1
|
Weerasekara M, Vidanapathirana G, Li C, Tennegedara A, Dissanayake R, Ekanayake A, Abeykoon M, Kothalawala M, Liyanapathirana V, Ip M. Characterization of group A streptococci causing invasive diseases in Sri Lanka. Access Microbiol 2024; 6:000697.v4. [PMID: 39045254 PMCID: PMC11261727 DOI: 10.1099/acmi.0.000697.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Group A β haemolytic streptococcus (GAS) or Streptococcus pyogenes is a human pathogen that causes an array of infections, including pharyngitis, cellulitis, impetigo, scarlet fever, toxic shock syndrome, and necrotizing fasciitis. The present study characterizes 51 GAS isolates from invasive infections in Sri Lanka, focusing on resistance profiles, genetic determinants of resistance, and virulence markers. Isolates were tested for sensitivity to penicillin, erythromycin, clindamycin, and tetracycline. The presence of erm(A), erm(B), and mef(A) was detected in erythromycin-resistant isolates, while tet(M) was detected in the tetracycline-resistant isolates. PCR was used to identify SpeA, SpeB, SpeC, SpeF, SpeG, smez, and ssa as virulence markers. Selected GAS isolates were emm-typed using the updated CDC protocol. All 51 isolates were susceptible to penicillin. The number of isolates non-susceptible to erythromycin was 16. The commonest resistance determinant identified was erm(B) (11/16). Tetracycline non-susceptibility was found in 36 (70.6 %) isolates and 26 of them contained the tet(M) gene. Thirteen (25.5 %) isolates were resistant to both tetracycline and erythromycin, while 12 (23.5 %) isolates were sensitive to both antibiotics. The commonest virulence markers detected among the isolates were SpeB (44, 86.3 %), SpeG (36, 70.6 %), and SpeF (35, 68.6 %), while SpeJ (15, 29.4 %), SpeA (10, 19.6 %), and ssa (5,9.8 %) were less common. The emm types were diverse. In conclusion, the GAS isolates studied showed resistance to erythromycin and tetracycline, while retaining universal susceptibility to penicillin. Additionally, these isolates exhibited diverse genetic backgrounds, displaying varying patterns of virulence genes and emm types.
Collapse
Affiliation(s)
- Madumali Weerasekara
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Gihani Vidanapathirana
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Asanka Tennegedara
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rasadanie Dissanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Asela Ekanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | | | - Veranja Liyanapathirana
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
2
|
Rampersadh K, Salie MT, Engel KC, Moodley C, Zühlke LJ, Engel ME. Presence of Group A streptococcus frequently assayed virulence genes in invasive disease: a systematic review and meta-analysis. Front Cell Infect Microbiol 2024; 14:1337861. [PMID: 39055978 PMCID: PMC11270091 DOI: 10.3389/fcimb.2024.1337861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.
Collapse
Affiliation(s)
- Kimona Rampersadh
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - M. Taariq Salie
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Kelin C. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The National Health Laboratory Service, Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Liesl J. Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| | - Mark E. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| |
Collapse
|
3
|
Minko AG, Danilova TA, Danilina GA, Adzhieva AA, Tikhomirov EE, Zhukhovitsky VG. Molecular Genetic Characterization of Streptococcus pyogenes Strains Isolated from Patients with Various Manifestations of Streptococcal Infection. Bull Exp Biol Med 2023; 175:662-666. [PMID: 37861897 DOI: 10.1007/s10517-023-05922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 10/21/2023]
Abstract
In 82 clinical strains of Streptococcus pyogenes (group A streptococci) isolated from patients with various manifestations of streptococcal infection, emm-typing revealed 27 emm-types (n=77) with a predominance of emm-89 (n=15; 18%), emm-75 (n=9; 11%), and emm-1 (n=6; 7%); types emm-3, emm-12, and emm-58 (n=4; 5% each) were found with almost equal frequency; other types were less common. The superantigen genes speC, speG, speH, speI, speJ, speK, speL, speM, smeZ, and SSA were identified in S. pyogenes strains using multiprimer PCR; the genes of the superantigen SpeA and cysteine proteinase SpeB were detected using real-time PCR. All the studied S. pyogenes strains contained superantigen genes, and 98% of the strains had several (from 2 to 7) genes. The number of variants of these sets reached 37; 2% of the strains contained only one superantigen gene. The distribution frequencies of superantigen genes in the studied strains were: speA - 43%; speC - 38%; speG - 93%; speH - 13%; speI - 6%; speJ - 24%; speK - 13%; speL and speM - 11% each; smeZ - 98%; SSA - 15%. All studied S. pyogenes strains contained the speB gene. Our studies have demonstrated that the sets of superantigen genes of group A streptococci are characterized by pronounced diversity to some extent associated with emm-type.
Collapse
Affiliation(s)
- A G Minko
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - T A Danilova
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Danilina
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Adzhieva
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E E Tikhomirov
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Zhukhovitsky
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Assessment of the Relationship between Clinical Manifestation and Pathogenic Potential of Streptococcus pyogenes Strains-Distribution of Genes and Genotypes of Toxins. Biomedicines 2022; 10:biomedicines10040799. [PMID: 35453547 PMCID: PMC9029580 DOI: 10.3390/biomedicines10040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pyogenes is one of the most important species among beta-haemolytic streptococci, causing human infections of different localization. It is isolated from clinical specimens relatively frequently. In this study, the frequency and co-occurrence of toxin genes (speA, speB, speC, speH, speJ, speK) among 147 S. pyogenes strains were evaluated, using real-time PCR. In addition, the relationship between the occurrence of these genes and the origin of S. pyogenes strains from selected clinical material was assessed. The speB gene was present with the highest incidence (98.6%), while the speK gene was the least frequent (8.2%) among the tested strains. Based on the presence of the detected genes, the distribution of 17 genotypes was determined. The most common (21.8%), was speA (−) speB (+) speC (−) speH (−) speJ (−) speK (−) genotype. Furthermore, significant variation in the presence of some genes and genotypes of toxins in S. pyogenes strains isolated from different types of clinical material was found. There is a considerable variety and disproportion between the frequency of individual genes and genotypes of toxins in S. pyogenes strains. The relationship between the origin of S. pyogenes isolates and the presence of toxins genes indicates their pathogenic potential in the development of infections of selected localization.
Collapse
|
5
|
Abraham T, Sistla S. Decoding the molecular epidemiology of group A streptococcus - an Indian perspective. J Med Microbiol 2019; 68:1059-1071. [PMID: 31192782 DOI: 10.1099/jmm.0.001018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Unlike western countries the knowledge of group A streptococcus (GAS) epidemiology in India remains patchy and incomplete. Typing is crucial for surveillance as well as in predicting the efficacy of multivalent M protein vaccine. The present study aimed to explore the emm types of 206 invasive and non-invasive GAS isolates from South India as well as reviewing all the published literature on GAS molecular epidemiology from India thereby generating a pan-Indian data to predict the conjectural coverage of the 30-valent M-protein vaccine in this population. METHODOLOGY emm typing and superantigen (SAg) profiling of GAS along with reviewing literatures on GAS molecular epidemiology from India. RESULTS This study revealed a high diversity of emm types with emm 63, 82, 183, 85, 92, 169, 42, 44, 106, 74, 12 being frequently encountered, belonging to twenty emm clusters. The pan-Indian data on prevalent emm types further supports our study findings with 135 emm different types. Six clusters dominated accounting for 80 % of the GAS isolates: E3(26 %), E6(20 %), E2(11 %), E4(10 %), D4(7 %), E1(6 %). No significant association was noted between emm types and the nature of infection (P≥0.05) while a few SAg profiles were significantly associated with certain emm types. Pan Indian data revealed that only 16 % of the emm types encountered were included in proposed 30-valent M protein based vaccine. CONCLUSION The coverage among the South Indian GAS isolates was 28.2 % which increased to only 46.6 % with the cross-opsonic effect, thus highlighting the importance of developing a specific multivalent vaccine including the prevalent emm types in India or considering the use of conserved C-repeat vaccines and non-M protein based vaccines.
Collapse
Affiliation(s)
- Tintu Abraham
- Department of Microbiology, JIPMER, Puducherry, India
| | | |
Collapse
|
6
|
Miller EW, Danger JL, Ramalinga AB, Horstmann N, Shelburne SA, Sumby P. Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen group A Streptococcus. Mol Microbiol 2015; 98:473-89. [PMID: 26192205 DOI: 10.1111/mmi.13136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 12/18/2022]
Abstract
Phenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non-randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA. Through use of RNAseq analysis, we identified that the natural rocA mutation present within M3 isolates leads to the enhanced expression of more than a dozen immunomodulatory virulence factors, enhancing phenotypes such as hemolysis and NAD(+) hydrolysis. Consequently, an M3 GAS isolate survived human phagocytic killing at a level 13-fold higher than a rocA complemented derivative, and was significantly more virulent in a murine bacteremia model of infection. Finally, we identified that RocA functions through the CovR/S two-component system as levels of phosphorylated CovR increase in the presence of functional RocA, and RocA has no regulatory activity following covR or covS mutation. Our data are consistent with RocA interfacing with the CovR/S two-component system, and that the absence of this activity in M3 GAS potentiates the severity of invasive infections caused by isolates of this serotype.
Collapse
Affiliation(s)
- Eric W Miller
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Anupama B Ramalinga
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Nicola Horstmann
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
7
|
Freschi de Barros S, De Amicis KM, Alencar R, Smeesters PR, Trunkel A, Postól E, Almeida Junior JN, Rossi F, Pignatari ACC, Kalil J, Guilherme L. Streptococcus pyogenes strains in Sao Paulo, Brazil: molecular characterization as a basis for StreptInCor coverage capacity analysis. BMC Infect Dis 2015; 15:308. [PMID: 26243278 PMCID: PMC4525746 DOI: 10.1186/s12879-015-1052-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/22/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. METHODS Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. RESULTS The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. CONCLUSIONS This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.
Collapse
Affiliation(s)
- Samar Freschi de Barros
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Karine Marafigo De Amicis
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Raquel Alencar
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Pierre Robert Smeesters
- Laboratoire de Génétique et Physiologie Bactérienne, Institute de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, 1050, Belgium.
- Murdoch Childrens Research Institute, Parkville, 3052, Australia.
| | - Ariel Trunkel
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Edilberto Postól
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - João Nóbrega Almeida Junior
- Microbiology Laboratory of Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
| | - Flavia Rossi
- Microbiology Laboratory of Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
| | | | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
- Clinical Immunology and Allergy Division, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
- Laboratory of Immunology, Clinical Hospital, Heart Institute (HC-FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44, Sao Paulo, 05403-000, Brazil.
| |
Collapse
|
8
|
Berman HF, Tartof SY, Reis JN, Reis MG, Riley LW. Distribution of superantigens in group A streptococcal isolates from Salvador, Brazil. BMC Infect Dis 2014; 14:294. [PMID: 24885209 PMCID: PMC4045995 DOI: 10.1186/1471-2334-14-294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 04/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) causes invasive disease, superficial disease, and can asymptomatically colonize humans. Superantigens are one virulence factor found in GAS. Previous studies found associations between the genes that encode superantigens and emm type of GAS. It is unknown if these associations are due to underlying biological factors that limit the distribution of superantigens or, alternatively, if these associations are due to the expansion of local GAS linages where these studies took place. To further address this question we screened GAS isolates collected from Salvador, Brazil for 11 known superantigen genes. METHODS Seventy-seven GAS isolates were screened by PCR for superantigen genes. These superantigen genes were speA, speC, speG, speH, speI, speJ, speK, speL, speM, ssa, and smeZ. We used Fisher's two-sided exact test to identify associations between superantigens and GAS emm type. We then compared our results to previous reports of superantigen prevalence and superantigen association with emm type. RESULTS In our collection we found several emm type and superantigen genotype combinations that have previously been reported in isolates from Europe and Australia. We also found that speA was significantly associated with emm type 1, and that speC was significantly associated with emm type 12. CONCLUSIONS Our study reports superantigen genotypes of GAS from a region of the world that is lacking this information. We found evidence of common GAS superantigen genotypes that are spread worldwide as well as novel superantigen genotypes that, so far, are unique to Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Lin JN, Chang LL, Lai CH, Lin HH, Chen YH. Emergence of Streptococcus pyogenes emm102 causing toxic shock syndrome in Southern Taiwan during 2005-2012. PLoS One 2013; 8:e81700. [PMID: 24349115 PMCID: PMC3857779 DOI: 10.1371/journal.pone.0081700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes. METHODS To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012. RESULTS In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9-83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045). CONCLUSIONS Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Department of Microbiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hsu Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Reglinski M, Sriskandan S. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence 2013; 5:127-36. [PMID: 24157731 PMCID: PMC3916366 DOI: 10.4161/viru.26400] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is responsible for a wide range of pathologies ranging from mild pharyngitis and impetigo to severe invasive soft tissue infections. Despite the continuing susceptibility of the bacterium to β-lactam antibiotics there has been an unexplained resurgence in the prevalence of invasive GAS infection over the past 30 years. Of particular importance was the emergence of a GAS-associated sepsis syndrome that is analogous to the systemic toxicosis associated with TSST-1 producing strains of Staphylococcus aureus. Despite being recognized for over 20 years, the etiology of GAS associated sepsis and the streptococcal toxic shock syndrome remains poorly understood. Here we review the virulence factors that contribute to the etiology of GAS associated sepsis with a particular focus on coagulation system interactions and the role of the superantigens in the development of streptococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Mark Reglinski
- Department of Infectious Disease and Immunity; Imperial College London; London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease and Immunity; Imperial College London; London, UK
| |
Collapse
|
11
|
Balaji K, Thenmozhi R, Prajna L, Dhananjeyan G, Pandian SK. Comparative analysis of emm types, superantigen gene profiles and antibiotic resistance genes among Streptococcus pyogenes isolates from ocular infections, pharyngitis and asymptomatic children in south India. INFECTION GENETICS AND EVOLUTION 2013; 19:105-12. [PMID: 23851012 DOI: 10.1016/j.meegid.2013.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes) is responsible for a wide array of infections and incidence is high in developing countries like India. Although distribution of emm types of S. pyogenes in India has been described, its association with the virulence genes and ocular isolates is less concentrated. In the present study emm type surveillance as well as its association with toxin gene profile was analyzed. Ocular infected cases such as lacrimal abscess, corneal ulcers, mucocoele showed the presence of 20 S. pyogenes isolates. For noninvasive isolates, we screened 370 pharyngitis cases and 400 asymptomatic school children and recovered 33 pharyngitis and 14 carrier isolates respectively. 14 Emm type distributions were observed in ocular isolates, 11 emm types each in pharyngitis and asymptomatic carrier isolates. The two dominant emm types, emm49 and emm63 were accounted for 33% of the total S. pyogenes isolates. Among ocular isolates, slo, smeZ, speB and speG were found in >50% of isolates, in pharyngitis smeZ (48%), speB (45%) and speG (42%) genes were found to be prevalent. Alarmingly, carrier isolates showed more prevalence to virulence genes than the ocular and pharyngitis isolates with speF (79%), speB, speG (64%), slo and sil (64%). Among the three groups, pharyngitis isolates harbored more prtF1 (33%) and prtF2 (94%) than the asymptomatic carriers (28% and 71%) and the ocular isolates (45% and 40%). 450bp Size band in prtF1 and 350bp size band in prtF2 showed dominance. Among the three groups tested, the distribution of ermB and mefA was high in pharyngitis isolates (30%) where 10 isolates showed the presence of both genes. None of the isolates showed the presence of ermA and tetO genes. Dendrogram generated based on the virulence and antibiotic resistance gene profiles revealed that except one cluster, all other clusters showed some correlation with ocular, pharyngitis and asymptomatic carrier isolates, irrespective of their emm types.
Collapse
Affiliation(s)
- Kannan Balaji
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
12
|
Molecular analysis of an outbreak of lethal postpartum sepsis caused by Streptococcus pyogenes. J Clin Microbiol 2013; 51:2089-95. [PMID: 23616448 PMCID: PMC3697669 DOI: 10.1128/jcm.00679-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sepsis is now the leading direct cause of maternal death in the United Kingdom, and Streptococcus pyogenes is the leading pathogen. We combined conventional and genomic analyses to define the duration and scale of a lethal outbreak. Two postpartum deaths caused by S. pyogenes occurred within 24 h; one was characterized by bacteremia and shock and the other by hemorrhagic pneumonia. The women gave birth within minutes of each other in the same maternity unit 2 days earlier. Seven additional infections in health care and household contacts were subsequently detected and treated. All cluster-associated S. pyogenes isolates were genotype emm1 and were initially indistinguishable from other United Kingdom emm1 isolates. Sequencing of the virulence gene sic revealed that all outbreak isolates had the same unique sic type. Genome sequencing confirmed that the cluster was caused by a unique S. pyogenes clone. Transmission between patients occurred on a single day and was associated with casual contact only. A single isolate from one patient demonstrated a sequence change in sic consistent with longer infection duration. Transmission to health care workers was traced to single clinical contacts with index cases. The last case was detected 18 days after the first case. Following enhanced surveillance, the outbreak isolate was not detected again. Mutations in bacterial regulatory genes played no detectable role in this outbreak, illustrating the intrinsic ability of emm1 S. pyogenes to spread while retaining virulence. This fast-moving outbreak highlights the potential of S. pyogenes to cause a range of diseases in the puerperium with rapid transmission, underlining the importance of immediate recognition and response by clinical infection and occupational health teams.
Collapse
|
13
|
Turner CE, Sommerlad M, McGregor K, Davies FJ, Pichon B, Chong DLW, Farzaneh L, Holden MTG, Spratt BG, Efstratiou A, Sriskandan S. Superantigenic activity of emm3 Streptococcus pyogenes is abrogated by a conserved, naturally occurring smeZ mutation. PLoS One 2012; 7:e46376. [PMID: 23049698 PMCID: PMC3462185 DOI: 10.1371/journal.pone.0046376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pyogenes M/emm3 strains have been epidemiologically linked with enhanced infection severity and risk of streptococcal toxic shock syndrome (STSS), a syndrome triggered by superantigenic stimulation of T cells. Comparison of S. pyogenes strains causing STSS demonstrated that emm3 strains were surprisingly less mitogenic than other emm-types (emm1, emm12, emm18, emm28, emm87, emm89) both in vitro and in vivo, indicating poor superantigenic activity. We identified a 13 bp deletion in the superantigen smeZ gene of all emm3 strains tested. The deletion led to a premature stop codon in smeZ, and was not present in other major emm-types tested. Expression of a functional non-M3-smeZ gene successfully enhanced mitogenic activity in emm3 S. pyogenes and also restored mitogenic activity to emm1 and emm89 S. pyogenes strains where the smeZ gene had been disrupted. In contrast, the M3-smeZ gene with the 13 bp deletion could not enhance or restore mitogenicity in any of these S. pyogenes strains, confirming that M3-smeZ is non-functional regardless of strain background. The mutation in M3-smeZ reduced the potential for M3 S. pyogenes to induce cytokines in human tonsil, but not during invasive infection of superantigen-sensitive mice. Notwithstanding epidemiological associations with STSS and disease severity, emm3 strains have inherently poor superantigenicity that is explained by a conserved mutation in smeZ.
Collapse
Affiliation(s)
- Claire E. Turner
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Mary Sommerlad
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Karen McGregor
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Frances J. Davies
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Bruno Pichon
- Respiratory and Systemic Infection Laboratory, The Health Protection Agency Centre for Infections, London, United Kingdom
| | - Deborah L. W. Chong
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Leili Farzaneh
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Matthew T. G. Holden
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Androulla Efstratiou
- Respiratory and Systemic Infection Laboratory, The Health Protection Agency Centre for Infections, London, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Friães A, Pinto FR, Silva-Costa C, Ramirez M, Melo-Cristino J. Superantigen gene complement of Streptococcus pyogenes--relationship with other typing methods and short-term stability. Eur J Clin Microbiol Infect Dis 2012; 32:115-25. [PMID: 22936424 DOI: 10.1007/s10096-012-1726-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/08/2012] [Indexed: 02/06/2023]
Abstract
The profiling of the superantigen (SAg) encoding genes has been frequently used as a complementary typing method for group A streptococci (GAS), but a confusing gene nomenclature and a large diversity of primers used in screening has led to some conflicting results. The aim of this work was to develop a polymerase chain reaction (PCR) method capable of efficiently amplifying all the known allelic variants of these genes, and to evaluate the congruence of this methodology with other commonly used molecular typing methods. The presence of the 11 known SAg genes and two other exotoxin-encoding genes (speB and speF) was tested in a collection of 480 clinical GAS isolates, using two multiplex PCR reactions. The SAg gene profile was compared with other typing methods. Four naturally occurring deletions involving the genes speB, speF, and rgg were characterized, two of which were found among invasive isolates. The absence of the chromosomally encoded genes speG and smeZ was supported by Southern blot hybridization and associated with specific GAS lineages, while the presence of phage-encoded genes was more variable. Positive associations between SAg genes or between SAg profiles and emm types or pulsed-field gel electrophoresis (PFGE) clusters were observed. The results suggest that the SAg profile diversifies faster than other properties commonly used for molecular typing, such as emm type and multilocus sequence typing (MLST) sequence types (STs), and can be a useful complement in GAS molecular epidemiology. Still, the short-term stability of the SAg gene profile among prevalent genetic lineages may largely explain the observed associations between SAg genes.
Collapse
Affiliation(s)
- A Friães
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
15
|
Abstract
Diseases caused by Streptococcus pyogenes (Group A streptococcus, GAS) range from superficial infections such as pharyngitis and impetigo to potentially fatal rheumatic heart disease and invasive disease. Studies spanning emm-typing surveillance to population genomics are providing new insights into the epidemiology, pathogenesis, and biology of this organism. Such studies have demonstrated the differences that exist in the epidemiology of streptococcal disease between developing and developed nations. In developing nations, where streptococcal disease is endemic, the diversity of GAS emm-types circulating is much greater than that found in developed nations. An association between emm-type and disease, as observed in developed countries is also lacking. Intriguingly, comparative genetic studies suggest that emm-type is not always a good predictor of the evolutionary relatedness of geographically distant isolates. A view of GAS as a highly dynamic organism, in possession of a core set of virulence genes that contribute to host niche specialization and common pathogenic processes, augmented by accessory genes that change the relative virulence of specific lineages is emerging. Our inability to definitively identify genetic factors that contribute to specific disease outcome underscores the complex nature of streptococcal diseases.
Collapse
|
16
|
Michaelsen TE, Andreasson IKG, Langerud BK, Caugant DA. Similar superantigen gene profiles and superantigen activity in norwegian isolates of invasive and non-invasive group a streptococci. Scand J Immunol 2011; 74:423-9. [PMID: 21707691 DOI: 10.1111/j.1365-3083.2011.02594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Group A streptococcus (GAS) harbours several virulence factors, including M protein (coded by the emm gene) and superantigens (SAgs). SAgs are extracellular toxins that directly activate the immune system by cross-binding to the HLA class II molecule and T cell receptor (TCR), thereby causing activation of up to 30% of the T cells and subsequent massive secretion of cytokines. Forty-eight GAS strains isolated from patients at Norwegian hospitals between 1988 and 2004 were included in this study. Of these, 24 were invasive streptococcal toxic shock syndrome (STSS) or necrotizing fasciitis (NF) isolates and 24 were non-invasive pharyngitis isolates, matched for having the same T-type and year of isolation as the invasive isolates. The isolates were characterized by emm sequence typing, multilocus sequence typing (MLST) and SAg gene profiles. A correlation between T-type, emm type, sequence type and SAg gene profile was revealed. No difference between invasive and non-invasive isolates regarding serotype or genotype was demonstrated. Selected invasive and non-invasive isolates with identical SAg gene profiles were analysed for SAg activity in bacterial growth culture media with and without human cell culture media added. A human T cell proliferation assay was used as measurement for SAg activity and simultaneously we also measured the cytokine content in normal human peripheral blood leucocyte cell culture media. The results revealed that invasive and non-invasive isolates did not differ significantly in SAg activity as it is present in semipurified bacterial culture medium.
Collapse
Affiliation(s)
- T E Michaelsen
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | |
Collapse
|
17
|
Taylor AL, Llewelyn MJ. Superantigen-induced proliferation of human CD4+CD25- T cells is followed by a switch to a functional regulatory phenotype. THE JOURNAL OF IMMUNOLOGY 2010; 185:6591-8. [PMID: 21048104 DOI: 10.4049/jimmunol.1002416] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial superantigens are potent T cell activators. In humans they cause toxic shock and scarlet fever, and they are implicated in Kawasaki's disease, autoimmunity, atopy, and sepsis. Their function remains unknown, but it may be to impair host immune responses increasing bacterial carriage and transmission. Regulatory (CD25(+)FOXP3(+)) T cells (Tregs) play a role in controlling inflammatory responses to infection. Approximately 2% of circulating T cells are naturally occurring Tregs (nTregs). Conventional Ag stimulation of naive FOXP3(-) T cells induces Ag-specific Tregs. Polyclonal T cell activation has been shown to produce non-Ag-specific Tregs. Because superantigens are unique among microbial virulence factors in their ability to trigger polyclonal T cell activation, we wanted to determine whether superantigen stimulation of T cells could induce non-Ag-specific Tregs. We assessed the effect of superantigen stimulation of human T cells on activation, regulatory markers, and cytokine production by flow cytometry and T cell suppression assays. Stimulation of PBMCs with staphylococcal exotoxin A and streptococcal pyrogenic exotoxins A and K/L resulted in dose-dependent FOXP3 expression. Characterization of this response for streptococcal pyrogenic exotoxin K/L confirmed its Vβ specificity, that CD25(+)FOXP3(+) cells arose from CD25(-) T cells and required APCs. These cells had increased CTLA-4 and CD127 expression, typical of the recently described activated converted Treg-like cells, and exhibited functional suppressor activity comparable to nTregs. Superantigen-stimulated CD25(+)FOXP3(+) T cells expressed IL-10 at lower superantigen concentrations than was required to trigger IFN-γ production. This study provides a mechanism for bacterial evasion of the immune response through the superantigen induction of Tregs.
Collapse
Affiliation(s)
- Amanda L Taylor
- Pathogen-Host Interaction Group, Division of Clinical Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | | |
Collapse
|
18
|
Meisal R, Andreasson IKG, Høiby EA, Aaberge IS, Michaelsen TE, Caugant DA. Streptococcus pyogenes isolates causing severe infections in Norway in 2006 to 2007: emm types, multilocus sequence types, and superantigen profiles. J Clin Microbiol 2010; 48:842-51. [PMID: 20042624 PMCID: PMC2832411 DOI: 10.1128/jcm.01312-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/21/2009] [Accepted: 12/17/2009] [Indexed: 11/20/2022] Open
Abstract
To investigate the epidemiological patterns and genetic characteristics of disease caused by group A Streptococcus (GAS), all available isolates from invasive cases in Norway during 2006 to 2007 (262 isolates) were subjected to antimicrobial susceptibility testing, T serotyping, emm typing, and multilocus sequence typing and screened for known streptococcal pyrogenic exotoxin (Spe) genes, smeZ, and ssa. The average incidence rate was 3.1 cases per 100,000 individuals. The most prevalent sequence types (STs) were STs 52, 28, and 334. In association with emm types 28, 77, and 87, the serotype T-28 comprised 24.8% of the strains. emm types 28, 1, and 82 were dominating. In 2007, a sharp increase in the number of emm-6 strains was noted. All strains were sensitive to penicillin and quinupristin-dalfopristin, while 3.4% and 6.1% of the strains were resistant to macrolides and tetracycline, respectively. Furthermore, the emm-6 strains had intermediate susceptibility to ofloxacin. Isolates displayed a wide variety of gene profiles, as shown by the presence or absence of the Spe genes, smeZ, and ssa, but 48% of the isolates fell into one of three profiles. In most cases, an emm type was restricted to one gene profile. Although the incidence decreased during this study, invasive GAS disease still has a high endemic rate, with involvement of both established and emerging emm types displaying variability in virulence gene profiles as well as differences in gender and age group preferences.
Collapse
Affiliation(s)
- Roger Meisal
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ida K. G. Andreasson
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - E. Arne Høiby
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ingeborg S. Aaberge
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Terje E. Michaelsen
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Dominique A. Caugant
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Department of Oral Biology, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Bidet P, Plainvert C, Doit C, Mariani-Kurkdjian P, Bonacorsi S, Lepoutre A, Bouvet A, Poyart C, Bingen E. Infections à Streptococcus pyogenes ou streptocoque du groupe A chez l’enfant : données du Centre national de référence (CNR). Arch Pediatr 2010; 17:201-8. [DOI: 10.1016/j.arcped.2009.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 09/22/2009] [Accepted: 10/12/2009] [Indexed: 11/25/2022]
|
20
|
Rapid emergence of emm84 among invasive Streptococcus pyogenes infections in Finland. J Clin Microbiol 2008; 47:477-80. [PMID: 19073871 DOI: 10.1128/jcm.01663-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From 2005 to 2007, in Finland, the incidence of invasive Streptococcus pyogenes disease increased sharply, partly due to the uncommon emm84 gene becoming more prevalent from 2006 onwards. The overall case fatality rate of infections caused by strains carrying emm84 was not significantly different than that of infections caused by other types (7% versus 10%, respectively; P = 0.50).
Collapse
|