1
|
Boerth EM, Gong J, Roffler B, Hancock Z, Berger L, Song B, Malley SF, MacLennan CA, Zhang F, Malley R, Lu YJ. Evaluation of a Quadrivalent Shigella flexneri Serotype 2a, 3a, 6, and Shigella sonnei O-Specific Polysaccharide and IpaB MAPS Vaccine. Vaccines (Basel) 2024; 12:1091. [PMID: 39460258 PMCID: PMC11510904 DOI: 10.3390/vaccines12101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Shigellosis is the leading cause of diarrheal deaths worldwide and is particularly dangerous in children under 5 years of age in low- and middle-income countries. Additionally, the rise in antibiotic resistance has highlighted the need for an effective Shigella vaccine. Previously, we have used the Multiple Antigen-Presenting System (MAPS) technology to generate monovalent and quadrivalent Salmonella MAPS vaccines that induce functional antibodies against Salmonella components. METHODS In this work, we detail the development of several monovalent vaccines using O-specific polysaccharides (OSPs) from four dominant serotypes, S. flexneri 2a, 3a, and 6, and S. sonnei. We tested several rhizavidin (rhavi) fusion proteins and selected a Shigella-specific protein IpaB. Quadrivalent MAPS were made with Rhavi-IpaB protein and tested in rabbits for immunogenicity. RESULTS Individual MAPS vaccines generated robust, functional antibody responses against both IpaB and the individual OSP component. Antibodies to IpaB were effective across Shigella serotypes. We also demonstrate that the OSP antibodies generated are specific to each homologous Shigella O type by performing ELISA and bactericidal assays. We combined the components of each MAPS vaccine to formulate a quadrivalent MAPS vaccine which elicited similar antibody and bactericidal responses compared to their monovalent counterparts. Finally, we show that the quadrivalent MAPS immune sera are functional against several clinical isolates of the serotypes used in the vaccine. CONCLUSIONS This quadrivalent MAPS Shigella vaccine is immunogenicity and warrants further study.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Hancock
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Berger
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Nappini R, Alfini R, Durante S, Salvini L, Raso MM, Palmieri E, Di Benedetto R, Carducci M, Rossi O, Cescutti P, Micoli F, Giannelli C. Modeling 1-Cyano-4-Dimethylaminopyridine Tetrafluoroborate (CDAP) Chemistry to Design Glycoconjugate Vaccines with Desired Structural and Immunological Characteristics. Vaccines (Basel) 2024; 12:707. [PMID: 39066345 PMCID: PMC11281720 DOI: 10.3390/vaccines12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Glycoconjugation is a well-established technology for vaccine development: linkage of the polysaccharide (PS) antigen to an appropriate carrier protein overcomes the limitations of PS T-independent antigens, making them effective in infants and providing immunological memory. Glycoconjugate vaccines have been successful in reducing the burden of different diseases globally. However, many pathogens still require a vaccine, and many of them display a variety of glycans on their surface that have been proposed as key antigens for the development of high-valency glycoconjugate vaccines. CDAP chemistry represents a generic conjugation strategy that is easily applied to PS with different structures. This chemistry utilizes common groups to a large range of PS and proteins, e.g., hydroxyl groups on the PS and amino groups on the protein. Here, new fast analytical tools to study CDAP reaction have been developed, and reaction conditions for PS activation and conjugation have been extensively investigated. Mathematical models have been built to identify reaction conditions to generate conjugates with wanted characteristics and successfully applied to a large number of bacterial PSs from different pathogens, e.g., Klebsiella pneumoniae, Salmonella Paratyphi A, Salmonella Enteritidis, Salmonella Typhimurium, Shighella sonnei and Shigella flexneri. Furthermore, using Salmonella Paratyphi A O-antigen and CRM197 as models, a design of experiment approach has been used to study the impact of conjugation conditions and conjugate features on immunogenicity in rabbits. The approach used can be rapidly extended to other PSs and accelerate the development of high-valency glycoconjugate vaccines.
Collapse
Affiliation(s)
- Rebecca Nappini
- Dipartimento di Scienze della Vita, Università Degli Studi di Trieste, Via L Giorgieri 1, Ed. C11, 34127 Trieste, Italy; (R.N.); (P.C.)
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Salvatore Durante
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences (TLS), 53100 Siena, Italy;
| | - Maria Michelina Raso
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Paola Cescutti
- Dipartimento di Scienze della Vita, Università Degli Studi di Trieste, Via L Giorgieri 1, Ed. C11, 34127 Trieste, Italy; (R.N.); (P.C.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| |
Collapse
|
3
|
Clarkson KA, Porter CK, Talaat KR, Kapulu MC, Chen WH, Frenck RW, Bourgeois AL, Kaminski RW, Martin LB. Shigella-Controlled Human Infection Models: Current and Future Perspectives. Curr Top Microbiol Immunol 2024; 445:257-313. [PMID: 35616717 PMCID: PMC7616482 DOI: 10.1007/82_2021_248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.
Collapse
Affiliation(s)
- Kristen A Clarkson
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway Street Hampton House, Baltimore, MD, 21205, USA
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi County Hospital, Off Bofa Road, Kilifi, 80108, Kenya
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Robert W Frenck
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - A Louis Bourgeois
- PATH Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
4
|
Rossi O, Citiulo F, Giannelli C, Cappelletti E, Gasperini G, Mancini F, Acquaviva A, Raso MM, Sollai L, Alfini R, Aruta MG, Vitali CG, Pizza M, Necchi F, Rappuoli R, Martin LB, Berlanda Scorza F, Colucci AM, Micoli F. A next-generation GMMA-based vaccine candidate to fight shigellosis. NPJ Vaccines 2023; 8:130. [PMID: 37670042 PMCID: PMC10480147 DOI: 10.1038/s41541-023-00725-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.
Collapse
Affiliation(s)
- Omar Rossi
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | | | | | | | - Gianmarco Gasperini
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- GSK Vaccines Srl, Siena, Italy
| | | | | | | | - Luigi Sollai
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | - Renzo Alfini
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
| | | | | | - Mariagrazia Pizza
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- GSK Vaccines Srl, Siena, Italy
- Imperial College, London, United Kingdom
| | | | - Rino Rappuoli
- GSK Vaccines Srl, Siena, Italy
- Fondazione Biotecnopolo, Siena, Italy
| | - Laura B Martin
- GSK Global Health Vaccines R&D (GVGH), Siena, Italy
- US Pharmacopoeia, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
5
|
Turbyfill KR, Clarkson KA, Oaks EV, Zurawski DV, Vortherms AR, Kaminski RW. Development of the Shigella flexneri 2a, 3a, 6, and S. sonnei artificial Invaplex (Invaplex AR) vaccines. mSphere 2023; 8:e0007323. [PMID: 37389412 PMCID: PMC10449495 DOI: 10.1128/msphere.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
The Shigella artificial invasin complex (InvaplexAR) vaccine is a subunit approach that effectively induces robust immunogenicity directed to serotype-specific lipopolysaccharide and the broadly conserved IpaB and IpaC proteins. One advantage of the vaccine approach is the ability to adjust the constituents to address suboptimal immunogenicity and to change the Shigella serotype targeted by the vaccine. As the vaccine moves through the product development pipeline, substantial modifications have been made to address manufacturing feasibility, acceptability to regulatory authorities, and developing immunogenic and effective products for an expanded list of Shigella serotypes. Modifications of the recombinant clones used to express affinity tag-free proteins using well-established purification methods, changes to detergents utilized in the assembly process, and in vitro and in vivo evaluation of different Invaplex formulations have led to the establishment of a scalable, reproducible manufacturing process and enhanced immunogenicity of Invaplex products designed to protect against four of the most predominant Shigella serotypes responsible for global morbidity and mortality. These adjustments and improvements provide the pathway for the manufacture and clinical testing of a multivalent Invaplex vaccine. IMPORTANCE Shigella species are a major global health concern that cause severe diarrhea and dysentery in children and travelers to endemic areas of the world. Despite significant advancements in access to clean water, the increases in antimicrobial resistance and the risk of post-infection sequelae, including cognitive and physical stunting in children, highlight the urgent need for an efficacious vaccine. One promising vaccine approach, artificial Invaplex, delivers key antigens recognized by the immune system during infection, which results in increased resistance to re-infection. The work presented here describes novel modifications to a previously described vaccine approach resulting in improved methods for manufacturing and regulatory approvals, expansion of the breadth of coverage to all major Shigella serotypes, and an increase in the potency of artificial Invaplex.
Collapse
Affiliation(s)
- K. Ross Turbyfill
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kristen A. Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Edwin V. Oaks
- Patuxent Research and Consulting Group, Gambrills, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony R. Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Kelly M, Mandlik A, Charles RC, Verma S, Calderwood SB, Leung DT, Biswas R, Islam K, Kamruzzaman M, Chowdhury F, Khanam F, Vann WF, Khan AI, Bhuiyan TR, Qadri F, Vortherms AR, Kaminski R, Kováč P, Xu P, Ryan ET. Development of Shigella conjugate vaccines targeting Shigella flexneri 2a and S. flexneri 3a using a simple platform-approach conjugation by squaric acid chemistry. Vaccine 2023; 41:4967-4977. [PMID: 37400283 PMCID: PMC10529421 DOI: 10.1016/j.vaccine.2023.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Smriti Verma
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, USA
| | - Rajib Biswas
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kamrul Islam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Farhana Khanam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashraful Islam Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anthony R Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Robert Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
7
|
Huan YW, Torraca V, Brown R, Fa-arun J, Miles SL, Oyarzún DA, Mostowy S, Wang B. P1 Bacteriophage-Enabled Delivery of CRISPR-Cas9 Antimicrobial Activity Against Shigella flexneri. ACS Synth Biol 2023; 12:709-721. [PMID: 36802585 PMCID: PMC10028697 DOI: 10.1021/acssynbio.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 02/22/2023]
Abstract
The discovery of clustered, regularly interspaced, short palindromic repeats (CRISPR) and the Cas9 RNA-guided nuclease provides unprecedented opportunities to selectively kill specific populations or species of bacteria. However, the use of CRISPR-Cas9 to clear bacterial infections in vivo is hampered by the inefficient delivery of cas9 genetic constructs into bacterial cells. Here, we use a broad-host-range P1-derived phagemid to deliver the CRISPR-Cas9 chromosomal-targeting system into Escherichia coli and the dysentery-causing Shigella flexneri to achieve DNA sequence-specific killing of targeted bacterial cells. We show that genetic modification of the helper P1 phage DNA packaging site (pac) significantly enhances the purity of packaged phagemid and improves the Cas9-mediated killing of S. flexneri cells. We further demonstrate that P1 phage particles can deliver chromosomal-targeting cas9 phagemids into S. flexneri in vivo using a zebrafish larvae infection model, where they significantly reduce the bacterial load and promote host survival. Our study highlights the potential of combining P1 bacteriophage-based delivery with the CRISPR chromosomal-targeting system to achieve DNA sequence-specific cell lethality and efficient clearance of bacterial infection.
Collapse
Affiliation(s)
- Yang W. Huan
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Vincenzo Torraca
- Department
of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, U.K.
- School
of Life Sciences, University of Westminster, London W1B 2HW, U.K.
| | - Russell Brown
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Jidapha Fa-arun
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Sydney L. Miles
- Department
of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, U.K.
| | - Diego A. Oyarzún
- School
of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.
- School
of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K.
| | - Serge Mostowy
- Department
of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, U.K.
| | - Baojun Wang
- College
of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific
and Technological Innovation Center, Zhejiang
University, Hangzhou 310058, China
- Research
Center for Biological Computation, Zhejiang
Laboratory, Hangzhou 311100, China
| |
Collapse
|
8
|
Toward a Shigella Vaccine: Opportunities and Challenges to Fight an Antimicrobial-Resistant Pathogen. Int J Mol Sci 2023; 24:ijms24054649. [PMID: 36902092 PMCID: PMC10003550 DOI: 10.3390/ijms24054649] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Shigellosis causes more than 200,000 deaths worldwide and most of this burden falls on Low- and Middle-Income Countries (LMICs), with a particular incidence in children under 5 years of age. In the last decades, Shigella has become even more worrisome because of the onset of antimicrobial-resistant strains (AMR). Indeed, the WHO has listed Shigella as one of the priority pathogens for the development of new interventions. To date, there are no broadly available vaccines against shigellosis, but several candidates are being evaluated in preclinical and clinical studies, bringing to light very important data and information. With the aim to facilitate the understanding of the state-of-the-art of Shigella vaccine development, here we report what is known about Shigella epidemiology and pathogenesis with a focus on virulence factors and potential antigens for vaccine development. We discuss immunity after natural infection and immunization. In addition, we highlight the main characteristics of the different technologies that have been applied for the development of a vaccine with broad protection against Shigella.
Collapse
|
9
|
Fa-Arun J, Huan YW, Darmon E, Wang B. Tail-Engineered Phage P2 Enables Delivery of Antimicrobials into Multiple Gut Pathogens. ACS Synth Biol 2023; 12:596-607. [PMID: 36731126 PMCID: PMC9942202 DOI: 10.1021/acssynbio.2c00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacteriophages can be reprogrammed to deliver antimicrobials for therapeutic and biocontrol purposes and are a promising alternative treatment to antimicrobial-resistant bacteria. Here, we developed a bacteriophage P4 cosmid system for the delivery of a Cas9 antimicrobial into clinically relevant human gut pathogens Shigella flexneri and Escherichia coli O157:H7. Our P4 cosmid design produces a high titer of cosmid-transducing units without contamination by a helper phage. Further, we demonstrate that genetic engineering of the phage tail fiber improves the transduction efficiency of cosmid DNA in S. flexneri M90T as well as allows recognition of a nonnative host, E. coli O157:H7. We show that the transducing units with the chimeric tails enhanced the overall Cas9-mediated killing of both pathogens. This study demonstrates the potential of our P4 cas9 cosmid system as a DNA sequence-specific antimicrobial against clinically relevant gut pathogenic bacteria.
Collapse
Affiliation(s)
- Jidapha Fa-Arun
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Yang Wei Huan
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Elise Darmon
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom.,Research Center for Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
10
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
11
|
Huan YW, Fa-Arun J, Wang B. The Role of O-antigen in P1 Transduction of Shigella flexneri and Escherichia coli with its Alternative S' Tail Fibre. J Mol Biol 2022; 434:167829. [PMID: 36116540 DOI: 10.1016/j.jmb.2022.167829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.
Collapse
Affiliation(s)
- Yang W Huan
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Jidapha Fa-Arun
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China; Research Centre of Biological Computation, Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
12
|
Gasperini G, Raso MM, Schiavo F, Aruta MG, Ravenscroft N, Bellich B, Cescutti P, Necchi F, Rappuoli R, Micoli F. Rapid generation of Shigella flexneri GMMA displaying natural or new and cross-reactive O-Antigens. NPJ Vaccines 2022; 7:69. [PMID: 35773292 PMCID: PMC9243986 DOI: 10.1038/s41541-022-00497-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Generalized modules for membrane antigens (GMMA) are exosomes released from engineered Gram-negative bacteria and represent an attractive vaccine platform for the delivery of the O-Antigen (OAg), recognized as the key target for protective immunity against several pathogens such as Shigella. Shigella is a major cause of disease in Low- and Middle-Income countries and the development of a vaccine needs to deal with its large serotypic diversity. All S. flexneri serotypes, except serotype 6, share a conserved OAg backbone, corresponding to serotype Y. Here, a GMMA-producing S. flexneri scaffold strain displaying the OAg backbone was engineered with different OAg-modifying enzymes, either individually or in combinations. This strategy rapidly yielded GMMA displaying 12 natural serotypes and 16 novel serotypes expressing multiple epitopes combinations that do not occur in nature. Importantly, a candidate GMMA displaying a hybrid OAg elicited broadly cross-bactericidal antibodies against a large panel of S. flexneri serotypes.
Collapse
Affiliation(s)
| | - Maria Michelina Raso
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy.,Università di Trieste, Trieste, Italy
| | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
van
der Put RMF, Smitsman C, de Haan A, Hamzink M, Timmermans H, Uittenbogaard J, Westdijk J, Stork M, Ophorst O, Thouron F, Guerreiro C, Sansonetti PJ, Phalipon A, Mulard LA. The First-in-Human Synthetic Glycan-Based Conjugate Vaccine Candidate against Shigella. ACS CENTRAL SCIENCE 2022; 8:449-460. [PMID: 35559427 PMCID: PMC9088300 DOI: 10.1021/acscentsci.1c01479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/12/2023]
Abstract
Shigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease.
Collapse
Affiliation(s)
| | | | - Alex de Haan
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Martin Hamzink
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | | | | | - Janny Westdijk
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michiel Stork
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Olga Ophorst
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Françoise Thouron
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Catherine Guerreiro
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Philippe J. Sansonetti
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
- Chaire
de Microbiologie et Maladies Infectieuses, Collège de France, 11, place Marcelin Berthelot, 75005 Paris, France
| | - Armelle Phalipon
- Institut
Pasteur, U1202 Inserm, Unité
de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Institut
Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
14
|
Rajput MI, Verma NK. Identification of critical residues of O-antigen-modifying O-acetyltransferase B (OacB) of Shigella flexneri. BMC Mol Cell Biol 2022; 23:16. [PMID: 35331134 PMCID: PMC8952252 DOI: 10.1186/s12860-022-00415-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Shigellosis is an acute gastrointestinal disease caused primarily by the bacterium Shigella flexneri. Upon ingestion, S. flexneri initiates a serotype-specific immune response that targets the O-antigen of the pathogen’s lipopolysaccharide. O-antigen subunits are modified by the addition of chemical moieties, which give rise to new serotypes of S. flexneri. Nineteen different serotypes of S. flexneri have been recognized. A recently identified O-antigen-modifying enzyme, O-acetyltransferase B (OacB), which adds an acetyl residue at either position 3 or 4 of RhamnoseIII (3/4-O-acetylation) in serotypes 1a, 1b, 2a, 5a, 7a, Y, and 6 and position 6 of N- acetylglucosamine (6-O-acetylation) in serotypes 2a, 3a, Y and Yv of the O-antigen subunits. Critical residues in other proteins involved in O-antigen modifications such as glucosyltransferases (Gtrs) and acetyltransferase (Oac) of S. flexneri have been identified, whereas identification of important amino acids in OacB function is yet to be determined. Results Hydrophobicity analysis showed that OacB is a transmembrane protein with 11 transmembrane segments, 12 loops, and periplasmic N- and cytoplasmic C- termini. Bioinformatics analyses revealed that OacB contains acetyltransferase-3 domain and several conserved residues. Using site-directed mutagenesis, selected amino acids were mutated to alanine to elucidate their role in the mechanism of action of OacB. Seven amino acids R47, H58, F98, W71, R116, R119, and S146 were found critical for the OacB function. Conclusion In the absence of a three-dimensional structure of the serotype converting enzyme, O-acetyltransferase B (OacB), a clear role of important residues in the mechanism of action is precluded. Therefore, in this study, using site-directed mutagenesis, seven residues critical to the function of OacB were identified. The lack of agglutination of cell expressing mutant OacB in the presence of the antiserum indicated the functional role of the corresponding residues. Hence, this study provides significant information about key residues in OacB which might be involved in forming the catalytic sites of this O-antigen modifying enzyme of S. flexneri. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00415-8.
Collapse
Affiliation(s)
- Munazza I Rajput
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Bldg.134, Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Naresh K Verma
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Bldg.134, Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
15
|
Phalipon A, Mulard LA. Toward a Multivalent Synthetic Oligosaccharide-Based Conjugate Vaccine against Shigella: State-of-the-Art for a Monovalent Prototype and Challenges. Vaccines (Basel) 2022; 10:403. [PMID: 35335035 PMCID: PMC8954881 DOI: 10.3390/vaccines10030403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
This review focuses on the molecular glycovaccine concept, a promising option to develop a Shigella glycoconjugate vaccine. Subsequent to original developments involving, as main vaccine component, the detoxified Shigella lipopolysaccharide randomly conjugated at multiple sites to a carrier protein, novelty stems from the use of rationally designed, well-defined chemically synthesized oligosaccharide haptens conceived as functional surrogates of the main surface antigen, linked via single-point attachment onto a carrier. The concept and design of such a fine-tuned Shigella glycovaccine are presented by way of SF2a-TT15, a neoglycoprotein featuring a synthetic 15-mer oligosaccharide, which constitutes an original vaccine prototype targeting Shigella flexneri 2a, one of the predominant circulating strains in endemic settings. The clinical testing of SF2a-TT15 is summarized with the first-in-human phase I trial in young healthy adults showing a good safety profile and tolerability, while inducing bactericidal antibodies towards S. flexneri 2a bacteria. The proof-of-concept of this novel approach being established, an ongoing phase IIa clinical study in the nine-month-old infant target population in endemic area was launched, which is also outlined. Lastly, some challenges to move forward this original approach toward a multivalent cost-effective Shigella synthetic glycan conjugate vaccine are introduced.
Collapse
Grants
- Institut Pasteur (Grants PTR 99, GPH-FlexBiVac, Roux Cantarini and Pasteur Roux Cantarini Postdoctoral Fellowships, COMED-SF2a, INNOV-42-19) Institut Pasteur
- ANR, Grants ANR-06-EMPB-013, ANR-05-BLAN-0022, ANR-08-PCVI-0002, ANR-15-CE07-0019 Agence Nationale de la Recherche
- PF7-Health ID 261472-STOPENTERICS European Union Seventh Framework Program
- Grant agreement Investment ID OPP1191130, OPP1198140, OPP1201194 Bill and Melinda Gates Foundation
- Contract ID: Collaboration & License Agreement (Institut Pasteur, Gates MRI), December 2019 Bill and Melinda Gates Medical Research Institute
Collapse
Affiliation(s)
- Armelle Phalipon
- Institut Pasteur, Innovation Lab. Vaccines, F-75015 Paris, France
| | - Laurence A. Mulard
- Institut Pasteur, Université de Paris, CNRS UMR3523, Unité Chimie des Biomolécules, F-75015 Paris, France
| |
Collapse
|
16
|
Pearson C, Tindall S, Potts JR, Thomas GH, van der Woude MW. Diverse functions for acyltransferase-3 proteins in the modification of bacterial cell surfaces. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001146. [PMID: 35253642 PMCID: PMC9558356 DOI: 10.1099/mic.0.001146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
Abstract
The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins - acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in O-acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.
Collapse
Affiliation(s)
| | - Sarah Tindall
- Department of Biology, University of York, Heslington, UK
| | | | - Gavin H. Thomas
- Department of Biology, University of York, Heslington, UK
- York Biomedical Institute, University of York, Heslington, UK
| | - Marjan W. van der Woude
- York Biomedical Institute, University of York, Heslington, UK
- Hull York Medical School, Heslington, UK
| |
Collapse
|
17
|
Teh MY, Tran ENH, Morona R. Bacteriophage Sf6 host range mutant that infects Shigella flexneri serotype 2a2 strains. FEMS Microbiol Lett 2022; 369:6537400. [PMID: 35218200 PMCID: PMC8973906 DOI: 10.1093/femsle/fnac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Shigella flexneri serotype 2a2 (II:9;10) is the most prevalent strain in causing bacillary dysentery in developing countries. Chemical modifications such as glucosylation, O-acetylation, and phosphoethanolamine modifications of lipopolysaccharide (LPS) O antigen (Oag) contribute to the emergence of various serotypes. Sf6 is a Shigella-specific bacteriophage that infects only a limited range of S. flexneri serotypes [X, Y]. LPS Oag is the primary receptor for bacteriophage Sf6 where it uses its tailspike protein (TSP) in binding and hydrolysing LPS Oags. Sf6TSP has recently been shown to be capable of hydrolysing the LPS Oag of Type II strains, albeit modestly. Phage therapy has regained attention in recent years as an alternative therapeutic approach. Therefore, this study aimed to expand the host range of Sf6 to the prevalent S. flexneri serotype 2a2 strain. We discovered a new lytic Sf6 host range mutant that is capable of infecting S. flexneri serotype 2a2 and identified residues in Sf6TSP that may potentially be involved in binding and hydrolysing serotype 2a2 LPS Oag. This work increased the limited Shigella-specific bacteriophage collection and may be useful in the future for phage therapy and/or biocontrolling of S. flexneri in contaminated food and water.
Collapse
Affiliation(s)
- Min Yan Teh
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, 5005, Australia
| | - Elizabeth Ngoc Hoa Tran
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, 5005, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
18
|
Ropartz D, Fanuel M, Ollivier S, Lissarrague A, Benkoulouche M, Mulard LA, André I, Guieysse D, Rogniaux H. Combination of High-Resolution Multistage Ion Mobility and Tandem MS with High Energy of Activation to Resolve the Structure of Complex Chemoenzymatically Synthesized Glycans. Anal Chem 2022; 94:2279-2287. [PMID: 35049286 DOI: 10.1021/acs.analchem.1c04982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Carbohydrates, in particular microbial glycans, are highly structurally diverse biomolecules, the recognition of which governs numerous biological processes. Of special interest, glycans of known monosaccharide composition feature multiple possible isomers, differentiated by the anomerism and position of their glycosidic linkages. Robust analytical tools able to circumvent this extreme structural complexity are increasing in demand to ensure not only the correct determination of naturally occurring glycans but also to support the rapid development of enzymatic and chemoenzymatic glycan synthesis. In support to the later, we report the use of complementary strategies based on mass spectrometry (MS) to evaluate the ability of 14 engineered mutants of sucrose-utilizing α-transglucosylases to produce type/group-specific Shigella flexneri pentasaccharide bricks from a single lightly protected non-natural tetrasaccharide acceptor substrate. A first analysis of the reaction media by UHPLC coupled to high-accuracy MS led to detect six reaction products of enzymatic glucosylation out of the eight possible ones. A seventh structure was evidenced by an additional step of ion mobility at a resolving power (Rp) of approximately 100. Finally, a Rp of about 250 in ion mobility made it possible to detect the eighth and last of the expected structures. Complementary to these measurements, tandem MS with high activation energy charge transfer dissociation (CTD) allowed us to unambiguously characterize seven regioisomers out of the eight possible products of enzymatic glucosylation. This work illustrates the potential of the recently described powerful IMS and CTD-MS methods for the precise structural characterization of complex glycans.
Collapse
Affiliation(s)
- David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France.,INRAE, BIBS Facility, F-44316 Nantes, France
| | - Mathieu Fanuel
- INRAE, UR BIA, F-44316 Nantes, France.,INRAE, BIBS Facility, F-44316 Nantes, France
| | - Simon Ollivier
- INRAE, UR BIA, F-44316 Nantes, France.,INRAE, BIBS Facility, F-44316 Nantes, France
| | - Adrien Lissarrague
- INRAE, UR BIA, F-44316 Nantes, France.,INRAE, BIBS Facility, F-44316 Nantes, France
| | - Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Laurence A Mulard
- Institut Pasteur, Université de Paris, CNRS UMR3523, Unité de Chimie des Biomolécules, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - David Guieysse
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France.,INRAE, BIBS Facility, F-44316 Nantes, France
| |
Collapse
|
19
|
Arato V, Oldrini D, Massai L, Gasperini G, Necchi F, Micoli F. Impact of O-Acetylation on S. flexneri 1b and 2a O-Antigen Immunogenicity in Mice. Microorganisms 2021; 9:microorganisms9112360. [PMID: 34835485 PMCID: PMC8623282 DOI: 10.3390/microorganisms9112360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Shigellosis is a diarrheal disease caused prevalently by Shigella flexneri and S. sonnei and representing a major global health risk, particularly in developing countries. Bacterial O-antigen (OAg) is the primary target of the host immune response and modifications of its oligosaccharide units, including O-acetylation, are responsible for the variability among the circulating S. flexneri serotypes. No vaccines are widely available against shigellosis and the understanding of the immunogenicity induced by the OAg is fundamental for the design of a vaccine that could cover the most prevalent Shigella serotypes. To understand whether a different O-acetylation pattern could influence the immune response elicited by S. flexneri OAg, we employed as a vaccine technology GMMA purified from S. flexneri 2a and 1b strains that were easily engineered to obtain differently O-acetylated OAg. Resulting GMMA were tested in mice, demonstrating not only no major impact of O-acetyl decorations on the immune response elicited by the two OAg against the homologous strains, but also that the O-acetylation of the Rhamnose III residue (O-factor 9), shared among serotypes 1b, 2a and 6, does not induce cross-reactive antibodies against these serotypes. This work contributes to the optimization of vaccine design against Shigella, providing indication about the ability of shared epitopes to elicit broad protection against S. flexneri serotypes and supporting the identification of critical quality attributes of OAg-based vaccines.
Collapse
|
20
|
Comparison and Optimization of Quantification Methods for Shigella flexneri Serotype 6 O-antigen Containing Galacturonic Acid and Methyl-Pentose. Int J Mol Sci 2021; 22:ijms222212160. [PMID: 34830042 PMCID: PMC8623728 DOI: 10.3390/ijms222212160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Shigella is a leading diarrheal cause of morbidity and mortality worldwide, especially in low- and middle-income countries and in children under five years of age. Increasing levels of antimicrobial resistance make vaccine development an even higher global health priority. S. flexneri serotype 6 is one of the targets of many multicomponent vaccines in development to ensure broad protection against Shigella. The O-antigen (OAg) is a key active ingredient and its content is a critical quality attribute for vaccine release in order to monitor their stability and to ensure appropriate immune response. Here, the optimization of two methods to quantify S. flexneri 6 OAg is reported together with the characterization of their performances. The optimized Dische colorimetric method allows a tenfold increment of the sensitivity with respect to the original method and is useful for fast analysis detecting selectively methyl-pentoses, as rhamnose in S. flexneri 6 OAg. Also, a more specific HPAEC-PAD method was developed, detecting the dimer galacturonic acid-galactosamine (GalA-GalN) coming from S. flexneri 6 OAg acid hydrolysis. These methods will facilitate characterization of S. flexneri 6 OAg based vaccines. The colorimetric method can be used for quantification of other polysaccharide containing methyl-pentoses, and the HPAEC-PAD could be extended to other polysaccharides containing uronic acids.
Collapse
|
21
|
Citiulo F, Necchi F, Mancini F, Rossi O, Aruta MG, Gasperini G, Alfini R, Rondini S, Micoli F, Rappuoli R, Saul A, Martin LB. Rationalizing the design of a broad coverage Shigella vaccine based on evaluation of immunological cross-reactivity among S. flexneri serotypes. PLoS Negl Trop Dis 2021; 15:e0009826. [PMID: 34644291 PMCID: PMC8589205 DOI: 10.1371/journal.pntd.0009826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/12/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
No vaccine to protect against an estimated 238,000 shigellosis deaths per year is widely available. S. sonnei is the most prevalent Shigella, and multiple serotypes of S. flexneri, which change regionally and globally, also cause significant disease. The leading Shigella vaccine strategies are based on the delivery of serotype specific O-antigens. A strategy to minimize the complexity of a broadly-protective Shigella vaccine is to combine components from S. sonnei with S. flexneri serotypes that induce antibodies with maximum cross-reactivity between different serotypes. We used the GMMA-technology to immunize animal models and generate antisera against 14 S. flexneri subtypes from 8 different serotypes that were tested for binding to and bactericidal activity against a panel of 11 S. flexneri bacteria lines. Some immunogens induced broadly cross-reactive antibodies that interacted with most of the S. flexneri in the panel, while others induced antibodies with narrower specificity. Most cross-reactivity could not be assigned to modifications of the O-antigen, by glucose, acetate or phosphoethanolamine, common to several of the S. flexneri serotypes. This allowed us to revisit the current dogma of cross-reactivity among S. flexneri serotypes suggesting that a broadly protective vaccine is feasible with limited number of appropriately selected components. Thus, we rationally designed a 4-component vaccine selecting GMMA from S. sonnei and S. flexneri 1b, 2a and 3a. The resulting formulation was broadly cross-reactive in mice and rabbits, inducing antibodies that killed all S. flexneri serotypes tested. This study provides the framework for a broadly-protective Shigella vaccine which needs to be verified in human trials. A strategy to optimize the composition for a broadly-protective Shigella vaccine is to combine components directed against S. sonnei with S. flexneri serotypes to induce antibody responses with the maximum cross-reactivity between different serotypes. Based on mouse and rabbit immunogenicity, we selected 4 GMMA-immunogens, derived from S. sonnei and S. flexneri 1b, 2a and 3a, able to induce antibodies that were broadly bactericidal against most epidemiologically significant S. flexneri strains in mice and rabbits. This was not predicted on the basis of O-antigen modifications conferring serotype or group specificities and allowed revisiting the dogma of cross-protection among S. flexneri serotypes. Overall, this study provides a framework for the rational design of a broadly-protective vaccine that will be evaluated in upcoming human vaccine trials. It also tackles a key issue regarding Shigella vaccine development that is balancing a sufficient number of antigenic components in the vaccine to provide adequate coverage of serotype diversity while minimizing complexity.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
- * E-mail:
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | - Omar Rossi
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | | | | | - Renzo Alfini
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | | | - Allan Saul
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| | - Laura B. Martin
- GSK Vaccines Institute for Global Health S.r.l. (GVGH), Siena, Italy
| |
Collapse
|
22
|
Benkoulouche M, Ben Imeddourene A, Barel LA, Lefebvre D, Fanuel M, Rogniaux H, Ropartz D, Barbe S, Guieysse D, Mulard LA, Remaud-Siméon M, Moulis C, André I. Computer-aided engineering of a branching sucrase for the glucodiversification of a tetrasaccharide precursor of S. flexneri antigenic oligosaccharides. Sci Rep 2021; 11:20294. [PMID: 34645865 PMCID: PMC8514537 DOI: 10.1038/s41598-021-99384-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Enzyme engineering approaches have allowed to extend the collection of enzymatic tools available for synthetic purposes. However, controlling the regioselectivity of the reaction remains challenging, in particular when dealing with carbohydrates bearing numerous reactive hydroxyl groups as substrates. Here, we used a computer-aided design framework to engineer the active site of a sucrose-active [Formula: see text]-transglucosylase for the 1,2-cis-glucosylation of a lightly protected chemically synthesized tetrasaccharide, a common precursor for the synthesis of serotype-specific S. flexneri O-antigen fragments. By targeting 27 amino acid positions of the acceptor binding subsites of a GH70 branching sucrase, we used a RosettaDesign-based approach to propose 49 mutants containing up to 15 mutations scattered over the active site. Upon experimental evaluation, these mutants were found to produce up to six distinct pentasaccharides, whereas only two were synthesized by the parental enzyme. Interestingly, we showed that by introducing specific mutations in the active site of a same enzyme scaffold, it is possible to control the regiospecificity of the 1,2-cis glucosylation of the tetrasaccharide acceptor and produce a unique diversity of pentasaccharide bricks. This work offers novel opportunities for the development of highly convergent chemo-enzymatic routes toward S. flexneri haptens.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Akli Ben Imeddourene
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Louis-Antoine Barel
- Institut Pasteur, CNRS UMR3523 Unité de Chimie des Biomolécules, 28 Rue du Dr Roux, 75724, Paris Cedex 15, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dorian Lefebvre
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Mathieu Fanuel
- INRAE, UR BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Hélène Rogniaux
- INRAE, UR BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - David Ropartz
- INRAE, UR BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Sophie Barbe
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - David Guieysse
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Laurence A Mulard
- Institut Pasteur, CNRS UMR3523 Unité de Chimie des Biomolécules, 28 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Claire Moulis
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
23
|
Hu Z, Benkoulouche M, Barel LA, Le Heiget G, Ben Imeddourene A, Le Guen Y, Monties N, Guerreiro C, Remaud-Siméon M, Moulis C, André I, Mulard LA. Convergent Chemoenzymatic Strategy to Deliver a Diversity of Shigella flexneri Serotype-Specific O-Antigen Segments from a Unique Lightly Protected Tetrasaccharide Core. J Org Chem 2021; 86:2058-2075. [PMID: 32700907 DOI: 10.1021/acs.joc.0c00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progress in glycoscience is strongly dependent on the availability of broadly diverse tailor-made, well-defined, and often complex oligosaccharides. Herein, going beyond natural resources and aiming to circumvent chemical boundaries in glycochemistry, we tackle the development of an in vitro chemoenzymatic strategy holding great potential to answer the need for molecular diversity characterizing microbial cell-surface carbohydrates. The concept is exemplified in the context of Shigella flexneri, a major cause of diarrhoeal disease. Aiming at a broad serotype coverage S. flexneri glycoconjugate vaccine, a non-natural lightly protected tetrasaccharide was designed for compatibility with (i) serotype-specific glucosylations and O-acetylations defining S. flexneri O-antigens, (ii) recognition by suitable α-transglucosylases, and (iii) programmed oligomerization following enzymatic α-d-glucosylation. The tetrasaccharide core was chemically synthesized from two crystalline monosaccharide precursors. Six α-transglucosylases found in the glycoside hydrolase family 70 were shown to transfer glucosyl residues on the non-natural acceptor. The successful proof of concept is achieved for a pentasaccharide featuring the glucosylation pattern from the S. flexneri type IV O-antigen. It demonstrates the potential of appropriately planned chemoenzymatic pathways involving non-natural acceptors and low-cost donor/transglucosylase systems to achieve the demanding regioselective α-d-glucosylation of large substrates, paving the way to microbial oligosaccharides of vaccinal interest.
Collapse
Affiliation(s)
- Zhaoyu Hu
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Louis-Antoine Barel
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Guillaume Le Heiget
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris 13, Sorbonne Paris Cité, 93430 Paris, France
| | - Akli Ben Imeddourene
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Yann Le Guen
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Nelly Monties
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Catherine Guerreiro
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Claire Moulis
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Laurence A Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
24
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
25
|
Conformational and Immunogenicity Studies of the Shigella flexneri Serogroup 6 O-Antigen: The Effect of O-Acetylation. Vaccines (Basel) 2021; 9:vaccines9050432. [PMID: 33925465 PMCID: PMC8144980 DOI: 10.3390/vaccines9050432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/30/2023] Open
Abstract
The pathogenic bacterium Shigella is a leading cause of diarrheal disease and mortality, disproportionately affecting young children in low-income countries. The increasing prevalence of antibiotic resistance in Shigella necessitates an effective vaccine, for which the bacterial lipopolysaccharide O-antigen is the primary target. S. flexneri serotype 6 has been proposed as a multivalent vaccine component to ensure broad protection against Shigella. We have previously explored the conformations of S. flexneri O-antigens from serogroups Y, 2, 3, and 5 that share a common saccharide backbone (serotype Y). Here we consider serogroup 6, which is of particular interest because of an altered backbone repeat unit with non-stoichiometric O-acetylation, the antigenic and immunogenic importance of which have yet to be established. Our simulations show significant conformational changes in serogroup 6 relative to the serotype Y backbone. We further find that O-acetylation has little effect on conformation and hence may not be essential for the antigenicity of serotype 6. This is corroborated by an in vivo study in mice, using Generalized Modules for Membrane Antigens (GMMA) as O-antigen delivery systems, that shows that O-acetylation does not have an impact on the immune response elicited by the S. flexneri serotype 6 O-antigen.
Collapse
|
26
|
Cohen D, Atsmon J, Artaud C, Meron-Sudai S, Gougeon ML, Bialik A, Goren S, Asato V, Ariel-Cohen O, Reizis A, Dorman A, Hoitink CWG, Westdijk J, Ashkenazi S, Sansonetti P, Mulard LA, Phalipon A. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2021; 21:546-558. [DOI: 10.1016/s1473-3099(20)30488-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/11/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
|
27
|
Bazhenova A, Gao F, Bolgiano B, Harding SE. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys Rev 2021; 13:221-246. [PMID: 33868505 PMCID: PMC8035613 DOI: 10.1007/s12551-021-00791-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although the need for product-specific approaches will apply, especially for the more complex vaccines. An overview of current and emerging analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper. This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
Collapse
Affiliation(s)
- Aleksandra Bazhenova
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
- Museum of Cultural History, University of Oslo, Postboks 6762 St. Olavs plass, 0130 Oslo, Norway
| |
Collapse
|
28
|
Tuzikov AB, Rapoport EM, Khaidukov SV, Nokel EA, Knirel YA, Bovin NV. Synthesis of bodipy-labeled bacterial polysaccharides and their interaction with human dendritic cells. Glycoconj J 2021; 38:10.1007/s10719-021-09993-9. [PMID: 33783715 DOI: 10.1007/s10719-021-09993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
In this report, we describe the fluorescent labeling of bacterial polysaccharides (Escherichia coli O86:B7, Escherichia coli O19ab, Pseudomonas aeruginosa O10a10b, and Shigella flexneri 2b) at the "natural" amino group of their phosphoethanolamine moiety. Two protocols for labeling are compared: 1) on a scale of a few mg of the polysaccharide, with a dialysis procedure for purification from excessive reagents; and 2) on a scale of 0.1 mg of the polysaccharide, with a simple precipitation procedure instead of dialysis. The microscale version is sufficient for comfortable cytofluorometric analysis. The resulting probes were found to specifically bind to human dendritic cells in a dose-dependent manner. The used limited set of polysaccharides did not allow us even to get close to understanding which dendritic cell-associated lectins and which cognate polysaccharide epitopes are involved in recognition, but the proposed microscale protocol allows to generate a library of fluorescent probes for further mapping of the polysaccharide specificity of the dendritic cells.
Collapse
Affiliation(s)
- Alexander B Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str, Moscow, 117997, Russia
| | - Eugenia M Rapoport
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str, Moscow, 117997, Russia
| | - Sergey V Khaidukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str, Moscow, 117997, Russia
| | - Elena A Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str, Moscow, 117997, Russia
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky prosp, Moscow, 119991, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya str, Moscow, 117997, Russia.
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
29
|
Morelli L, Polito L, Richichi B, Compostella F. Glyconanoparticles as tools to prevent antimicrobial resistance. Glycoconj J 2021; 38:475-490. [PMID: 33728545 PMCID: PMC7964520 DOI: 10.1007/s10719-021-09988-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 01/20/2023]
Abstract
The increased phenomenon of antimicrobial resistance and the slow pace of development of new antibiotics are at the base of a global health concern regarding microbial infections. Antibiotic resistance kills an estimated 700,000 people each year worldwide, and this number is expected to increase dramatically if efforts are not made to develop new drugs or alternative containment strategies. Increased vaccination coverage, improved sanitation or sustained implementation of infection control measures are among the possible areas of action. Indeed, vaccination is one of the most effective tools of preventing infections. Starting from 1970s polysaccharide-based vaccines against Meningococcus, Pneumococcus and Haemophilus influenzae type b have been licensed, and provided effective protection for population. However, the development of safe and effective vaccines for infectious diseases with broad coverage remains a major challenge in global public health. In this scenario, nanosystems are receiving attention as alternative delivery systems to improve vaccine efficacy and immunogenicity. In this report, we provide an overview of current applications of glyconanomaterials as alternative platforms in the development of new vaccine candidates. In particular, we will focus on nanoparticle platforms, used to induce the activation of the immune system through the multivalent-displacement of saccharide antigens. ![]()
Collapse
Affiliation(s)
- Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133, Milan, Italy
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138, Milan, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, FI, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133, Milan, Italy.
| |
Collapse
|
30
|
Cao M, Wang W, Zhang L, Liu G, Zhou X, Li B, Shi Y, Zhu Z, Zhang J. Epidemic and molecular characterization of fluoroquinolone-resistant Shigella dysenteriae 1 isolates from calves with diarrhea. BMC Microbiol 2021; 21:6. [PMID: 33407134 PMCID: PMC7789508 DOI: 10.1186/s12866-020-02050-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. Results All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance–determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83 → Leu and Asp87 → Asn) and parC (Ser80 → Ile and Ser83 → Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83 → Leu) and parC point mutation (Ser83 → Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac (6′)-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). Conclusion Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02050-9.
Collapse
Affiliation(s)
- Mingze Cao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China
| | - Liwei Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Guanhui Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China. .,College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China.
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China.
| |
Collapse
|
31
|
Micoli F, Giannelli C, Di Benedetto R. O-Antigen Extraction, Purification, and Chemical Conjugation to a Carrier Protein. Methods Mol Biol 2021; 2183:267-304. [PMID: 32959249 DOI: 10.1007/978-1-0716-0795-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A variety of bacterial infections have been tackled by glycoconjugates over the recent years, and more vaccines are either under development at preclinical level or in clinical trials. So far, licensed glycoconjugate vaccines have made use of capsular polysaccharides or derived fragments. Today, many glycoconjugates are making use of other classes of sugars, in particular, the O-antigen portion of lipopolysaccharide molecules. Here, we report a simplified method for O-antigen extraction and purification that avoids the step of lipopolysaccharide isolation. Also, a selective chemistry for terminal linkage of O-antigen chains to a carrier protein is described, together with analytical methods for intermediates and final conjugate characterization.
Collapse
|
32
|
Cornil J, Hu Z, Bouchet M, Mulard LA. Multigram synthesis of an orthogonally-protected pentasaccharide for use as a glycan precursor in a Shigella flexneri 3a conjugate vaccine: application to a ready-for-conjugation decasaccharide. Org Chem Front 2021. [DOI: 10.1039/d1qo00761k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fine-tuned catalytic processes facilitating regio- and stereoselective conversions for the large-scale synthesis of a pentasaccharide and its oligomerization into ready-for-conjugation haptens.
Collapse
Affiliation(s)
- Johan Cornil
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Zhaoyu Hu
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Marion Bouchet
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| | - Laurence A. Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 rue du Dr Roux, 75 724 Paris Cedex 15, France
| |
Collapse
|
33
|
Seepersaud R, Anderson AC, Bensing BA, Choudhury BP, Clarke AJ, Sullam PM. O-acetylation controls the glycosylation of bacterial serine-rich repeat glycoproteins. J Biol Chem 2021; 296:100249. [PMID: 33384382 PMCID: PMC7948813 DOI: 10.1074/jbc.ra120.016116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
The serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB). Because these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues and that O-acetylation prevented Glc deposition. Whereas streptococci expressing nonacetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to WT levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, because O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.
Collapse
Affiliation(s)
- Ravin Seepersaud
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA
| | - Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Barbara A Bensing
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA
| | - Biswa P Choudhury
- GlycoAnalytics Core, University of California, San Diego, San Diego, California, USA
| | - Anthony J Clarke
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Paul M Sullam
- Department of Medicine, Division of Infectious Diseases, San Francisco Veteran Affairs Medical Center, and the Department of Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
34
|
Influence of Shigella flexneri 2a O Antigen Acetylation on Its Bacteriophage Sf6 Receptor Activity and Bacterial Interaction with Human Cells. J Bacteriol 2020; 202:JB.00363-20. [PMID: 32989087 DOI: 10.1128/jb.00363-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is a major causative agent of bacillary dysentery in developing countries, where serotype 2a2 is the prevalent strain. To date, approximately 30 serotypes have been identified for S. flexneri, and the major contribution to the emergence of new serotypes is chemical modifications of the lipopolysaccharide (LPS) component O antigen (Oag). Glucosylation, O-acetylation, and phosphoethanolamine (PEtN) modifications increase the Oag diversity, providing benefits to S. flexneri LPS Oag acts as a primary receptor for bacteriophage Sf6, which infects only a limited range of S. flexneri serotypes (Y and X). It uses its tailspike protein (Sf6TSP) to establish initial interaction with LPS Oags that it then hydrolyzes. Currently, there is a lack of comprehensive study on the parent and serotype variant strains from the same genetic background and an understanding of the importance of LPS Oag O-acetylations. Therefore, a set of isogenic strains (based on S. flexneri 2457T [2a2]) with deletions of different Oag modification genes (oacB, oacD, and gtrII) that resemble different naturally occurring serotype Y and 2a strains was created. The impacts of these Oag modifications on S. flexneri sensitivity to Sf6 and the pathogenesis-related properties were then compared. We found that Sf6TSP can hydrolyze serotype 2a LPS Oag, identified that 3/4-O-acetylation is essential for resistance of serotype 2a strains to Sf6, and showed that serotype 2a strains have better invasion ability. Lastly, we revealed two new serotype conversions for S. flexneri, thereby contributing to understanding the evolution of this important human pathogen.IMPORTANCE The emergence of antibiotic-resistant strains and lack of efficient vaccines have made Shigella a priority organism for the World Health Organization (1). Therefore, bacteriophage therapy has received increasing attention as an alternative therapeutic approach. LPS Oag is the most variable part of LPS due to chemical modifications and is the target of bacteriophage Sf6 (S. flexneri specific). We dissected the evolution of S. flexneri serotype Y to 2a2, which revealed a new role for a gene acquired during serotype conversion and furthermore identified new specific forms of LPS receptor for Sf6. Collectively, these results unfold the importance of the acquisition of those Oag modification genes and further our understanding of the relationship between Sf6 and S. flexneri.
Collapse
|
35
|
Hlozek J, Owen S, Ravenscroft N, Kuttel MM. Molecular Modeling of the Shigella flexneri Serogroup 3 and 5 O-Antigens and Conformational Relationships for a Vaccine Containing Serotypes 2a and 3a. Vaccines (Basel) 2020; 8:vaccines8040643. [PMID: 33147882 PMCID: PMC7712985 DOI: 10.3390/vaccines8040643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenic bacterium Shigella flexneri is a leading global cause of diarrheal disease. The O-antigen is the primary vaccine target and distinguishes the 30 serotypes reported. Except for serotype 6, all S. flexneri serotypes have a common backbone repeating unit (serotype Y), with variations in substitution creating the various serotypes. A quadrivalent vaccine containing serotypes 2a and 3a (as well as 6 and Shigella sonnei) is proposed to provide broad protection against non-vaccine S. flexneri serotypes through shared epitopes and conformations. Here we model the O-antigen (O-Ag) conformations of serogroups 3 and 5: a continuation of our ongoing systematic study of the S. flexneri O-antigens that began with serogroup 2. Our simulations show that S. flexneri serogroups 2, 3, and 5 all have flexible O-Ags, with substitutions of the backbone altering the chain conformations in different ways. Our analysis suggests three general heuristics for the effects of substitution on the Shigella O-Ag conformations: (1) substitution on rhamnose C reduces the extension of the O-Ag chain; (2) substitution at O-3 of rhamnose A restricts the O-Ags to predominantly helical conformations, (3) substitution at O-3 of rhamnose B has only a slight effect on conformation. The common O-Ag conformations across serotypes identified in this work support the assumption that a quadrivalent vaccine containing serotypes 2a and 3a could provide coverage against S. flexneri serotype 3b and serogroup 5.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (J.H.); (N.R.)
| | - Sara Owen
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa;
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (J.H.); (N.R.)
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa;
- Correspondence:
| |
Collapse
|
36
|
Raso MM, Gasperini G, Alfini R, Schiavo F, Aruta MG, Carducci M, Forgione MC, Martini S, Cescutti P, Necchi F, Micoli F. GMMA and Glycoconjugate Approaches Compared in Mice for the Development of a Vaccine against Shigella flexneri Serotype 6. Vaccines (Basel) 2020; 8:vaccines8020160. [PMID: 32260067 PMCID: PMC7349896 DOI: 10.3390/vaccines8020160] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Shigella infections are one of the top causes of diarrhea throughout the world, with Shigella flexneri being predominant in developing countries. Currently, no vaccines are widely available and increasing levels of multidrug-resistance make Shigella a high priority for vaccine development. The serotype-specific O-antigen moiety of Shigella lipopolysaccharide has been recognized as a key target for protective immunity, and many O-antigen based candidate vaccines are in development. Recently, the Generalized Modules for Membrane Antigens (GMMA) technology has been proposed as an alternative approach to traditional glycoconjugate vaccines for O-antigen delivery. Here, these two technologies are compared for a vaccine against S. flexneri serotype 6. Genetic strategies for GMMA production, conjugation approaches for linkage of the O-antigen to CRM197 carrier protein, and a large panel of analytical methods for full vaccine characterization have been put in place. In a head-to-head immunogenicity study in mice, GMMA induced higher anti-O-antigen IgG than glycoconjugate administered without Alhydrogel. When formulated on Alhydrogel, GMMA and glycoconjugate elicited similar levels of persistent anti-O-antigen IgG with bactericidal activity. Glycoconjugates are a well-established bacterial vaccine approach, but can be costly, particularly when multicomponent preparations are required. With similar immunogenicity and a simpler manufacturing process, GMMA are a promising strategy for the development of a vaccine against Shigella.
Collapse
Affiliation(s)
- Maria Michelina Raso
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
- Department of Life Science, University of Trieste, Building C11, via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
| | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
| | | | - Silvia Martini
- GSK, via Fiorentina 1, 53100 Siena, Italy; (M.C.F.); (S.M.)
| | - Paola Cescutti
- Department of Life Science, University of Trieste, Building C11, via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (M.M.R.); (G.G.); (R.A.); (F.S.); (M.G.A.); (M.C.); (F.N.)
- Correspondence: ; Tel.: +39-0577-539087
| |
Collapse
|
37
|
Development and Validation of a Procedure for Authenticity Verification of Modified Lipopolysaccharides of Shigella flexneri Subtypes 1b, 2a, 3a, 6, and Y by 13C NMR Spectroscopy. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Hlozek J, Ravenscroft N, Kuttel MM. Effects of Glucosylation and O-Acetylation on the Conformation of Shigella flexneri Serogroup 2 O-Antigen Vaccine Targets. J Phys Chem B 2020; 124:2806-2814. [PMID: 32204588 DOI: 10.1021/acs.jpcb.0c01595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Shigellosis is an enteric disease with high morbidity and mortality, particularly in developing countries. There is currently no licensed vaccine available. Most infection is caused by Shigella flexneri, of which 30 serotypes have been recognized based on O-antigen polysaccharide structure. Almost all S. flexneri serotypes share the same repeating unit backbone (serotype Y), with varying glucosylation, O-acetylation and phosphorylation. The O-antigen is the primary vaccine target; the vaccine valency (and hence cost) can be reduced by cross-protection. Our planned systematic conformational study of S. flexneri starts here with 2a, the dominant cause of infection globally. We employ microsecond molecular dynamics simulations to compare the conformation of the unsubstituted serotype Y backbone with the serogroup 2 O-antigens, to investigate the effect of glucosylation and O-acetylation (O-factor 9) on conformation. We find that serotype Y is highly flexible, whereas glucosylation in 2a restricts flexibility and induces C-curve conformations. Further, the glucose side-chains adopt two distinct conformations, corroborated by the antibody-bound crystal structure data. Additional substitution on O-3 of rhamnose A (whether O-acetylation in 2a or glucosylation in 2b) induces helical conformations. Our results suggest that the O-3-acetylated 2a antigen will elicit cross-protection against 2b, as well as other serotypes containing O-factor 9.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
39
|
Barel LA, Mulard LA. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 2020; 15:1338-1356. [PMID: 31158047 PMCID: PMC6663142 DOI: 10.1080/21645515.2019.1606972] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering “lattice”-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and “sun”-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.
Collapse
Affiliation(s)
- Louis-Antoine Barel
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France.,b Université Paris Descartes , Paris , France
| | - Laurence A Mulard
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France
| |
Collapse
|
40
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
41
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
42
|
Evaluation of a Culture-Dependent Algorithm and a Molecular Algorithm for Identification of Shigella spp., Escherichia coli, and Enteroinvasive E. coli. J Clin Microbiol 2018; 56:JCM.00510-18. [PMID: 30021824 PMCID: PMC6156305 DOI: 10.1128/jcm.00510-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli (EIEC) is challenging because of their close relatedness. Distinction is vital, as infections with Shigella spp. are under surveillance of health authorities, in contrast to EIEC infections. In this study, a culture-dependent identification algorithm and a molecular identification algorithm were evaluated. Discrepancies between the two algorithms and original identification were assessed using whole-genome sequencing (WGS). After discrepancy analysis with the molecular algorithm, 100% of the evaluated isolates were identified in concordance with the original identification. However, the resolution for certain serotypes was lower than that of previously described methods and lower than that of the culture-dependent algorithm. Although the resolution of the culture-dependent algorithm is high, 100% of noninvasive E. coli, Shigella sonnei, and Shigella dysenteriae, 93% of Shigella boydii and EIEC, and 85% of Shigella flexneri isolates were identified in concordance with the original identification. Discrepancy analysis using WGS was able to confirm one of the used algorithms in four discrepant results. However, it failed to clarify three other discrepant results, as it added yet another identification. Both proposed algorithms performed well for the identification of Shigella spp. and EIEC isolates and are applicable in low-resource settings, in contrast to previously described methods that require WGS for daily diagnostics. Evaluation of the algorithms showed that both algorithms are capable of identifying Shigella species and EIEC isolates. The molecular algorithm is more applicable in clinical diagnostics for fast and accurate screening, while the culture-dependent algorithm is more suitable for reference laboratories to identify Shigella spp. and EIEC up to the serotype level.
Collapse
|
43
|
Kunstmann S, Scheidt T, Buchwald S, Helm A, Mulard LA, Fruth A, Barbirz S. Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens. Viruses 2018; 10:E431. [PMID: 30111705 PMCID: PMC6116271 DOI: 10.3390/v10080431] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Tom Scheidt
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Saskia Buchwald
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Alexandra Helm
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Roux, 75015 Paris, France.
- CNRS UMR 3523, Institut Pasteur, 75015 Paris, France.
| | - Angelika Fruth
- National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, 38855 Wernigerode, Germany.
| | - Stefanie Barbirz
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
44
|
Vaccination with Shigella flexneri 2a conjugate induces type 2a and cross-reactive type 6 antibodies in humans but not in mice. Vaccine 2017; 35:4990-4996. [PMID: 28797729 DOI: 10.1016/j.vaccine.2017.07.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
Shigella flexneri (S. flexneri) 6 has emerged as an important cause of shigellosis. Our efficacy study of Shigella sonnei and S. flexneri 2a O-specific polysaccharide (O-SP) conjugates in 1-4year-olds had too few S. flexneri 2a cases for efficacy evaluation but surprisingly showed protection of 3-4year-olds, S. flexneri 2a-recipients, from S. flexneri 6 infection. To investigate this cross-protection antibodies to both Shigella types were investigated in all sera remaining from previous studies. Twenty to 30% of 3-44year-old humans injected with S. flexneri 2a conjugate responded with ≥4-fold increases of IgG anti type 6, p<0.00001. The specificity of these antibodies was shown by inhibition studies. S. flexneri 6 infection of 2 children induced besides S. flexneri 6, also S. flexneri 2a antibodies, at levels of S. flexneri 2a vaccinees. S. flexneri 2a antibodies induced by S. flexneri 6 conjugates could not be studied since no such conjugate was assessed in humans and mice responded almost exclusively to the O-SP of the injected conjugate, with no cross-reactive antibodies. Our results indicate induction of cross-reactive protective antibodies. The O-acetylated disaccharide shared by S. flexneri 6 and 2a O-SPs, is the likely basis for their cross-reactivity. S. flexneri 6 O-SP conjugates, alone and in combination with S. flexneri 2a, merit further investigation for broad S. flexneri protection.
Collapse
|
45
|
Hu Z, Bongat White AF, Mulard LA. Efficient Iterative Synthesis of O-Acetylated Tri- to Pentadecasaccharides Related to the Lipopolysaccharide ofShigella flexneriType 3 a through Di- and Trisaccharide Glycosyl Donors. Chem Asian J 2017; 12:419-439. [DOI: 10.1002/asia.201600819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaoyu Hu
- Chemistry of Biomolecules; Institut Pasteur; 28 rue du Dr. Roux 75724 Paris Cedex 15 France
- CNRS UMR 3523; Institut Pasteur; 28 rue du Dr. Roux 75015 Paris France
| | - Aileen F. Bongat White
- Chemistry of Biomolecules; Institut Pasteur; 28 rue du Dr. Roux 75724 Paris Cedex 15 France
- CNRS UMR 3523; Institut Pasteur; 28 rue du Dr. Roux 75015 Paris France
- Dextra Laboratories Ltd.; Science and Technology Centre; Earley Gate Reading RG6 6BZ U. K
| | - Laurence A. Mulard
- Chemistry of Biomolecules; Institut Pasteur; 28 rue du Dr. Roux 75724 Paris Cedex 15 France
- CNRS UMR 3523; Institut Pasteur; 28 rue du Dr. Roux 75015 Paris France
| |
Collapse
|
46
|
Hossain MU, Khan MA, Hashem A, Islam MM, Morshed MN, Keya CA, Salimullah M. Finding Potential Therapeutic Targets against Shigella flexneri through Proteome Exploration. Front Microbiol 2016; 7:1817. [PMID: 27920755 PMCID: PMC5118456 DOI: 10.3389/fmicb.2016.01817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Background:Shigella flexneri is a gram negative bacteria that causes the infectious disease “shigellosis.” S. flexneri is responsible for developing diarrhea, fever, and stomach cramps in human. Antibiotics are mostly given to patients infected with shigella. Resistance to antibiotics can hinder its treatment significantly. Upon identification of essential therapeutic targets, vaccine and drug could be effective therapy for the treatment of shigellosis. Methods: The study was designed for the identification and qualitative characterization for potential drug targets from S. flexneri by using the subtractive proteome analysis. A set of computational tools were used to identify essential proteins those are required for the survival of S. flexneri. Total proteome (13,503 proteins) of S. flexneri was retrieved from NCBI and further analyzed by subtractive channel analysis. After identification of the metabolic proteins we have also performed its qualitative characterization to pave the way for the identification of promising drug targets. Results: Subtractive analysis revealed that a list of 53 targets of S. flexneri were human non-homologous essential metabolic proteins that might be used for potential drug targets. We have also found that 11 drug targets are involved in unique pathway. Most of these proteins are cytoplasmic, can be used as broad spectrum drug targets, can interact with other proteins and show the druggable properties. The functionality and drug binding site analysis suggest a promising effective way to design the new drugs against S. flexneri. Conclusion: Among the 53 therapeutic targets identified through this study, 13 were found highly potential as drug targets based on their physicochemical properties whilst only one was found as vaccine target against S. flexneri. The outcome might also be used as module as well as circuit design in systems biology.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University Tangail, Bangladesh
| | - Md Arif Khan
- Department of Science and Humanities, Military Institute of Science and Technology, Mirpur Cantonment Dhaka, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology Savar, Bangladesh
| | - Md Monirul Islam
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University Tangail, Bangladesh
| | - Mohammad Neaz Morshed
- Department of Science and Humanities, Military Institute of Science and Technology, Mirpur Cantonment Dhaka, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University Bashundhara, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology Savar, Bangladesh
| |
Collapse
|
47
|
Knirel YA, Sun Q, Senchenkova SN, Perepelov AV, Shashkov AS, Xu J. O-antigen modifications providing antigenic diversity of Shigella flexneri and underlying genetic mechanisms. BIOCHEMISTRY (MOSCOW) 2016; 80:901-14. [PMID: 26542003 DOI: 10.1134/s0006297915070093] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
O-Antigens (O-specific polysaccharides) of Shigella flexneri, a primary cause of shigellosis, are distinguished by a wide diversity of chemical modifications following the oligosaccharide O-unit assembly. The present review is devoted to structural, serological, and genetic aspects of these modifications, including O-acetylation and phosphorylation with phosphoethanolamine that have been identified recently. The modifications confer the host with specific immunodeterminants (O-factors or O-antigen epitopes), which accounts for the antigenic diversity of S. flexneri considered as a virulence factor of the pathogen. Totally, 30 O-antigen variants have been recognized in these bacteria, the corresponding O-factors characterized using specific antibodies, and a significant extension of the serotyping scheme of S. flexneri on this basis is suggested. Multiple genes responsible for the O-antigen modifications and the resultant serotype conversions of S. flexneri have been identified. The genetic mechanisms of the O-antigen diversification by acquisition of mobile genetic elements, including prophages and plasmids, followed occasionally by gene mobilization and inactivation have been revealed. These findings further our understanding of the genetics and antigenicity of S. flexneri and assist control of shigellosis.
Collapse
Affiliation(s)
- Y A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
48
|
Monoclonal Antibodies to Shigella Lipopolysaccharide Are Useful for Vaccine Production. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:681-8. [PMID: 27280622 DOI: 10.1128/cvi.00148-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/03/2016] [Indexed: 11/20/2022]
Abstract
There is a significant need for an effective multivalent Shigella vaccine that targets the most prevalent serotypes. Most Shigella vaccines under development utilize serotype-specific lipopolysaccharides (LPSs) as a major component based on protection and epidemiological data. As vaccine formulations advance from monovalent to multivalent, assays and reagents need to be developed to accurately and reproducibly quantitate the amount of LPSs from multiple serotypes in the final product. To facilitate this effort, we produced 36 hybridomas that secrete monoclonal antibodies (MAbs) against the O antigen on the LPS from Shigella flexneri 2a, Shigella flexneri 3a, and Shigella sonnei We used six of these monoclonal antibodies for an inhibition enzyme-linked immunosorbent assay (iELISA), measuring LPSs with high sensitivity and specificity. It was also demonstrated that the Shigella serotype-specific MAbs were useful for bacterial surface staining detected by flow cytometry. These MAbs are also useful for standardizing the serum bactericidal assay (SBA) for Shigella Functional assays, such as the in vitro bactericidal assay, are necessary for vaccine evaluation and may serve as immunological correlates of immunity. An S. flexneri 2a-specific monoclonal antibody killed S. flexneri 2b isolates, suggesting that S. flexneri 2a LPS may induce cross-protection against S. flexneri 2b. Overall, the Shigella LPS-specific MAbs described have potential utility to the vaccine development community for assessing multivalent vaccine composition and as a reliable control for multiple immunoassays used to assess vaccine potency.
Collapse
|
49
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
50
|
Boutet J, Blasco P, Guerreiro C, Thouron F, Dartevelle S, Nato F, Cañada FJ, Ardá A, Phalipon A, Jiménez-Barbero J, Mulard LA. Detailed Investigation of the Immunodominant Role of O-Antigen Stoichiometric O-Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STD-NMR Spectroscopy for Shigella flexneri 3a. Chemistry 2016; 22:10892-911. [PMID: 27376496 DOI: 10.1002/chem.201600567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 02/02/2023]
Abstract
Shigella flexneri 3a causes bacillary dysentery. Its O-antigen has the {2)-[α-d-Glcp-(1→3)]-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-[Ac→2]-α-l-Rhap-(1→3)-[Ac→6]≈40 % -β-d-GlcpNAc-(1→} ([(E)ABAc CAc D]) repeating unit, and the non-O-acetylated equivalent defines S. flexneri X. Propyl hepta-, octa-, and decasaccharides sharing the (E')A'BAc CD(E)A sequence, and their non-O-acetylated analogues were synthesized from a fully protected BAc CD(E)A allyl glycoside. The stepwise introduction of orthogonally protected mono- and disaccharide imidate donors was followed by a two-step deprotection process. Monoclonal antibody binding to twenty-six S. flexneri types 3a and X di- to decasaccharides was studied by an inhibition enzyme-linked immunosorbent assay (ELISA) and STD-NMR spectroscopy. Epitope mapping revealed that the 2C -acetate dominated the recognition by monoclonal IgG and IgM antibodies and that the BAc CD segment was essential for binding. The glucosyl side chain contributed to a lesser extent, albeit increasingly with the chain length. Moreover, tr-NOESY analysis also showed interaction but did not reveal any meaningful conformational change upon antibody binding.
Collapse
Affiliation(s)
- Julien Boutet
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France.,CNRS UMR 3523, Institut Pasteur, 75015, Paris, France.,Université Paris Descartes, Institut Pasteur, 75015, Paris, France.,Present address for J.B.: Adisseo (France), Present address for P.B., Dept. of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Pilar Blasco
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Present address for J.B.: Adisseo (France), Present address for P.B., Dept. of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Catherine Guerreiro
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France.,CNRS UMR 3523, Institut Pasteur, 75015, Paris, France
| | - Françoise Thouron
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr. Roux, 75015, Paris, France.,INSERM U1202, Institut Pasteur, 75015, Paris, France
| | - Sylvie Dartevelle
- Institut Pasteur, PF5, 28 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3528, Institut Pasteur, 75015, Paris, France
| | - Farida Nato
- Institut Pasteur, PF5, 28 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3528, Institut Pasteur, 75015, Paris, France
| | - F Javier Cañada
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Ardá
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Molecular Recognition & Host-Pathogen Interactions Program, CIC bioGUNE, Bizkaia Technological Park, Building 801A, 48160, Derio, Spain
| | - Armelle Phalipon
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr. Roux, 75015, Paris, France.,INSERM U1202, Institut Pasteur, 75015, Paris, France
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Molecular Recognition & Host-Pathogen Interactions Program, CIC bioGUNE, Bizkaia Technological Park, Building 801A, 48160, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013, Bilbao, Spain.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France. .,CNRS UMR 3523, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|