1
|
Rudenko N, Nagel A, Zamyatina A, Karatovskaya A, Salyamov V, Andreeva-Kovalevskaya Z, Siunov A, Kolesnikov A, Shepelyakovskaya A, Boziev K, Melnik B, Brovko F, Solonin A. A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity. Toxins (Basel) 2020; 12:E806. [PMID: 33352744 PMCID: PMC7767301 DOI: 10.3390/toxins12120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 01/13/2023] Open
Abstract
Bacillus cereus is the fourth most common cause of foodborne illnesses that produces a variety of pore-forming proteins as the main pathogenic factors. B. cereus hemolysin II (HlyII), belonging to pore-forming β-barrel toxins, has a C-terminal extension of 94 amino acid residues designated as HlyIICTD. An analysis of a panel of monoclonal antibodies to the recombinant HlyIICTD protein revealed the ability of the antibody HlyIIC-20 to inhibit HlyII hemolysis. A conformational epitope recognized by HlyIIC-20 was found. by the method of peptide phage display and found that it is localized in the N-terminal part of HlyIICTD. The HlyIIC-20 interacted with a monomeric form of HlyII, thus suppressing maturation of the HlyII toxin. Protection efficiencies of various B. cereus strains against HlyII were different and depended on the epitope amino acid composition, as well as, insignificantly, on downstream amino acids. Substitution of L324P and P324L in the hemolysins ATCC14579T and B771, respectively, determined the role of leucine localized to the epitope in suppressing the hemolysis by the antibody. Pre-incubation of HlyIIC-20 with HlyII prevented the death of mice up to an equimolar ratio. A strategy of detecting and neutralizing the toxic activity of HlyII could provide a tool for monitoring and reducing B. cereus pathogenicity.
Collapse
Affiliation(s)
- Natalia Rudenko
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Alexey Nagel
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Anna Zamyatina
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
- Pushchino State Institute of Natural Sciences, 3 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Karatovskaya
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Vadim Salyamov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Zhanna Andreeva-Kovalevskaya
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Alexander Siunov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Alexander Kolesnikov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Anna Shepelyakovskaya
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Khanafiy Boziev
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Bogdan Melnik
- Protein Institute of the Russian Academy of Sciences, 4 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia;
| | - Fedor Brovko
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Alexander Solonin
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| |
Collapse
|
2
|
Progress towards the Development of a NEAT Vaccine for Anthrax II: Immunogen Specificity and Alum Effectiveness in an Inhalational Model. Infect Immun 2020; 88:IAI.00082-20. [PMID: 32393506 DOI: 10.1128/iai.00082-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.
Collapse
|
3
|
Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 2019; 18:813-828. [PMID: 31298973 DOI: 10.1080/14760584.2019.1643242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.
Collapse
Affiliation(s)
- Olga A Kondakova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Nikolai A Nikitin
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina A Evtushenko
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina M Ryabchevskaya
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Joseph G Atabekov
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Karpova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
4
|
McComb RC, Martchenko M. Neutralizing antibody and functional mapping of Bacillus anthracis protective antigen-The first step toward a rationally designed anthrax vaccine. Vaccine 2015; 34:13-9. [PMID: 26611201 DOI: 10.1016/j.vaccine.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Anthrax is defined by the Centers for Disease Control and Prevention as a Category A pathogen for its potential use as a bioweapon. Current prevention treatments include Anthrax Vaccine Adsorbed (AVA). AVA is an undefined formulation of Bacillus anthracis culture supernatant adsorbed to aluminum hydroxide. It has an onerous vaccination schedule, is slow and cumbersome to produce and is slightly reactogenic. Next-generation vaccines are focused on producing recombinant forms of anthrax toxin in a well-defined formulation but these vaccines have been shown to lose potency as they are stored. In addition, studies have shown that a proportion of the antibody response against these vaccines is focused on non-functional, non-neutralizing regions of the anthrax toxin while some essential functional regions are shielded from eliciting an antibody response. Rational vaccinology is a developing field that focuses on designing vaccine antigens based on structural information provided by neutralizing antibody epitope mapping, crystal structure analysis, and functional mapping through amino acid mutations. This information provides an opportunity to design antigens that target only functionally important and conserved regions of a pathogen in order to make a more optimal vaccine product. This review provides an overview of the literature related to functional and neutralizing antibody epitope mapping of the Protective Antigen (PA) component of anthrax toxin.
Collapse
Affiliation(s)
- Ryan C McComb
- Keck Graduate Institute, School of Applied Life Science, 535 Watson Dr., Claremont, CA, United States
| | - Mikhail Martchenko
- Keck Graduate Institute, School of Applied Life Science, 535 Watson Dr., Claremont, CA, United States.
| |
Collapse
|
5
|
Evaluation of anthrax vaccine safety in 18 to 20 year olds: A first step towards age de-escalation studies in adolescents. Vaccine 2015; 33:2470-6. [DOI: 10.1016/j.vaccine.2015.03.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 11/18/2022]
|
6
|
Cabral TM, Baig A, Berhane Y, Schmidt L, Hole K, Leith M, Kobasa D, Corbett CR. Development of neutralizing monoclonal antibodies against the pandemic H1N1 virus (2009) using plasmid DNA immunogen. J Virol Methods 2013; 195:54-62. [PMID: 24060631 DOI: 10.1016/j.jviromet.2013.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 11/26/2022]
Abstract
Reported here is the development and characterization of eighteen mouse monoclonal antibodies (MAbs) against the 2009 pandemic H1N1 influenza virus (A/Mexico/InDRE4487/2009). To our knowledge, this is the first report on pandemic (pH1) H1N1 MAbs developed using plasmid DNA encoding the viral surface glycoprotein, hemagglutinin (HA). All eighteen MAbs were specific for A/Mexico/InDRE4487/2009 HA. Ten MAbs were found to cross-react with A/Swine/Indiana/81 using a dot blot assay. However, there was no cross-reactivity detected against any other strains of influenza A viruses despite screening against all 16 hemagglutinin subtypes. Examination of these MAbs identified individual antibodies suitable for use in several practical applications including ELISA, immunoblot and immunofluorescence assays. Analysis of the kinetics of each MAb revealed significant binding affinities (K(D)<10(-8) M) confirming the antibodies are highly specific for A/Mexico/InDRE4487/2009 HA. Functional analysis demonstrated the panel of MAbs included antibodies with HA inhibition and virus neutralization activities. Not all MAbs inhibited hemagglutination or neutralized the virus. Furthermore, the panel of MAbs was not found to be cross-reactive against additional strains tested in hemagglutination inhibition assays. Finally, the MAbs were tested in competitive ELISA (cELISA) using reference serum antibodies developed against different clusters of H1 (pH1, α, β, γ, and δ). The developed MAbs outcompeted serum antibodies of pH1 in 16/18, 15/18 (γ), 3/18 (α), 2/18 (δ1) and 1/18 (β) samples. Overall, this panel of MAbs proved specific and highly sensitive for A/Mexico/InDRE4487/2009 HA and could potentially serve as immunodiagnostic tools for the rapid detection of this specific strain of influenza virus.
Collapse
Affiliation(s)
- Teresa M Cabral
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao S, Qi T, Guo W, Lu G, Xiang W. Identification of a conserved B-cell epitope in the equine arteritis virus (EAV) N protein using the pepscan technique. Virus Genes 2013; 47:292-7. [PMID: 23813249 DOI: 10.1007/s11262-013-0943-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/17/2013] [Indexed: 11/28/2022]
Abstract
The nucleocapsid (N) gene of equine arteritis virus (EAV) is highly conserved between isolates, and the N protein is an important antigen that induces immunity when horses are infected with EAV. This study describes the identification of a linear B-cell epitope on the N protein using the pepscan technique with a monoclonal antibody (mAb) 2B1 directed against the N protein. The N protein was divided into 11 overlapping peptides, each containing 16 amino acids associated with six overlapping amino acids. The fragments were expressed as MBP fusion proteins that were then used to probe the 2B1 mAb. The minimal epitope sequence was confirmed step-by-step using single amino acid residue deletion. One completely conserved linear epitope ((38)KPPAQP(43)) was identified that matched with EAV-positive serum in Western blots, thereby revealing the importance of these six amino acids of the epitope for antibody-epitope binding activity. This finding not only contributes to our understanding of the antigenic structure of the N protein of EAV but also has potential for the development of diagnostic techniques.
Collapse
Affiliation(s)
- Shihua Zhao
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Dumas EK, Nguyen ML, Cox PM, Rodgers H, Peterson JL, James JA, Farris AD. Stochastic humoral immunity to Bacillus anthracis protective antigen: identification of anti-peptide IgG correlating with seroconversion to Lethal Toxin neutralization. Vaccine 2013; 31:1856-63. [PMID: 23415781 DOI: 10.1016/j.vaccine.2013.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 01/24/2023]
Abstract
A substantial fraction of individuals vaccinated against anthrax have low to immeasurable levels of serum Lethal Toxin (LeTx)-neutralizing activity. The only known correlate of protection against Bacillus anthracis in the currently licensed vaccine is magnitude of the IgG response to Protective Antigen (PA); however, some individuals producing high serum levels of anti-PA IgG fail to neutralize LeTx in vitro. This suggests that non-protective humoral responses to PA may be immunodominant in some individuals. Therefore, to better understand why anthrax vaccination elicits heterogeneous levels of protection, this study was designed to elucidate the relationship between anti-PA fine specificity and LeTx neutralization in response to PA vaccination. Inbred mice immunized with recombinant PA produced high levels of anti-PA IgG and neutralized LeTx in vitro and in vivo. Decapeptide binding studies using pooled sera reproducibly identified the same 9 epitopes. Unexpectedly, sera from individual mice revealed substantial heterogeneity in the anti-PA IgG and LeTx neutralization responses, despite relative genetic homogeneity, shared environment and exposure to the same immunogen. This heterogeneity permitted the identification of specificities that correlate with LeTx-neutralizing activity. IgG binding to six decapeptides comprising two PA epitopes, located in domains I and IV, significantly correlate with seroconversion to LeTx neutralization. These results indicate that stochastic variation in humoral immunity is likely to be a major contributor to the general problem of heterogeneity in vaccine responsiveness and suggest that vaccine effectiveness could be improved by approaches that focus the humoral response toward protective epitopes in a greater fraction of vaccinees.
Collapse
Affiliation(s)
- Eric K Dumas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States.
| | | | | | | | | | | | | |
Collapse
|
9
|
A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1730-45. [PMID: 22933399 DOI: 10.1128/cvi.00324-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r(2) = 0.89 for log(10)-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4(+) cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.
Collapse
|
10
|
Rogers MS, Cryan LM, Habeshian KA, Bazinet L, Caldwell TP, Ackroyd PC, Christensen KA. A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein. PLoS One 2012; 7:e39911. [PMID: 22768167 PMCID: PMC3386954 DOI: 10.1371/journal.pone.0039911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/03/2012] [Indexed: 11/18/2022] Open
Abstract
Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA), a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2) protein and tumor endothelial marker 8 (TEM8). Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET) high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein–protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.
Collapse
Affiliation(s)
- Michael S. Rogers
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorna M. Cryan
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaiane A. Habeshian
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lauren Bazinet
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas P. Caldwell
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - P. Christine Ackroyd
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Kenneth A. Christensen
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chow SK, Casadevall A. Monoclonal antibodies and toxins--a perspective on function and isotype. Toxins (Basel) 2012; 4:430-54. [PMID: 22822456 PMCID: PMC3398419 DOI: 10.3390/toxins4060430] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-718-430-2811; Fax: +1-718-430-8711
| |
Collapse
|
12
|
Corbett CR, Ballegeer E, Weedmark KA, Elias MD, Al-Saleem FH, Ancharski DM, Simpson LL, Berry JD. Epitope characterization of sero-specific monoclonal antibody to Clostridium botulinum neurotoxin type A. Hybridoma (Larchmt) 2012; 30:503-10. [PMID: 22149274 DOI: 10.1089/hyb.2011.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent toxins that can contaminate foods and are a public health concern. Anti-BoNT antibodies have been described that are capable of detecting BoNTs; however there still exists a need for accurate and sensitive detection capabilities for BoNTs. Herein, we describe the characterization of a panel of eight monoclonal antibodies (MAbs) generated to the non-toxic receptor-binding domain of BoNT/A (H(C)50/A) developed using a high-throughput screening approach. In two independent hybridoma fusions, two groups of four IgG MAbs were developed against recombinant H(C)50/A. Of these eight, only a single MAb, F90G5-3, bound to the whole BoNT/A protein and was characterized further. The F90G5-3 MAb slightly prolonged time to death in an in vivo mouse bioassay and was mapped by pepscan to a peptide epitope in the N-terminal subdomain of H(C)50/A (H(CN)25/A) comprising amino acid residues (985)WTLQDTQEIKQRVVF(999), an epitope that is highly immunoreactive in humans. Furthermore, we demonstrate that F90G5-3 binds BoNT/A with nanomolar efficiency. Together, our results indicate that F90G5-3 is of potential value as a diagnostic immunoreagent for BoNT/A capture assay development and bio-forensic analysis.
Collapse
Affiliation(s)
- Cindi R Corbett
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Mannitoba, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cabral TM, Berhane Y, Schmidt L, Tracz DM, Hole K, Leith M, Corbett CR. Development and characterization of neutralizing monoclonal antibodies against the pandemic H1N1 virus (2009). J Virol Methods 2012; 183:25-33. [PMID: 22575685 DOI: 10.1016/j.jviromet.2012.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
The 2009 H1N1 influenza pandemic was a major international public health crisis which caused considerable morbidity and mortality worldwide. The goal of this study was to produce anti-H1 monoclonal antibodies (MAbs) for improving diagnostic immunological assays and to develop potential immunotherapeutics. Nine MAbs were produced after immunizing mice with recombinant hemagglutinin (HA) protein from A/California/06/09. Two spleenocyte myeloma fusions yielded 1588 hybridoma cultures. After screening the hybridoma culture supernatants for antibody reactivity to rHA, nine clones were selected for further characterization. Cross-reactivity studies of the anti-rHA antibodies against a panel of influenza viruses (H1-H16) revealed eight out of nine MAbs were specific to the pandemic H1 subtype, except for MAb F256G2sc1 which also cross-reacted with H5 subtype virus. All MAbs were of the IgG1κ isotype, except F256G2sc1 which was IgG2aκ. The anti-rHA MAbs had binding affinities to rHA that ranged from a K(D) (disassociation constant) of 1.34×10(-9)M (F255G7sc1) to the weakest affinity of 4.60×10(-8)M (F255G4sc1). Interestingly, in a plaque reduction neutralization assay, all MAbs except F255G3sc1 demonstrated neutralizing ability. Furthermore, all MAbs except F255G3sc1 and F255G9sc1 exhibited anti-hemagglutinin activity against pandemic H1N1 viruses, but not against classical North American swine influenza viruses of the same subtype. Immunofluorescence assay (IFA) demonstrated that all MAbs except F255G1sc1 and F255G3sc1 were able to detect 2009 pandemic H1N1 (2009) virus- infected MDCK cells. The MAbs were also evaluated for potential use in competitive ELISA (cELISA), and with the exception of F255G3sc1, all MAbs showed competitive activity with serum collected from pigs infected with pandemic H1N1 virus (2009). The developed MAbs have demonstrated utility as immunodiagnostic and research reagents, and their neutralizing capabilities also hold potential for designing antiviral drugs against pandemic influenza.
Collapse
Affiliation(s)
- Teresa M Cabral
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Analysis of defined combinations of monoclonal antibodies in anthrax toxin neutralization assays and their synergistic action. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:731-9. [PMID: 22441391 DOI: 10.1128/cvi.05714-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibodies against the protective antigen (PA) component of anthrax toxin play an important role in protection against disease caused by Bacillus anthracis. In this study, we examined defined combinations of PA-specific monoclonal antibodies for their ability to neutralize anthrax toxin in cell culture assays. We observed additive, synergistic, and antagonistic effects of the antibodies depending on the specific antibody combination examined and the specific assay used. Synergistic toxin-neutralizing antibody interactions were examined in more detail. We found that one mechanism that can lead to antibody synergy is the bridging of PA monomers by one antibody, with resultant bivalent binding of the second antibody. These results may aid in optimal design of new vaccines and antibody therapies against anthrax.
Collapse
|
15
|
Smith K, Crowe SR, Garman L, Guthridge CJ, Muther JJ, McKee E, Zheng NY, Farris AD, Guthridge JM, Wilson PC, James JA. Human monoclonal antibodies generated following vaccination with AVA provide neutralization by blocking furin cleavage but not by preventing oligomerization. Vaccine 2012; 30:4276-83. [PMID: 22425791 DOI: 10.1016/j.vaccine.2012.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 03/01/2012] [Indexed: 12/28/2022]
Abstract
In order to identify the combination of antibody-mediated mechanisms of neutralization that result from vaccination with anthrax vaccine adsorbed (AVA), we isolated antibody secreting cells from a single donor seven days after booster vaccination with AVA and generated nine fully human monoclonal antibodies (hmAb) with high specificity for protective antigen (PA). Two of the antibodies were able to neutralize lethal toxin in vitro at low concentrations (IC(50): p6C01, 0.12 μg/ml and p6F01, 0.45 μg/ml). Passive transfer of either of these hmAbs to A/J mice prior to challenge with lethal toxin conferred 80-90% protection. We demonstrate that hmAb p6C01 is neutralizing by preventing furin cleavage of PA in a dose-dependent manner, but the mechanism of p6F01 is unclear. Three additional antibodies were found to bind to domain 3 of PA and prevent oligomerization, although they did not confer significant protection in vivo and showed a significant prozone-like effect in vitro. These fully human antibodies provide insight into the neutralizing response to AVA for future subunit vaccine and passive immunotherapeutic cocktail design.
Collapse
Affiliation(s)
- Kenneth Smith
- Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chitlaru T, Altboum Z, Reuveny S, Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 2011; 239:221-36. [PMID: 21198675 DOI: 10.1111/j.1600-065x.2010.00969.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | |
Collapse
|
17
|
Chackerian B, Caldeira JDC, Peabody J, Peabody DS. Peptide epitope identification by affinity selection on bacteriophage MS2 virus-like particles. J Mol Biol 2011; 409:225-37. [PMID: 21501621 DOI: 10.1016/j.jmb.2011.03.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 01/20/2023]
Abstract
Filamentous phages are now the most widely used vehicles for phage display and provide efficient means for epitope identification. However, the peptides they display are not very immunogenic because they normally fail to present foreign epitopes at the very high densities required for efficient B-cell activation. Meanwhile, systems based on virus-like particles (VLPs) permit the engineered high-density display of specific epitopes but are incapable of peptide library display and affinity selection. We developed a new peptide display platform based on VLPs of the RNA bacteriophage MS2. It combines the high immunogenicity of MS2 VLPs with the affinity selection capabilities of other phage display systems. Here, we describe plasmid vectors that facilitate the construction of high-complexity random sequence peptide libraries on MS2 VLPs and that allow control of the stringency of affinity selection through the manipulation of display valency. We used the system to identify epitopes for several previously characterized monoclonal antibody targets and showed that the VLPs thus obtained elicit antibodies in mice whose activities mimic those of the selecting antibodies.
Collapse
Affiliation(s)
- Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
18
|
Little SF, Webster WM, Fisher DE. Monoclonal antibodies directed against protective antigen of Bacillus anthracis enhance lethal toxin activity in vivo. ACTA ACUST UNITED AC 2011; 62:11-22. [PMID: 21231965 DOI: 10.1111/j.1574-695x.2011.00782.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective antigen (PA) from Bacillus anthracis binds to cellular receptors, combines with lethal factor (LF) forming lethal toxin (LeTx), and facilitates the translocation of LF into the cytosol. LeTx is cytotoxic for J774A.1 cells, a murine macrophage cell line, and causes death of Fisher 344 rats when injected intravenously. PA is also the major protective component in anthrax vaccines. Antibody-dependent enhancement has been reported for several viral diseases, a bacterial infection, and for B. anthracis LeTx in vitro cytotoxicity. Further screening of our 73 PA monoclonal antibodies (mAbs) identified a total of 17 PA mAbs that enhanced in vitro cytotoxicity at suboptimal concentrations of LeTx. A competitive binding enzyme-linked immunosorbent assay showed that these 17 PA mAbs identified eight different antigenic regions on PA. Eight of the 17 PA mAbs that enhanced LeTx in vitro cytoxicity were examined for their activity in vivo. Of the eight mAbs that were injected intravenously with a sublethal concentration of LeTx into male Fisher 344 rats, four mAbs enhanced the lethality of LeTx and resulted in the death of animals, whereas control animals did not succumb to intoxication. This is the first demonstration that PA mAbs can enhance LeTx intoxication in vivo.
Collapse
Affiliation(s)
- Stephen F Little
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| | | | | |
Collapse
|
19
|
Oscherwitz J, Yu F, Cease KB. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax. THE JOURNAL OF IMMUNOLOGY 2010; 185:3661-8. [PMID: 20696862 DOI: 10.4049/jimmunol.1001749] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.
Collapse
Affiliation(s)
- Jon Oscherwitz
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
20
|
An antibody directed against the fusion peptide of Junin virus envelope glycoprotein GPC inhibits pH-induced membrane fusion. J Virol 2010; 84:6119-29. [PMID: 20392854 DOI: 10.1128/jvi.02700-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arenavirus envelope glycoprotein (GPC) initiates infection in the host cell through pH-induced fusion of the viral and endosomal membranes. As in other class I viral fusion proteins, this process proceeds through a structural reorganization in GPC in which the ectodomain of the transmembrane fusion subunit (G2) engages the host cell membrane and subsequently refolds to form a highly stable six-helix bundle structure that brings the two membranes into apposition for fusion. Here, we describe a G2-directed monoclonal antibody, F100G5, that prevents membrane fusion by binding to an intermediate form of the protein on the fusion pathway. Inhibition of syncytium formation requires that F100G5 be present concomitant with exposure of GPC to acidic pH. We show that F100G5 recognizes neither the six-helix bundle nor the larger trimer-of-hairpins structure in the postfusion form of G2. Rather, Western blot analysis using recombinant proteins and a panel of alanine-scanning GPC mutants revealed that F100G5 binding is dependent on an invariant lysine residue (K283) near the N terminus of G2, in the so-called fusion peptide that inserts into the host cell membrane during the fusion process. The F100G5 epitope is located in the internal segment of the bipartite GPC fusion peptide, which also contains four conserved cysteine residues, raising the possibility that this fusion peptide may be highly structured. Collectively, our studies indicate that F100G5 identifies an on-path intermediate form of GPC. Binding to the transiently exposed fusion peptide may interfere with G2 insertion into the host cell membrane. Strategies to effectively target fusion peptide function in the endosome may lead to novel classes of antiviral agents.
Collapse
|
21
|
Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, Corbett CR, Andonov A. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs 2010; 2:53-66. [PMID: 20168090 DOI: 10.4161/mabs.2.1.10788] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro. Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TO R2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.
Collapse
Affiliation(s)
- Jody D Berry
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
A heterologous helper T-cell epitope enhances the immunogenicity of a multiple-antigenic-peptide vaccine targeting the cryptic loop-neutralizing determinant of Bacillus anthracis protective antigen. Infect Immun 2009; 77:5509-18. [PMID: 19805525 DOI: 10.1128/iai.00899-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that a multiple antigenic peptide (MAP) displaying amino acids (aa) 305 to 319 from the 2beta2-2beta3 loop of protective antigen (PA) can elicit high-titered antibody that neutralizes lethal toxin (LeTx) in vitro and that this loop-neutralizing determinant (LND) specificity is absent in PA-immune rabbits. Some immune rabbits were, however, nonresponders to the MAP. We hypothesized that the immunogen elicited suboptimal major histocompatibility complex (MHC) class II-restricted T-cell help and that introduction of a functional helper T-cell epitope would increase MHC-restricted responsiveness and the magnitude and affinity of the antibody responses. In the current study, we characterized the T- and B-cell responses to LND peptides in mice, then designed second-generation MAP immunogens for eliciting LND-specific immunity, and tested them in rabbits. The 305-319 sequence was devoid of helper T-cell epitopes in three strains of mice; however, a T-B peptide comprising aa 305 to 319, colinearly synthesized with the P30 helper epitope of tetanus toxin, elicited robust LeTx-neutralizing immunity in mice. T-B MAPs displaying B-cell epitopes 304 to 319 (MAP304) or 305 to 319 (MAP305) elicited high-titer, durable antibody responses in rabbits which exhibited potent neutralization of LeTx in vitro. All MAP304-immune rabbits demonstrated neutralization titers exceeding that of hyperimmune sera of rabbits immunized with PA in Freund's adjuvant, with peak neutralization titers 23-, 6-, and 3-fold higher than that of the PA antiserum. Overall, immunization with MAPs containing the P30 epitope elicited higher antibody and toxin neutralization titers and peptide-specific affinity than immunization with an LND MAP lacking a helper epitope. P30-containing MAP304 represents a promising LND-specific vaccine for anthrax.
Collapse
|
23
|
Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun 2009; 77:4859-67. [PMID: 19703971 DOI: 10.1128/iai.00117-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anthrax protective antigen (PA) is the receptor-binding subunit common to lethal toxin (LT) and edema toxin (ET), which are responsible for the high mortality rates associated with inhalational Bacillus anthracis infection. Although recombinant PA (rPA) is likely to be an important constituent of any future anthrax vaccine, evaluation of the efficacies of the various candidate rPA vaccines is currently difficult, because the specific B-cell epitopes involved in toxin neutralization have not been completely defined. In this study, we describe the identification and characterization of two murine monoclonal immunoglobulin G1 antibodies (MAbs), 1-F1 and 2-B12, which recognize distinct linear neutralizing epitopes on domain 4 of PA. 1-F1 recognized a 12-mer peptide corresponding to residues 692 to 703; this epitope maps to a region of domain 4 known to interact with the anthrax toxin receptor CMG-2 and within a conformation-dependent epitope recognized by the well-characterized neutralizing MAb 14B7. As expected, 1-F1 blocked PA's ability to associate with CMG-2 in an in vitro solid-phase binding assay, and it protected murine macrophage cells from intoxication with LT. 2-B12 recognized a 12-mer peptide corresponding to residues 716 to 727, an epitope located immediately adjacent to the core 14B7 binding site and a stretch of amino acids not previously identified as a target of neutralizing antibodies. 2-B12 was as effective as 1-F1 in neutralizing LT in vitro, although it only partially inhibited PA binding to its receptor. Mice passively administered 1-F1 or 2-B12 were partially protected against a lethal challenge with LT. These results advance our fundamental understanding of the mechanisms by which antibodies neutralize anthrax toxin and may have future application in the evaluation of candidate rPA vaccines.
Collapse
|
24
|
Rosenfeld R, Marcus H, Ben-Arie E, Lachmi BE, Mechaly A, Reuveny S, Gat O, Mazor O, Ordentlich A. Isolation and chimerization of a highly neutralizing antibody conferring passive protection against lethal Bacillus anthracis infection. PLoS One 2009; 4:e6351. [PMID: 19629185 PMCID: PMC2710523 DOI: 10.1371/journal.pone.0006351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 06/22/2009] [Indexed: 11/18/2022] Open
Abstract
Several studies have demonstrated that the passive transfer of protective antigen (PA)-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29). Guinea pigs were fully protected against infection by 40LD(50)B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD(50) of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax.
Collapse
Affiliation(s)
- Ronit Rosenfeld
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Einat Ben-Arie
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Bat-El Lachmi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shaul Reuveny
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Orit Gat
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Mazor
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Arie Ordentlich
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
25
|
Abboud N, De Jesus M, Nakouzi A, Cordero RJB, Pujato M, Fiser A, Rivera J, Casadevall A. Identification of linear epitopes in Bacillus anthracis protective antigen bound by neutralizing antibodies. J Biol Chem 2009; 284:25077-86. [PMID: 19617628 DOI: 10.1074/jbc.m109.022061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protective antigen (PA), the binding subunit of anthrax toxin, is the major component in the current anthrax vaccine, but the fine antigenic structure of PA is not well defined. To identify linear neutralizing epitopes of PA, 145 overlapping peptides covering the entire sequence of the protein were synthesized. Six monoclonal antibodies (mAbs) and antisera from mice specific for PA were tested for their reactivity to the peptides by enzyme-linked immunosorbent assays. Three major linear immunodominant B-cell epitopes were mapped to residues Leu(156) to Ser(170), Val(196) to Ile(210), and Ser(312) to Asn(326) of the PA protein. Two mAbs with toxin-neutralizing activity recognized two different epitopes in close proximity to the furin cleavage site in domain 1. The three-dimensional complex structure of PA and its neutralizing mAbs 7.5G and 19D9 were modeled using the molecular docking method providing models for the interacting epitope and paratope residues. For both mAbs, LeTx neutralization was associated with interference with furin cleavage, but they differed in effectiveness depending on whether they bound on the N- or C-terminal aspect of the cleaved products. The two peptides containing these epitopes that include amino acids Leu(156)-Ser(170) and Val(196)-Ile(210) were immunogenic and elicited neutralizing antibody responses to PA. These results identify the first linear neutralizing epitopes of PA and show that peptides containing epitope sequences can elicit neutralizing antibody responses, a finding that could be exploited for vaccine design.
Collapse
Affiliation(s)
- Nareen Abboud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Synthetic peptide vaccine targeting a cryptic neutralizing epitope in domain 2 of Bacillus anthracis protective antigen. Infect Immun 2009; 77:3380-8. [PMID: 19487468 DOI: 10.1128/iai.00358-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current evidence suggests that protective antigen (PA)-based anthrax vaccines may elicit a narrow neutralizing antibody repertoire, and this may represent a vulnerability with PA-based vaccines. In an effort to identify neutralizing specificities which may complement those prevalent in PA antiserum, we evaluated whether sequences within the 2beta2-2beta3 loop of PA, which are apparent in the crystal structure of heptameric but not monomeric PA, might represent a target for an epitope-specific vaccine for anthrax and, further, whether antibodies to these sequences are induced in rabbits immunized with monomeric PA. We evaluated the immunogenicity in rabbits of a multiple antigenic peptide (MAP) displaying copies of amino acids (aa) 305 to 319 of this region. Overall, four out of six rabbits vaccinated with the MAP peptide in Freund's adjuvant developed high-titer, high-avidity antibody responses which cross-reacted with the immobilized peptide sequence comprising aa 305 to 319 and with PA, as determined by an enzyme-linked immunosorbent assay, and which displayed potent and durable neutralization of lethal toxin (LeTx) in vitro, with peak titers which were 452%, 100%, 67%, and 41% of the peak neutralization titers observed in positive-control rabbits immunized with PA. Importantly, analysis of sera from multiple cohorts of rabbits with high-titer immunity to PA demonstrated a virtual absence of this potent antibody specificity, and work by others suggests that this specificity may be present at only low levels in primate PA antiserum. These results highlight the potential importance of this immunologically cryptic neutralizing epitope from PA as a target for alternative and adjunctive vaccines for anthrax.
Collapse
|
27
|
Yin Y, Zhang J, Dong D, Liu S, Guo Q, Song X, Li G, Fu L, Xu J, Chen W. Chimeric hepatitis B virus core particles carrying an epitope of anthrax protective antigen induce protective immunity against Bacillus anthracis. Vaccine 2008; 26:5814-21. [DOI: 10.1016/j.vaccine.2008.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
|
28
|
Zarebski LM, Vaughan K, Sidney J, Peters B, Grey H, Janda KD, Casadevall A, Sette A. Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum. Expert Rev Vaccines 2008; 7:55-74. [PMID: 18251694 DOI: 10.1586/14760584.7.1.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have reviewed the information about epitopes of immunological interest from Clostridium botulinum and Bacillus anthracis, by mining the Immune Epitope Database and Analysis Resource. For both pathogens, the vast majority of epitopes reported to date are derived from a single protein: the protective antigen of B. anthracis and the neurotoxin type A of C. botulinum. A detailed analysis of the data was performed to characterize the function, localization and conservancy of epitopes identified as neutralizing and/or protective. In order to broaden the scope of this analysis, we have also included data describing immune responses against defined fragments (over 50 amino acids long) of the relevant antigens. The scarce information on T-cell determinants and on epitopes from other antigens besides the toxins, highlights a gap in our knowledge and identifies areas for future research. Despite this, several distinct structures at the epitope and fragment level are described herein, which could be potential additions to future vaccines or targets of novel immunotherapeutics and diagnostic reagents.
Collapse
Affiliation(s)
- Laura M Zarebski
- Immune Epitope Database and Analysis Resource, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 9203,7 USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu WG, Yin J, Jager S, Wong C, Fulton C, Rayner GA, Aw C, Fisher GR, Dai X, Nagata LP. A Novel Approach to Development of Monoclonal Antibodies Using Native Antigen for Immunization and Recombinant Antigen for Screening. Hybridoma (Larchmt) 2008; 27:307-11. [DOI: 10.1089/hyb.2008.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei-Gang Hu
- Defence Research and Development Canada-Suffield, Medicine Hat, Alberta, Canada
| | - Junfei Yin
- Canada West Biosciences Inc., Camrose, Alberta, Canada
| | - Scott Jager
- Defence Research and Development Canada-Suffield, Medicine Hat, Alberta, Canada
| | - Christina Wong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Courtney Fulton
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - George A. Rayner
- Defence Research and Development Canada-Suffield, Medicine Hat, Alberta, Canada
| | - Connie Aw
- Canada West Biosciences Inc., Camrose, Alberta, Canada
| | - Glen R. Fisher
- Defence Research and Development Canada-Suffield, Medicine Hat, Alberta, Canada
| | - Xiaojiang Dai
- Defence Research and Development Canada-Suffield, Medicine Hat, Alberta, Canada
| | - Les P. Nagata
- Defence Research and Development Canada-Suffield, Medicine Hat, Alberta, Canada
| |
Collapse
|
30
|
Domain specificity of the human antibody response to Bacillus anthracis protective antigen. Vaccine 2008; 26:4041-7. [PMID: 18565627 DOI: 10.1016/j.vaccine.2008.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/01/2008] [Accepted: 05/09/2008] [Indexed: 11/22/2022]
Abstract
Protective antigen (PA) is the cell surface recognition moiety of the Bacillus anthracis A-B toxin system, and the active immunogenic component in the currently licensed human anthrax vaccine (BioThrax, or AVA). The serum antibody response to the PA protein is polyclonal and complex both in terms of the antibody combining sites utilized to bind PA and the PA-associated epitopes recognized. We have cloned, sequenced, and expressed a large panel of PA-specific human monoclonal antibodies from seven AVA-immunized donors. Dot blots, Western blots, and radiolabeled antigen capture assays employing both proteolytic fragments of PA and engineered PA sub-domain fusion proteins were used to determine the region (domain) of the PA monomer to which each of the cloned human antibodies bound. The domain specificity of the isolated monoclonals was highly biased towards the amino-terminal 20kDa fragment of PA (PA(20)), with the majority (62%) of independently arising antibody clones reacting with determinants located on this PA fragment. A similar bias in domain specificity was also demonstrated in the serum response of AVA-vaccinated donors. Since PA(20) is cleaved from the remainder of the monomer rapidly following cell surface binding and has no known role in the intoxication process, the immunodominance of PA(20)-associated epitopes may directly affect the efficacy of PA-based anthrax vaccines.
Collapse
|
31
|
Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1115-23. [PMID: 18480236 DOI: 10.1128/cvi.00015-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutralizing antibodies to Bacillus anthracis protective antigen (PA), a component of anthrax toxin, mediate protection against anthrax. PA is antigenically complex and can elicit protective and nonprotective antibodies. Furthermore, vaccinated individuals demonstrate considerable variability in their antibody responses to PA. To explore the relationship between PA structure and antigenicity, we produced Escherichia coli strains expressing full-length PA (PA1-4), domains 2 to 4 (PA2-4), domain 1, (PA1), and domain 4 (PA4) and evaluated the immunogenicities and protective efficacies of the protein fractions in four mouse strains (strains A/J, BALB/c, C57BL/6, and Swiss Webster). Immunization with PA1-4 resulted in significantly higher lethal toxin-neutralizing antibody titers than immunization with any recombinant protein (rPA) fraction of PA. The magnitude and neutralizing capacity of the antibody response to full-length PA and its fragments varied depending on the mouse strain. We found no correlation between the antibody titer and the neutralizing antibody titer for A/J and Swiss Webster mice. In C57BL/6 mice, antibody titers and neutralization capacity correlated for two of four rPA domain proteins tested, while BALB/c mice displayed a similar correlation with only one rPA. By correlating the reactivity of immune sera with solvent-exposed linear peptide segments of PA, we tentatively assign the presence of four new linear B-cell epitopes in PA amino acids 121 to 150, 143 to 158, 339 to 359, and 421 to 440. We conclude that the genetic background of the host determines the relative efficacy of the antitoxin response. The results suggest that the variability observed in vaccination studies with PA-derived vaccines is a result of host heterogeneity and implies a need to develop other antigens as vaccine candidates.
Collapse
|
32
|
Yan M, Roehrl MH, Basar E, Wang JY. Selection and evaluation of the immunogenicity of protective antigen mutants as anthrax vaccine candidates. Vaccine 2007; 26:947-55. [PMID: 18192092 DOI: 10.1016/j.vaccine.2007.11.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/17/2022]
Abstract
Protective antigen (PA) is a central component of anthrax toxin and a major antigen in anthrax vaccines. However, the use of native PA as a vaccine is not optimal. If administered to people who have been freshly exposed to anthrax, PA may actually aid in anthrax toxin formation and thus may pose a serious safety concern for postexposure vaccination applications. A non-functional PA mutant may be a much safer alternative. To identify an improved anthrax vaccine antigen, we examined four non-functional mutants of PA, each being impaired in a critical step of the cellular intoxication pathway of PA. These mutants were Rec(-) (unable to bind PA-receptors), SSSR (resistant to activation by furin), Oligo(-) (unable to form oligomers), and DNI (Dominant Negative Inhibitory, unable to form endosomal transmembrane pores). When tested in mice and after three doses of immunization, all four mutants were highly potent in eliciting PA-specific, toxin-neutralizing antibodies, with immunogenicity increasing in the order of PA<Rec(-)<SSSR<Oligo(-)<DNI. While the differences between Rec(-) or SSSR and PA were small and not statistically significant, DNI and Oligo(-) were significantly more immunogenic than wild-type PA. One year after immunization and compared with PA-immunized mice, DNI-immunized mice maintained significantly higher levels of anti-PA IgG with correspondingly higher titers of toxin-neutralizing activity. In contrast, Oligo(-)-immunized mice had high levels of anti-PA IgG but lower titers of toxin-neutralizing activity, suggesting that Oligo(-) mutation sites may overlap with critical protective epitopes of PA. Our study demonstrates that PA-based vaccines could be improved both in terms of safety and efficacy by strategic mutations that not only render PA non-functional but also simultaneously enhance its immunogenic potency. Recombinant PA mutants, particularly DNI, hold great promise as better and safer antigens than wild-type PA for use in postexposure vaccination.
Collapse
Affiliation(s)
- Ming Yan
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
33
|
Gubbins MJ, Berry JD, Schmidt L, Cabral T, Kabani A, Tsang RS. Production and characterization of a monoclonal antibody to Francisella tularensis lipopolysaccharide. Hybridoma (Larchmt) 2007; 26:98-103. [PMID: 17451358 DOI: 10.1089/hyb.2006.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Having the capacity to detect and identify pathogens that can be employed in a bioterror attack is critical from both a public health and defence perspective. Immunodiagnostic assays are useful tools for enhancing such detection capabilities. In order to develop an immunodiagnostic assay for the detection of Francisella tularensis, a murine monoclonal antibody (MAb) was developed, using the live vaccine strain (LVS) of F. tularensis as the inoculating antigen. A single MAb, F94G2-1, which is specific for the lipopolysaccharide (LPS) of this bacterium was developed and characterized. An indirect ELISA using purified LPS was effective in determining reactivity of the MAb against its target. An immunodotblot and a manually printed antigen microarray were also tested as suitable detection methods. Both assays showed that MAb F94G2-1 has excellent specificity for F. tularensis LPS and demonstrate the utility of using the same MAb in a variety of immunodiagnostic applications.
Collapse
Affiliation(s)
- Michael J Gubbins
- Division of Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Chalton DA, Kelly IF, McGregor A, Ridley H, Watkinson A, Miller J, Lakey JH. Unfolding transitions of Bacillus anthracis protective antigen. Arch Biochem Biophys 2007; 465:1-10. [PMID: 17531947 DOI: 10.1016/j.abb.2007.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Protective antigen (PA) is an 83kDa protein which, although essential for toxicity of Bacillus anthracis, is harmless and an effective vaccine component. In vivo it undergoes receptor binding, proteolysis, heptamerisation and membrane insertion. Here we probe the response of PA to denaturants, temperature and pH. We present analyses (including barycentric mean) of the unfolding and refolding behavior of PA and reveal the origin of two critical steps in the denaturant unfolding pathway in which the first step is a calcium and pH dependent rearrangement of domain 1. Thermal unfolding fits a single transition near 50 degrees C. We show for the first time circular dichroism (CD) spectra of the heptameric, furin-cleaved PA63 and the low-pH forms of both PA83 and PA63. Although only PA63 should reach the acidic endosome, both PA83 and PA63 undergo similar acidic transitions and an unusual change from a beta II to a beta I CD spectrum.
Collapse
Affiliation(s)
- David A Chalton
- Institute of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
MAb to Francisella tularensis Lipopolysaccharide. Hybridoma (Larchmt) 2007. [DOI: 10.1089/hyb.2007.9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
McClain MS, Cover TL. Functional analysis of neutralizing antibodies against Clostridium perfringens epsilon-toxin. Infect Immun 2007; 75:1785-93. [PMID: 17261609 PMCID: PMC1865726 DOI: 10.1128/iai.01643-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/13/2006] [Accepted: 01/15/2007] [Indexed: 11/20/2022] Open
Abstract
The Clostridium perfringens epsilon-toxin causes a severe, often fatal illness (enterotoxemia) characterized by cardiac, pulmonary, kidney, and brain edema. In this study, we examined the activities of two neutralizing monoclonal antibodies against the C. perfringens epsilon-toxin. Both antibodies inhibited epsilon-toxin cytotoxicity towards cultured MDCK cells and inhibited the ability of the toxin to form pores in the plasma membranes of cells, as shown by staining cells with the membrane-impermeant dye 7-aminoactinomycin D. Using an antibody competition enzyme-linked immunosorbent assay (ELISA), a peptide array, and analysis of mutant toxins, we mapped the epitope recognized by one of the neutralizing monoclonal antibodies to amino acids 134 to 145. The antibody competition ELISA and analysis of mutant toxins suggest that the second neutralizing monoclonal antibody also recognizes an epitope in close proximity to this region. The region comprised of amino acids 134 to 145 overlaps an amphipathic loop corresponding to the putative membrane insertion domain of the toxin. Identifying the epitopes recognized by these neutralizing antibodies constitutes an important first step in the development of therapeutic agents that could be used to counter the effects of the epsilon-toxin.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Division of Infectious Diseases, A2200 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|