1
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
2
|
Adler PH, Reeves WK, McCreadie JW. Black flies (Diptera: Simuliidae) in the Galapagos Islands: Native or adventive? PLoS One 2024; 19:e0311808. [PMID: 39446900 PMCID: PMC11501040 DOI: 10.1371/journal.pone.0311808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Invasive species are a threat to ecosystems worldwide, but determining if a species is adventive or native is not always straightforward. The black flies that inhabit the Galapagos Islands, long known as Simulium ochraceum, are blood-feeding pests of humans and livestock. They first came to the attention of residents in 1989, suggesting a recent arrival. Earlier colonization, however, has been suggested, based largely on polymorphic genetic loci. To address questions of origin, provenance, and length of residency, we conducted a macrogenomic analysis of the polytene chromosomes of the S. ochraceum complex from seven sites in the Galapagos Islands and 30 sites in mainland Ecuador, Central America, and the Caribbean. Among 500 analyzed larvae, we discovered 88 chromosomal rearrangements representing 13 cytoforms, at least seven of which are probably full species. All evidence points to a single, cohesive cytoform with full species status in the Galapagos, conspecific with mainland populations, and widely distributed in the Neotropical Region. It has an identical, nearly monomorphic banding sequence with 10 novel fixed inversions and a subtle but unique Y-linked chromosomal rearrangement across all populations sampled in the Galapagos, the mainland, and the Caribbean. We recalled the name Simulium antillarum from synonymy with S. ochraceum and applied it to the Galapagos black flies, and we established that wolcotti is a junior synonym of antillarum. The time(s) and mode(s) of arrival of S. antillarum in the Galapagos remain uncertain, although the wide geographic distribution, including islands in the Caribbean, suggests that the species is an adept colonizer. Regardless of how long it has been in the archipelago, S. antillarum might have assumed a functional role in the streams of San Cristobal, but otherwise has had a detrimental effect on humans and livestock and potentially on the unique birds and mammals of the Galapagos Islands.
Collapse
Affiliation(s)
- Peter H. Adler
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Will K. Reeves
- C.P. Gillette Museum of Arthropod Diversity, Colorado State University, Fort Collins, Colorado, United States of America
| | - John W. McCreadie
- Department of Biological Sciences, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
3
|
Zhu X, Li J, He A, Gurr GM, You M, You S. Developmental Shifts in the Microbiome of a Cosmopolitan Pest: Unraveling the Role of Wolbachia and Dominant Bacteria. INSECTS 2024; 15:132. [PMID: 38392551 PMCID: PMC10888865 DOI: 10.3390/insects15020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Cheng Y, Yang J, Li T, Li J, Ye M, Wang J, Chen R, Zhu L, Du B, He G. Endosymbiotic Fungal Diversity and Dynamics of the Brown Planthopper across Developmental Stages, Tissues, and Sexes Revealed Using Circular Consensus Sequencing. INSECTS 2024; 15:87. [PMID: 38392507 PMCID: PMC10889434 DOI: 10.3390/insects15020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Endosymbiotic fungi play an important role in the growth and development of insects. Understanding the endosymbiont communities hosted by the brown planthopper (BPH; Nilaparvata lugens Stål), the most destructive pest in rice, is a prerequisite for controlling BPH rice infestations. However, the endosymbiont diversity and dynamics of the BPH remain poorly studied. Here, we used circular consensus sequencing (CCS) to obtain 87,131 OTUs (operational taxonomic units), which annotated 730 species of endosymbiotic fungi in the various developmental stages and tissues. We found that three yeast-like symbionts (YLSs), Polycephalomyces prolificus, Ophiocordyceps heteropoda, and Hirsutella proturicola, were dominant in almost all samples, which was especially pronounced in instar nymphs 4-5, female adults, and the fat bodies of female and male adult BPH. Interestingly, honeydew as the only in vitro sample had a unique community structure. Various diversity indices might indicate the different activity of endosymbionts in these stages and tissues. The biomarkers analyzed using LEfSe suggested some special functions of samples at different developmental stages of growth and the active functions of specific tissues in different sexes. Finally, we found that the incidence of occurrence of three species of Malassezia and Fusarium sp. was higher in males than in females in all comparison groups. In summary, our study provides a comprehensive survey of symbiotic fungi in the BPH, which complements the previous research on YLSs. These results offer new theoretical insights and practical implications for novel pest management strategies to understand the BPH-microbe symbiosis and devise effective pest control strategies.
Collapse
Affiliation(s)
- Yichen Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tianzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiamei Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Hirata K, Asahi T, Kataoka K. Spatial and Sexual Divergence of Gut Bacterial Communities in Field Cricket Teleogryllus occipitalis (Orthoptera: Gryllidae). MICROBIAL ECOLOGY 2023; 86:2627-2641. [PMID: 37479827 PMCID: PMC10640434 DOI: 10.1007/s00248-023-02265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
The insect gut is colonized by microbes that confer a myriad of beneficial services to the host, including nutritional support, immune enhancement, and even influence behavior. Insect gut microbes show dynamic changes due to the gut compartments, sex, and seasonal and geographic influences. Crickets are omnivorous hemimetabolous insects that have sex-specific roles, such as males producing chirping sounds for communication and exhibiting fighting behavior. However, limited information is available on their gut bacterial communities, hampering studies on functional compartmentalization of the gut and sex-specific roles of the gut microbiota in omnivorous insects. Here, we report a metagenomic analysis of the gut bacteriome of the field cricket Teleogryllus occipitalis using 16S rRNA V3-V4 amplicon sequencing to identify sex- and compartment-dependent influences on its diversity and function. The structure of the gut microbiota is strongly influenced by their gut compartments rather than sex. The species richness and diversity analyses revealed large difference in the bacterial communities between the gut compartments while minor differences were observed between the sexes. Analysis of relative abundance and predicted functions revealed that nitrogen- and oxygen-dependent metabolism and amino acid turnover were subjected to functional compartmentalization in the gut. Comparisons between the sexes revealed differences in the gut microbiota, reflecting efficiency in energy use, including glycolytic and carbohydrate metabolism, suggesting a possible involvement in egg production in females. This study provides insights into the gut compartment dependent and sex-specific roles of host-gut symbiont interactions in crickets and the industrial production of crickets.
Collapse
Affiliation(s)
- Kazuya Hirata
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
6
|
Fu J, Wang J, Huang X, Guan B, Feng Q, Deng H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front Microbiol 2023; 14:1237684. [PMID: 37789854 PMCID: PMC10543693 DOI: 10.3389/fmicb.2023.1237684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Spodoptera frugiperda is a serious world-wide agricultural pest. Gut microorganisms play crucial roles in growth, development, immunity and behavior of host insects. Methods Here, we reported the composition of gut microbiota in a laboratory-reared strain of S. frugiperda using 16S rDNA sequencing and the effects of gut microbiota on the reproduction. Results Proteobacteria and Firmicutes were the predominant bacteria and the taxonomic composition varied during the life cycle. Alpha diversity indices indicated that the eggs had higher bacterial diversity than larvae, pupae and adults. Furthermore, eggs harbored a higher abundance of Ralstonia, Sediminibacterium and microbes of unclassified taxonomy. The dynamics changes in bacterial communities resulted in differences in the metabolic functions of the gut microbiota during development. Interestingly, the laid eggs in antibiotic treatment groups did not hatch much due to the gut dysbacteriosis, the results showed gut microbiota had a significant impact on the male reproduction. Discussion Our findings provide new perspectives to understand the intricate associations between microbiota and host, and have value for the development of S. frugiperda management strategies focusing on the pest gut microbiota.
Collapse
Affiliation(s)
- Junrui Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Chen R, Luo J, Zhu X, Wang L, Zhang K, Li D, Gao X, Niu L, Huangfu N, Ma X, Ji J, Cui J. Dynamic changes in species richness and community diversity of symbiotic bacteria in five reproductive morphs of cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Front Microbiol 2023; 13:1086728. [PMID: 36713208 PMCID: PMC9877530 DOI: 10.3389/fmicb.2022.1086728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Reproductive polymorphism and symbiotic bacteria are commonly observed in aphids, but their interaction remains largely unclear. In polymorphic aphid species (Aphis gossypii), offspring of parthenogenetic females (PFs) develops into sexuparae which produces gynoparae and males successively. Gynoparae further produces sexual females (SFs), and these sexual females mate with males to produce offspring. Methods In this study, we investigated the dynamic changes of symbiotic bacteria during the above-mentioned five reproductive morph switch in A. gossypii via 16S rRNA sequencing technology. Results The results showed that species richness and community diversity of symbiotic bacteria in males were the highest. Proteobacteria was absolutely dominant bacterial phylum (with relative abundance of more than 90%) in the five reproductive morphs of A. gossypii, and Buchnera was absolutely dominant genus (with relative abundance of >90%), followed by Rhodococcus, Pseudomonas, and Pantoea. Male-killing symbiont Arsenophonus presented the highest relative abundance in gynoparae, a specific morph whose offsprings were exclusively sexual females. Both principal component analysis (PCA) and clustering analysis showed trans-generation similarity in microbial community structure between sexuparae and sexual females, between PFs and gynoparae. PICRUSt 2 analysis showed that symbiotic bacteria in the five reproductive morphs were mainly enriched in metabolic pathways. Discussion Reproductive morph switch induced by environmental changes might be associated with bacterial community variation and sexual polymorphism of aphids. This study provides a new perspective for further deciphering the interactions between microbes and reproductive polymorphism in host aphids.
Collapse
Affiliation(s)
- Ruifang Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ningbo Huangfu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China,*Correspondence: Jichao Ji,
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China,Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China,Jinjie Cui,
| |
Collapse
|
8
|
Arellano AA, Sommer AJ, Coon KL. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evol Ecol 2022; 37:165-188. [PMID: 37153630 PMCID: PMC10162596 DOI: 10.1007/s10682-022-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vector-borne diseases constitute a major global public health threat. The most significant arthropod disease vectors are predominantly comprised of members of the insect order Diptera (true flies), which have long been the focus of research into host-pathogen dynamics. Recent studies have revealed the underappreciated diversity and function of dipteran-associated gut microbial communities, with important implications for dipteran physiology, ecology, and pathogen transmission. However, the effective parameterization of these aspects into epidemiological models will require a comprehensive study of microbe-dipteran interactions across vectors and related species. Here, we synthesize recent research into microbial communities associated with major families of dipteran vectors and highlight the importance of development and expansion of experimentally tractable models across Diptera towards understanding the functional roles of the gut microbiota in modulating disease transmission. We then posit why further study of these and other dipteran insects is not only essential to a comprehensive understanding of how to integrate vector-microbiota interactions into existing epidemiological frameworks, but our understanding of the ecology and evolution of animal-microbe symbiosis more broadly.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Sommer
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Nguyen B, Dinh H, Morimoto J, Ponton F. Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104308. [PMID: 34474015 DOI: 10.1016/j.jinsphys.2021.104308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, United Kingdom
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
10
|
Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, Yap PC, Sofian-Azirun M, Takaoka H, AbuBakar S, Adler PH. Culturable bacteria in adults of a Southeast Asian black fly, Simulium tani (Diptera:Simuliidae). Acta Trop 2021; 219:105923. [PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
Collapse
|
11
|
Ya'cob Z, Low VL, Tan TK, Noor-Izwan A, Lourdes EY, Ramli R, Takaoka H, Adler PH. Sexually anomalous individuals of the black fly Simulium trangense (Diptera: Simuliidae) infected with mermithid parasites (Nematoda: Mermithidae). Parasitol Res 2021; 120:1555-1561. [PMID: 33655351 DOI: 10.1007/s00436-021-07087-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/14/2021] [Indexed: 11/29/2022]
Abstract
Sexually anomalous individuals, typically intersexes or gynandromorphs, bear a mixture of male and female traits. Twelve sexually anomalous individuals of the black fly Simulium (Gomphostilbia) trangense Jitklang, Kuvangkadilok, Baimai, Takaoka & Adler were discovered among 49 adults reared from pupae. All 12 sexually anomalous adults were parasitized by mermithid nematodes, although five additional parasitized adults had no overt external anomalies. Sequence analysis of the 18S rRNA gene revealed that the mermithids, possibly representing a new species, are related to Mesomermis spp., with genetic distances of 5.09-6.87%. All 12 anomalous individuals had female phenotypical traits on the head, thorax, forelegs, midlegs, and claws, but male features on the left and right hind basitarsi. One individual had mixed male and female genitalia. The findings are in accord with the trend that mermithid infections are associated with sexually anomalous adult black flies.
Collapse
Affiliation(s)
- Zubaidah Ya'cob
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tiong Kai Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anas Noor-Izwan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Emmanuel Y Lourdes
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosli Ramli
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroyuki Takaoka
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Peter H Adler
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634-0310, USA
| |
Collapse
|
12
|
McCreadie JW, Adler PH. The general architecture of black fly-parasite interactions: Parasitism in lotic systems at a continental scale. J Invertebr Pathol 2020; 178:107518. [PMID: 33333064 DOI: 10.1016/j.jip.2020.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022]
Abstract
We examined the general architecture of interactions between stream-dwelling larval black flies (Diptera: Simuliidae) and their common parasites in 1736 collections across North America. Mermithid nematodes (family Mermithidae), microsporidia (phylum Microsporidia), and the fungus Coelomycidium simulii Debaisieux (phylum Blastocladiomycota) infected larval black flies. We found similar continental distributions for these three parasite taxa across North America. At least one of these taxa was represented in 42.2% of all black fly collections. Species interactions in ecological networks typically imply that each link between species is equally important. By employing quantitative measures of host susceptibilities and parasite dependencies, we provide a more complete structure for host-parasite networks. The distribution of parasite dependencies and host susceptibilities were right-skewed, with low values indicating that most dependencies (parasites) and susceptibilities (hosts) were weak. Although regression analysis between host frequency and parasite incidence were highly significant, frequency analysis suggested that the distributions of parasites differ significantly among the four most common and closely related (same subgenus) species of hosts. A highly significant pattern of nestedness in our bipartite host-parasite network indicated that specialized parasites (i.e., those that interact with few host species) tend to occur as subsets of the most common hosts.
Collapse
Affiliation(s)
- John W McCreadie
- Department of Biological Sciences, University of South Alabama, Mobile, AL, USA.
| | - Peter H Adler
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
13
|
Wang ZL, Wang TZ, Zhu HF, Pan HB, Yu XP. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. INSECT SCIENCE 2020; 27:883-894. [PMID: 31612637 DOI: 10.1111/1744-7917.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The microbiome associated with brown planthopper (BPH) plays an important role in mediating host health and fitness. Characterization of the microbial community and its structure is prerequisite for understanding the intricate symbiotic relationships between microbes and host insect. Here, we investigated the bacterial and fungal communities of BPH at different developmental stages using high-throughput amplicon sequencing. Our results revealed that both the bacterial and fungal communities were diverse and dynamic during BPH development. The bacterial communities were generally richer than fungi in each developmental stage. At 97% similarly, 19 phyla and 278 genera of bacteria were annotated, while five fungal phyla comprising 80 genera were assigned. The highest species richness for the bacterial communities was detected in the nymphal stage. The taxonomic diversity of the fungal communities in female adults was generally at a relatively higher level when compared to other developmental stages. The most dominant phylum of bacteria and fungi at each developmental stage all belonged to Proteobacteria and Ascomycota, respectively. A significantly lower abundance of bacterial genus Acinetobacter was recorded in the egg stage when compared to other developmental stages, while the dominant fungal genus Wallemia was more abundant in the nymph and adult stages than in the egg stage. Additionally, the microbial composition differed between male and female adults, suggesting that the microbial communities in BPH were gender-dependent. Overall, our study enriches our knowledge on the microbial communities associated with BPH and will provide clues to develop potential biocontrol techniques against this rice pest.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tian-Zhao Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hang-Feng Zhu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
14
|
Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud JP, Liu X. Variability of Gut Microbiota Across the Life Cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 2020; 11:1366. [PMID: 32714300 PMCID: PMC7340173 DOI: 10.3389/fmicb.2020.01366] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Grapholita molesta, the oriental fruit moth, is a serious global pest of many Rosaceae fruit trees. Gut microorganisms play important roles in host nutrition, digestion, detoxification, and resistance to pathogens. However, there are few studies on the microbiota of G. molesta, particularly during metamorphosis. Here, the diversity of gut microbiota across the holometabolous life cycle of G. molesta was investigated comprehensively by Illumina high-throughput sequencing technology. The results showed that the microbiota associated with eggs had a high number of operational taxonomic units (OTUs). OTU and species richness in early-instar larvae (first and second instars) were significantly higher than those in late-instar larvae (third to fifth instars). Species richness increased again in male pupae and adults, apparently during the process of metamorphosis, compared to late-instar larvae. Proteobacteria and Firmicutes were the dominant phyla in the gut and underwent notable changes during metamorphosis. At the genus level, gut microbial community shifts from Gluconobacter and Pantoea in early-instar larvae to Enterococcus and Enterobacter in late-instar larvae and to Serratia in pupae were apparent, in concert with host developmental changes. Principal coordinate analysis (PCoA) and linear discriminant analysis effect size (LEfSe) analyses confirmed the differences in the structure of gut microbiota across different developmental stages. In addition, sex-dependent bacterial community differences were observed. Microbial interaction network analysis showed different correlations among intestinal microbes at each developmental stage of G. molesta, which may result from the different abundance and diversity of gut microbiota at different life stages. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that most functional prediction categories of gut microbiota were related to membrane transport, carbohydrate and amino acid metabolism, and DNA replication and repair. Bacteria isolated by conventional culture-dependent methods belonged to Proteobacteria, Firmicutes, and Actinobacteria, which was consistent with high-throughput sequencing results. In conclusion, exploration of gut bacterial community composition in the gut of G. molesta should shed light into deeper understanding about the intricate associations between microbiota and host and might provide clues to the development of novel pest management strategies against fruit borers.
Collapse
Affiliation(s)
- Xueli Wang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shengjie Sun
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuelin Yang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongshuang Wei
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS, United States
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Guo C, Peng X, Zheng X, Wang X, Wang R, Huang Z, Yang Z. Comparison of bacterial diversity and abundance between sexes of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from China. PeerJ 2020; 8:e8411. [PMID: 31988811 PMCID: PMC6969552 DOI: 10.7717/peerj.8411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Insects harbor a myriad of microorganisms, many of which can affect the sex ratio and manipulate the reproduction of the host. Leptocybe invasa is an invasive pest that causes serious damage to eucalyptus plantations, and the thelytokous parthenogenesis, low temperature resistance, protection in galls, generation overlap and small body of L. invasa contribute to its rapid invasion and population growth. However, the endosymbiotic bacterial composition, abundance and sex differences of L. invasa remain unclear. Therefore, this research aimed to identify the bacterial communities in L. invasa adults and compare them between the sexes of L. invasa lineage B. Results The Illumina MiSeq platform was used to compare bacterial community composition between females and males of L. invasa by sequencing the V3–V4 region of the 16S ribosomal RNA gene. A total of 1,320 operational taxonomic units (OTUs) were obtained. These OTUs were subdivided into 24 phyla, 71 classes, 130 orders, 245 families and 501 genera. At the genus level, the dominant bacteria in females and males were Rickettsia and Rhizobium, respectively. Conclusion The endosymbiotic bacteria of L. invasa females and males were highly diverse. There were differences in the bacterial community of L. invasa between sexes, and the bacterial diversity in male specimens was greater than that in female specimens. This study presents a comprehensive comparison of bacterial communities in L. invasa and these data will provide an overall view of the bacterial community in both sexes of L. invasa with special attention on sex-related bacteria.
Collapse
Affiliation(s)
- Chunhui Guo
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Xin Peng
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ruirui Wang
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Zongyou Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Zhende Yang
- College of Forestry, Guangxi University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Ecological and Societal Services of Aquatic Diptera. INSECTS 2019; 10:insects10030070. [PMID: 30875770 PMCID: PMC6468872 DOI: 10.3390/insects10030070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022]
Abstract
More than any other group of macro-organisms, true flies (Diptera) dominate the freshwater environment. Nearly one-third of all flies—roughly 46,000 species—have some developmental connection with an aquatic environment. Their abundance, ubiquity, and diversity of adaptations to the aquatic environment position them as major drivers of ecosystem processes and as sources of products and bioinspiration for the benefit of human society. Larval flies are well represented as ecosystem engineers and keystone species that alter the abiotic and biotic environments through activities such as burrowing, grazing, suspension feeding, and predation. The enormous populations sometimes achieved by aquatic flies can provide the sole or major dietary component for other organisms. Harnessing the services of aquatic Diptera for human benefit depends on the ingenuity of the scientific community. Aquatic flies have played a role as indicators of water quality from the earliest years of bioassessment. They serve as indicators of historical and future ecological and climate change. As predators and herbivores, they can serve as biological control agents. The association of flies with animal carcasses in aquatic environments provides an additional set of tools for forensic science. The extremophilic attributes of numerous species of Diptera offer solutions for human adaptation to harsh terrestrial and extraterrestrial environments. The potential pharmaceutical and industrial applications of the symbiotic microbial community in extremophilic Diptera are better explored than are those of dipteran chemistry. Many flies provide valuable ecological and human services as aquatic immatures, but are also pests and vectors of disease agents as terrestrial adults. The scientific community, thus, is challenged with balancing the benefits and costs of aquatic Diptera, while maintaining sustainable populations as more species face extinction.
Collapse
|
17
|
Mioduchowska M, Czyż MJ, Gołdyn B, Kilikowska A, Namiotko T, Pinceel T, Łaciak M, Sell J. Detection of bacterial endosymbionts in freshwater crustaceans: the applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. PeerJ 2018; 6:e6039. [PMID: 30581663 PMCID: PMC6296333 DOI: 10.7717/peerj.6039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michał Jan Czyż
- Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Adrianna Kilikowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tadeusz Namiotko
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.,Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Małgorzata Łaciak
- Polish Academy of Sciences, Institute of Nature Conservation, Krakow, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
18
|
Xu L, Lu M, Xu D, Chen L, Sun J. Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:110-117. [PMID: 27677696 DOI: 10.1016/j.jinsphys.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Gut microbiota are widely involved in insect biology, and many factors can influence the microbiota in guts and frass. Dendroctonus valens is a very destructive forest pest in China, and the mass-attacking behavior is regulated by several semiochemicals, including verbenone, a multifunctional pheromone. The beetle harbors a variety of bacteria in its guts and frass and some of them are capable of verbenone production. D. valens is characterized by monogamy and female-initiated attacking behavior. Whether the bacterial communities fluctuate according to sex, and whether the variation influences the verbenone production, remains to be determined. In this study, the bacterial microbiota in D. valens guts and frass were analyzed, and verbenone production by their crude bacterial suspensions was compared in vitro. Bacterial diversity in female frass is more abundant compared to male frass, and the percentages and total amounts of main genera like Lactococcus and Pseudomonas in female frass are significantly higher than those in male frass. The verbenone produced by the female frass suspension is significantly higher than male frass. This study presents a comprehensive comparison of bacterial communities in guts and frass between both sexes of D. valens, highlighting the potential significance of female frass microbiota in verbenone production.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Dandan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
19
|
Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep 2016; 6:29505. [PMID: 27389097 PMCID: PMC4937375 DOI: 10.1038/srep29505] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023] Open
Abstract
Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa, their microbial symbionts are little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate but undergo a structural “metamorphosis” in tandem with its host. Enterococcus, Pantoea and Citrobacter were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-associated microbial symbionts may assist the development of novel pest-management strategies.
Collapse
|