse
|
41
|
Fujitani H, Kumagai A, Ushiki N, Momiuchi K, Tsuneda S. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies. Front Microbiol 2015; 6:1159. [PMID: 26528282 PMCID: PMC4607866 DOI: 10.3389/fmicb.2015.01159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.
Collapse
Affiliation(s)
- Hirotsugu Fujitani
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Asami Kumagai
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Norisuke Ushiki
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Kengo Momiuchi
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University Tokyo, Japan
| |
Collapse
|
42
|
Nakagawa T, Takahashi R. Nitrosomonas stercoris sp. nov., a Chemoautotrophic Ammonia-Oxidizing Bacterium Tolerant of High Ammonium Isolated from Composted Cattle Manure. Microbes Environ 2015; 30:221-7. [PMID: 26156554 PMCID: PMC4567560 DOI: 10.1264/jsme2.me15072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among ammonia-oxidizing bacteria, Nitrosomonas eutropha-like microbes are distributed in strongly eutrophic environments such as wastewater treatment plants and animal manure. In the present study, we isolated an ammonia-oxidizing bacterium tolerant of high ammonium levels, designated strain KYUHI-ST, from composted cattle manure. Unlike the other known Nitrosomonas species, this isolate grew at 1,000 mM ammonium. Phylogenetic analyses based on 16S rRNA and amoA genes indicated that the isolate belonged to the genus Nitrosomonas and formed a unique cluster with the uncultured ammonia oxidizers found in wastewater systems and animal manure composts, suggesting that these ammonia oxidizers contributed to removing higher concentrations of ammonia in strongly eutrophic environments. Based on the physiological and phylogenetic data presented here, we propose and call for the validation of the provisional taxonomic assignment Nitrosomonas stercoris, with strain KYUHI-S as the type strain (type strain KYUHI-ST = NBRC 110753T = ATCC BAA-2718T).
Collapse
|
43
|
Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol 2015; 65:242-250. [DOI: 10.1099/ijs.0.070789-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, spiral-shaped, chemolithotrophic, ammonia-oxidizing bacterium, designated APG3T, was isolated into pure culture from sandy lake sediment collected from Green Lake, Seattle, WA, USA. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain APG3T belongs to cluster 0 of the genus
Nitrosospira
, which is presently not represented by described species, with
Nitrosospira multiformis
(cluster 3) as the closest species with a validly published name (identity of 98.6 % to the type strain). Strain APG3T grew at 4 °C but could not grow at 35 °C, indicating that this bacterium is psychrotolerant. Remarkably, the strain was able to grow over a wide range of pH (pH 5–9), which was greater than the pH range of any studied ammonia-oxidizing bacteria in pure culture. The DNA G+C content of the APG3T genome is 53.5 %, which is similar to that of
Nitrosospira multiformis
ATCC 25196T (53.9 %) but higher than that of
Nitrosomonas europaea
ATCC 19718 (50.7 %) and
Nitrosomonas eutropha
C71 (48.5 %). The average nucleotide identity (ANI) calculated for the genomes of strain APG3T and
Nitrosospira multiformis
ATCC 25196T was 75.45 %, significantly lower than the value of 95 % ANI that corresponds to the 70 % species-level cut-off based on DNA–DNA hybridization. Overall polyphasic taxonomy study indicated that strain APG3T represents a novel species in the genus
Nitrosospira
, for which the name Nitrosospira lacus sp. nov. is proposed (type strain APG3T = NCIMB 14869T = LMG 27536T = ATCC BAA-2542T).
Collapse
|
44
|
Liew EF, Tong D, Coleman NV, Holmes AJ. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. MICROBIOLOGY-SGM 2014; 160:1267-1277. [PMID: 24682027 DOI: 10.1099/mic.0.078584-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrocarbon monooxygenase (HMO) of Mycobacterium NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a 'variable-metal' site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.
Collapse
Affiliation(s)
- Elissa F Liew
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| | - Daochen Tong
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| | - Andrew J Holmes
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
|
46
|
Wee SK, Burns JL, DiChristina TJ. Identification of a molecular signature unique to metal-reducingGammaproteobacteria. FEMS Microbiol Lett 2013; 350:90-9. [DOI: 10.1111/1574-6968.12304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Seng K. Wee
- School of Biology; Georgia Institute of Technology; Atlanta GA USA
| | - Justin L. Burns
- School of Biology; Georgia Institute of Technology; Atlanta GA USA
| | | |
Collapse
|
47
|
Stein LY, Campbell MA, Klotz MG. Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani. Front Microbiol 2013; 4:277. [PMID: 24062734 PMCID: PMC3772326 DOI: 10.3389/fmicb.2013.00277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/26/2013] [Indexed: 12/04/2022] Open
Abstract
Ammonia serves as the source of energy and reductant and as a signaling molecule that regulates gene expression in obligate ammonia-oxidizing chemolithotrophic microorganisms. The gammaproteobacterium, Nitrosococcus oceani, was the first obligate ammonia-oxidizer isolated from seawater and is one of the model systems for ammonia chemolithotrophy. We compared global transcriptional responses to ammonium and the catabolic intermediate, hydroxylamine, in ammonium-starved and non-starved cultures of N. oceani to discriminate transcriptional effects of ammonium from a change in overall energy and redox status upon catabolite availability. The most highly expressed genes from ammonium- or hydroxylamine-treated relative to starved cells are implicated in catabolic electron flow, carbon fixation, nitrogen assimilation, ribosome structure and stress tolerance. Catabolic inventory-encoding genes, including electron flow-terminating Complexes IV, FoF1 ATPase, transporters, and transcriptional regulators were among the most highly expressed genes in cells exposed only to ammonium relative to starved cells, although the differences compared to steady-state transcript levels were less pronounced. Reduction in steady-state mRNA levels from hydroxylamine-treated relative to starved-cells were less than five-fold. In contrast, several transcripts from ammonium-treated relative to starved cells were significantly less abundant including those for forward Complex I and a gene cluster of cytochrome c encoding proteins. Identified uneven steady-state transcript levels of co-expressed clustered genes support previously reported differential regulation at the levels of transcription and transcript stability. Our results differentiated between rapid regulation of core genes upon a change in cellular redox status vs. those responsive to ammonium as a signaling molecule in N. oceani, both confirming and extending our knowledge of metabolic modules involved in ammonia chemolithotrophy.
Collapse
Affiliation(s)
- Lisa Y Stein
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | | | | |
Collapse
|
48
|
Urakawa H, Garcia JC, Barreto PD, Molina GA, Barreto JC. A sensitive crude oil bioassay indicates that oil spills potentially induce a change of major nitrifying prokaryotes from the archaea to the bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 164:42-45. [PMID: 22327114 DOI: 10.1016/j.envpol.2012.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
The sensitivity of nitrifiers to crude oil released by the BP Deepwater Horizon oil spill in Gulf of Mexico was examined using characterized ammonia-oxidizing bacteria and archaea to develop a bioassay and to gain further insight into the ecological response of these two groups of microorganisms to marine oil spills. Inhibition of nitrite production was observed among all the tested ammonia-oxidizing organisms at 100 ppb crude oil. Nitrosopumilus maritimus, a cultured representative of the abundant Marine Group I Archaea, showed 20% inhibition at 1 ppb, a much greater degree of sensitivity to petroleum than the tested ammonia-oxidizing and heterotrophic bacteria. The differing susceptibility may have ecological significance since a shift to bacterial dominance in response to an oil spill could potentially persist and alter trophic interactions influenced by availability of different nitrogen species.
Collapse
Affiliation(s)
- Hidetoshi Urakawa
- Department of Marine and Ecological Sciences, Florida Gulf Coast University, 10501 FGCU Boulevard S. Fort Myers, FL 33965-6565, USA.
| | | | | | | | | |
Collapse
|