1
|
Ginatt AA, Berihu M, Castel E, Medina S, Carmi G, Faigenboim-Doron A, Sharon I, Tal O, Droby S, Somera T, Mazzola M, Eizenberg H, Freilich S. A metabolic modeling-based framework for predicting trophic dependencies in native rhizobiomes of crop plants. eLife 2024; 13:RP94558. [PMID: 39417540 PMCID: PMC11486489 DOI: 10.7554/elife.94558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The exchange of metabolites (i.e., metabolic interactions) between bacteria in the rhizosphere determines various plant-associated functions. Systematically understanding the metabolic interactions in the rhizosphere, as well as in other types of microbial communities, would open the door to the optimization of specific predefined functions of interest, and therefore to the harnessing of the functionality of various types of microbiomes. However, mechanistic knowledge regarding the gathering and interpretation of these interactions is limited. Here, we present a framework utilizing genomics and constraint-based modeling approaches, aiming to interpret the hierarchical trophic interactions in the soil environment. 243 genome scale metabolic models of bacteria associated with a specific disease-suppressive vs disease-conducive apple rhizospheres were drafted based on genome-resolved metagenomes, comprising an in silico native microbial community. Iteratively simulating microbial community members' growth in a metabolomics-based apple root-like environment produced novel data on potential trophic successions, used to form a network of communal trophic dependencies. Network-based analyses have characterized interactions associated with beneficial vs non-beneficial microbiome functioning, pinpointing specific compounds and microbial species as potential disease supporting and suppressing agents. This framework provides a means for capturing trophic interactions and formulating a range of testable hypotheses regarding the metabolic capabilities of microbial communities within their natural environment. Essentially, it can be applied to different environments and biological landscapes, elucidating the conditions for the targeted manipulation of various microbiomes, and the execution of countless predefined functions.
Collapse
Affiliation(s)
- Alon Avraham Ginatt
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovotIsrael
| | - Maria Berihu
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Einam Castel
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Shlomit Medina
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Gon Carmi
- Bioinformatics Unit, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat YishayIsrael
| | - Adi Faigenboim-Doron
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani CenterBeit DaganIsrael
| | - Itai Sharon
- Migal-Galilee Research InstituteKiryat ShmonaIsrael
- Faculty of Sciences and Technology, Tel-Hai Academic CollegeQiryat ShemonaIsrael
| | - Ofir Tal
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological ResearchMigdalIsrael
| | - Samir Droby
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), The Volcani CenterRishon LeZionIsrael
| | - Tracey Somera
- United States Department of Agriculture-Agricultural Research Service Tree Fruits Research LabWenatcheeUnited States
| | - Mark Mazzola
- Department of Plant Pathology, Stellenbosch UniversityStellenboschSouth Africa
| | - Hanan Eizenberg
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Shiri Freilich
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| |
Collapse
|
2
|
Medouni-Haroune L, Medouni-Adrar S, Houfani AA, Bouiche C, Azzouz Z, Roussos S, Desseaux V, Madani K, Kecha M. Statistical Optimization and Partial Characterization of Xylanases Produced by Streptomyces sp. S1M3I Using Olive Pomace as a Fermentation Substrate. Appl Biochem Biotechnol 2024; 196:2012-2030. [PMID: 37458941 DOI: 10.1007/s12010-023-04660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 04/23/2024]
Abstract
Xylanase production by Streptomyces sp. S1M3I was optimized by response surface methodology (RSM), followed by a partial characterization of these enzymes. Olive pomace was used as a substrate for growing Streptomyces sp. S1M3I in submerged fermentation. Effects of incubation time, pH, temperature, carbon source, nitrogen source, and inoculum size on xylanase production were studied, through the one-factor-at-a-time method. Then, a 33-factorial experimental design with RSM and the Box-Behnken design was investigated for the major influence factors. Maximum xylanase production (11.28 U/mL) was obtained when the strain was grown in mineral medium supplemented with 3% (w/v) of olive pomace powder and 0.3% (w/v) of ammonium sulfate, at a pH 7.4 and an incubation temperature of 40 °C. The xylanases in the supernatant degraded all tested substrates, with higher activity for the low-viscosity wheat arabinoxylan substrate. Two xylanases with close molecular masses were detected by zymogram analysis: Xyl-1 and Xyl-2 with molecular masses of 24.14 kDa and 27 kDa, respectively. The optimization of enzyme production parameters of Streptomyces sp. S1M3I and the characterization of these enzymes are prerequisites to enhancing xylanase production yield, which is crucial for further biotechnological processes.
Collapse
Affiliation(s)
- Lamia Medouni-Haroune
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000, Bejaia, Algeria.
| | - Sonia Medouni-Adrar
- Département Des Sciences Alimentaires, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Aicha Asma Houfani
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Cilia Bouiche
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000, Bejaia, Algeria
| | - Zahra Azzouz
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Sevastianos Roussos
- Equipe Eco Technologies Et Bioremédiation, Faculté St Jérome, Campus Etoile, Aix Marseille Université & Université Avignon; IMBE UMR CNRS-7263/IRD-237, Case 421, 13397, Cedex 20, Marseille, France
| | - Véronique Desseaux
- Institut Des Sciences Moléculaires de Marseille, Faculté Des Sciences Et Techniques, St Jérome, Biosciences UMR CNRS 6263.Université Paul Cézanne, 13397, Cedex 20, Marseille, France
| | - Khodir Madani
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, 06000, Bejaia, Algeria
| | - Mouloud Kecha
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| |
Collapse
|
3
|
Wang C, Kuzyakov Y. Mechanisms and implications of bacterial-fungal competition for soil resources. THE ISME JOURNAL 2024; 18:wrae073. [PMID: 38691428 PMCID: PMC11104273 DOI: 10.1093/ismejo/wrae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Elucidating complex interactions between bacteria and fungi that determine microbial community structure, composition, and functions in soil, as well as regulate carbon (C) and nutrient fluxes, is crucial to understand biogeochemical cycles. Among the various interactions, competition for resources is the main factor determining the adaptation and niche differentiation between these two big microbial groups in soil. This is because C and energy limitations for microbial growth are a rule rather than an exception. Here, we review the C and energy demands of bacteria and fungi-the two major kingdoms in soil-the mechanisms of their competition for these and other resources, leading to niche differentiation, and the global change impacts on this competition. The normalized microbial utilization preference showed that bacteria are 1.4-5 times more efficient in the uptake of simple organic compounds as substrates, whereas fungi are 1.1-4.1 times more effective in utilizing complex compounds. Accordingly, bacteria strongly outcompete fungi for simple substrates, while fungi take advantage of complex compounds. Bacteria also compete with fungi for the products released during the degradation of complex substrates. Based on these specifics, we differentiated spatial, temporal, and chemical niches for these two groups in soil. The competition will increase under the main five global changes including elevated CO2, N deposition, soil acidification, global warming, and drought. Elevated CO2, N deposition, and warming increase bacterial dominance, whereas soil acidification and drought increase fungal competitiveness.
Collapse
Affiliation(s)
- Chaoqun Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
- Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen 37077, Germany
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yakov Kuzyakov
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
4
|
Cuebas‐Irizarry MF, Grunden AM. Streptomyces spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microb Biotechnol 2024; 17:e14258. [PMID: 37017414 PMCID: PMC10832569 DOI: 10.1111/1751-7915.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Complex polymers represent a challenge for remediating environmental pollution and an opportunity for microbial-catalysed conversion to generate valorized chemicals. Members of the genus Streptomyces are of interest because of their potential use in biotechnological applications. Their versatility makes them excellent sources of biocatalysts for environmentally responsible bioconversion, as they have a broad substrate range and are active over a wide range of pH and temperature. Most Streptomyces studies have focused on the isolation of strains, recombinant work and enzyme characterization for evaluating their potential for biotechnological application. This review discusses reports of Streptomyces-based technologies for use in the textile and pulp-milling industry and describes the challenges and recent advances aimed at achieving better biodegradation methods featuring these microbial catalysts. The principal points to be discussed are (1) Streptomyces' enzymes for use in dye decolorization and lignocellulosic biodegradation, (2) biotechnological processes for textile and pulp and paper waste treatment and (3) challenges and advances for textile and pulp and paper effluent treatment.
Collapse
Affiliation(s)
- Mara F. Cuebas‐Irizarry
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| | - Amy M. Grunden
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| |
Collapse
|
5
|
Thomas L, Ram H, Singh VP. Multipurpose cellulases of Promicromonospora sp. VP111, with broad substrate specificity and tolerance properties. J Basic Microbiol 2023. [PMID: 37097714 DOI: 10.1002/jobm.202200679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Cellulolytic actinobacterium, Promicromonospora sp. VP111 concomitantly produced cellulases (CELs), xylanase and pectinase when grown on commercial cellulose and untreated agricultural lignocellulosic residues (wheat straw and sugarcane bagasse). Secreted CELs hydrolyzed (enhanced with Co2+ ion) multiple cellulosic substrates, including sodium carboxymethyl cellulose (Na-CMC), Whatman filter paper no. 1, microcrystalline cellulose (avicel), p-nitrophenyl-β-D-glucopyranoside (pNPG), laminarin, and cellulose powder. The CELs showed stabilities in the presence of various chemicals, including glucose (0.2 M), detergents (1%, w/v or v/v), denaturants (1%, w/v or v/v), and sodium chloride (NaCl, 30%, w/v). The CELs were fractionated using ammonium sulfate precipitation and dialysis. Activities (%) of fractionated CELs were retained at 60°C for endoglucanase/carboxymethyl cellulase (CMCase) (88.38), filter paper cellulase (FPase) (77.55), and β-glucosidase (90.52), which indicated of thermo-stability. Similarly, the activities (%) for CMCase (85.79), FPase (82.48), and β-glucosidase (85.92) at pH 8.5 indicated of alkaline-stability. Kinetic factors, Km and Vmax for endoglucanase component of fractionated CELs were 0.014 g/l and 158.23 µM glucose/min/mL, respectively. Fractionated CELs yielded activation energies (kJ/mol) of 17.933, 6.294, and 4.207 for CMCase, FPase, and β-glucosidase activities, respectively in linear thermostable Arrhenius plots. Thus, this study reports on the multipurpose CELs from an untreated agricultural residue utilizing Promicromonospora in relation to broad substrate specificity, halo-tolerance, alkaline-tolerance, detergent-tolerance, thermo-tolerance, organic solvent-tolerance, and end product-tolerance.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Hari Ram
- National Chemical Laboratory (NCL), National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| | - Ved P Singh
- Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Harunari E, Mae S, Igarashi Y. Microbispofurans A-C, plant growth-promoting furancarboxylic acids from plant root-derived Microbispora sp. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00614-1. [PMID: 37016013 DOI: 10.1038/s41429-023-00614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Microbispofurans A-C (1-3), new alkyl/alkenyl furancarboxylic acids, were isolated from the culture extract of the plant root-derived Microbispora sp. RD004716. The planar structures of 1-3 were determined by extensive analysis of 1D and 2D NMR spectroscopic data. Although 1-3 showed no appreciable antimicrobial activity or cytotoxicity, strong plant growth-promotion activity of the germinated red leaf lettuce seeds was observed at 10 μM. Furancarboxylic acids and their methyl esters were found in actinomycetes and fungi; however, the isolation of furandicarboxylic acid was unprecedented.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shunsuke Mae
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
7
|
Zhang X, Huang Z, Zhong Z, Li Q, Bian F, Yang C. Metagenomic insights into the characteristics of soil microbial communities in the decomposing biomass of Moso bamboo forests under different management practices. Front Microbiol 2022; 13:1051721. [PMID: 36590390 PMCID: PMC9797724 DOI: 10.3389/fmicb.2022.1051721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Considering the rapid growth and high biomass productivity, Moso bamboo (Phyllostachys edulis) has high carbon (C) sequestration potential, and different management practices can strongly modify its C pools. Soil microorganisms play an important role in C turnover through dead plant and microbial biomass degradation. To date, little is known about how different management practices affect microbial carbohydrate-active enzymes (CAZymes) and their responses to dead biomass degradation. Methods Based on metagenomics analysis, this study analyzed CAZymes in three comparable stands from each Moso bamboo plantation: undisturbed (M0), extensively managed (M1), and intensively managed (M2). Results The results showed that the number of CAZymes encoding plant-derived component degradation was higher than that encoding microbe-derived component degradation. Compared with the M0, the CAZyme families encoding plant-derived cellulose were significantly (p < 0.05) high in M2 and significantly (p < 0.05) low in M1. For microbe-derived components, the abundance of CAZymes involved in the bacterial-derived peptidoglycan was higher than that in fungal-derived components (chitin and glucans). Furthermore, M2 significantly increased the fungal-derived chitin and bacterial-derived peptidoglycan compared to M0, whereas M1 significantly decreased the fungal-derived glucans and significantly increased the bacterial-derived peptidoglycan. Four bacterial phyla (Acidobacteria, Actinobacteria, Proteobacteria, and Chloroflexi) mainly contributed to the degradation of C sources from the plant and microbial biomass. Redundancy analysis (RDA) and mantel test suggested the abundance of CAZyme encoding genes for plant and microbial biomass degradation are significantly correlated with soil pH, total P, and available K. Least Squares Path Modeling (PLS-PM) showed that management practices indirectly affect the CAZyme encoding genes associated with plant and microbial biomass degradation by regulating the soil pH and nutrients (total N and P), respectively. Discussion Our study established that M2 and M1 impact dead biomass decomposition and C turnover, contributing to decreased C accumulation and establishing that the bacterial community plays the main role in C turnover in bamboo plantations.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, China National Bamboo Research Center, Zhejiang, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, China
- Engineering Research Center of Biochar of Zhejiang Province, Zhejiang, China
| | - Zhiyuan Huang
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, China National Bamboo Research Center, Zhejiang, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, China
| | - Zheke Zhong
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, China National Bamboo Research Center, Zhejiang, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, China
| | - Qiaoling Li
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, China National Bamboo Research Center, Zhejiang, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, China
| | - Fangyuan Bian
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, China National Bamboo Research Center, Zhejiang, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, China
| | - Chuanbao Yang
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, China National Bamboo Research Center, Zhejiang, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, China
| |
Collapse
|
8
|
Shinde R, Shahi DK, Mahapatra P, Naik SK, Thombare N, Singh AK. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115843. [PMID: 36056484 DOI: 10.1016/j.jenvman.2022.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic crop residues (LCCRs) hold a significant share of the terrestrial biomass, estimated at 5 billion Mg per annum globally. A massive amount of these LCCRs are burnt in many countries resulting in immense environmental pollution; hence, its proper disposal in a cost-effective and eco-friendly manner is a significant challenge. Among the different options for management of LCCRs, the use of lignocellulose degrading microorganisms (LCDMOs), like fungi and bacteria, has emerged as an eco-friendly and effective way for its on-site disposal. LCDMOs achieve degradation through various mechanisms, including multiple supportive enzymes, causing oxidative attacks by which recalcitrance of lignocellulose material is reduced, paving the way to further activity by depolymerizing enzymes. This improves the physical properties of soil, recycles plant nutrients, promotes plant growth and thus helps improve productivity. Rapid and proper microbial degradation may be achieved through the correct combination of the LCDMOs, supplementing nutrients and controlling different factors affecting microbial activity in the field. The review is a critical discussion of previous studies revealing the potential of individuals or a set of LCDMOs, factors controlling the rate of degradation and the key researchable areas for better understanding of the role of these decomposers for future use.
Collapse
Affiliation(s)
- Reshma Shinde
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India.
| | | | | | - Sushanta Kumar Naik
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| | - Nandkishore Thombare
- ICAR- Indian Institute of Natural Resin and Gums, Ranchi, 834010, Jharkhand, India
| | - Arun Kumar Singh
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
9
|
Das T, Ali F, Rahman MS. Cellulase activity of a novel bacterial strain Arthrobacter woluwensis TDS9: its application on bioconversion of paper mill sludge. J Genet Eng Biotechnol 2022; 20:87. [PMID: 35708781 PMCID: PMC9203635 DOI: 10.1186/s43141-022-00373-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023]
Abstract
Background Lignocellulosic biomasses produced from agriculture and forest-based industries are the cheapest or negative-cost biomass with a great potential for biotransformation to value-added bioproducts. Paper mill sludge, an important lignocellulosic biomass creates an environmental threat, which requires financial input for disposal. Thus, this study was aimed to isolate a novel bacterial strain capable of degrading cellulosic biomass including paper mill sludge to produce reducing sugar and other value-added bioproducts. Results A novel bacterial strain Arthrobacter woluwensis TDS9 isolated from the soil was screened for its cellulolytic activity using carboxymethyl cellulose (CMC) as the sole carbon source. The incubation period, temperature, pH, carbon, and nitrogen sources are the most important factors ruling the CMCase and sugar productions of the strain A. woluwensis TDS9, and an alkaline pH (pH 8.0) led to enhanced sugar production up to 1100.09 μg/mL after 72 h of incubation at 25°C in a medium containing 1.5% CMC and 1.25% beef extract. The optimal conditions for maximum CMCase activity were defined, and the potassium ion boosted the CMCase activity up to 1.06 U/mL when the enzymatic reaction was performed for 30 min at 50°C and pH 8 using CMC as a substrate. Moreover, the strain A. woluwensis TDS9 produced 433.33 μg/mL reducing sugar from 1% pretreated paper mill sludge. Significant alterations in the structural arrangement of cellulosic fiber of paper mill sludge observed under microscope after each step of chemical treatment process helped for loosening the cellulose fibers and increased the saccharification for enzymatic hydrolysis. Endoglucanase IV (33 KDa) and beta-glucosidase II (53 KDa) were identified in crude enzyme based on the zymogram analysis and substrate specificity. Conclusions The research has for the first time proved that this A. woluwensis TDS9 strain can efficiently convert cellulose. Therefore, the strain TDS9 could be a potential candidate for cellulase production in an industrial biotransformation process of paper mill sludge to produce reducing sugar. This sugar stream can be further used as a substrate to produce biofuels and other organic acids using another microorganism, which represents a greener alternative to add value to the paper production helping paper mill industries.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md Shafiqur Rahman
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh. .,Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada.
| |
Collapse
|
10
|
Zhang Y, Chen M, Guo J, Liu N, Yi W, Yuan Z, Zeng L. Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Eng Life Sci 2022; 22:376-390. [PMID: 35573133 PMCID: PMC9077819 DOI: 10.1002/elsc.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
There are few reports on the material transformation and dominant microorganisms in the process of greening waste (GW) composting. In this study, the target microbial community succession and material transformation were studied in GW composting by using MiSeq sequencing and PICRUSt tools. The results showed that the composting process could be divided into four phases. Each phase of the composting appeared in turn and was unable to jump. In the calefactive phase, microorganisms decompose small molecular organics such as FA to accelerate the arrival of the thermophilic phase. In the thermophilic phase, thermophilic microorganisms decompose HA and lignocellulose to produce FA. While in the cooling phase, microorganisms degrade HA and FA for growth and reproduction. In the maturation phase, microorganisms synthesize humus using FA, amino acid and lignin nuclei as precursors. In the four phases of the composting, different representative genera of bacteria and fungi were detected. Streptomyces, Myceliophthora and Aspergillus, maintained high abundance in all phases of the compost. Correlation analysis indicated that bacteria, actinomycetes and fungi had synergistic effect on the degradation of lignocellulose. Therefore, it can accelerate the compost process by maintaining the thermophilic phase and adding a certain amount of FA in the maturation phase.
Collapse
Affiliation(s)
- Yushan Zhang
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| | - Mengting Chen
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| | - Jingyi Guo
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| | - Ning Liu
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| | - Weiyi Yi
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| | - Zhongtai Yuan
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| | - Lifan Zeng
- College of Materials and FoodZhongshan Institute, University of Electronic Science and Technology of ChinaZhongshanP. R. China
| |
Collapse
|
11
|
Production of Endoglucanases by Streptomyces thermocoprophilus CP1 using Rice Straw as a Substrate. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice straw is a major agricultural waste that can be used as an alternative substrate to expensive raw materials for endoglucanases (CMCase) production by microorganisms. This study aimed to search for a microorganism having the potential to produce endoglucanase from rice straw. From compost samples, 40 bacterial colonies were isolated on carboxymethylcellulose (CMC) agar. Among them, 16 isolates showed a hydrolysis zone on a CMC agar plate with hydrolysis (HC) values ranging from 1.15±0.02 to 4.40±0.52. Based on hydrolysis zone diameter and HC value, isolates CP1, CP2 and CP3 were further examined for their CMCase production in CMC broth. According to CMCase production and stability, isolate CP1 was selected for further study. The optimal pH and temperature for CMCase production of isolate CP1 were 5 and 45 °C, respectively. When using pre-treated rice straw as a substrate for semi-solid-state fermentation, the highest CMCase activity of 0.142 ± 0.008 U/mL was obtained in a medium containing pre-treated rice straw of 60 g/L. The sequence alignment analysis and phylogenetic analysis suggested that the isolate CP1 was likely to be Streptomyces thermocoprophilus. The microorganism obtained from this study may be not only industrially important but also beneficial to the environment.
Collapse
|
12
|
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field. Sci Rep 2021; 11:18441. [PMID: 34531457 PMCID: PMC8446020 DOI: 10.1038/s41598-021-97975-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cellulose plays an important role in maintaining or improving soil carbon (C) cycling and soil fertility of paddy field. There had close relationship between functional cellulose genes (cbhI and GH48) with characterize of soil organic matter chemical components (fulvic acid and humic acid) and soil physical fractions. However, there is still limited information about how functional cellulose degradation response to long-term fertilizer management and their relative importance for C sequestration under the double-cropping rice paddy field in southern of China. Therefore, the objective of this study were investigated the effects of 34-years long-term fertilizer regime on community abundance of cbhI and GH48 genes in five soil particle-size fractions (> 2000 μm, 2000–200 μm, 200–50 μm, 50–2 μm and 2–0.1 μm) by using polarization magic angle spinning 13C nuclear magnetic resonance spectroscopy. The field experiment was included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and without fertilizer input as a control (CK). The results showed that distribution of soil humus and cellulolytic microbial community abundance was significant increased under long-term application of crop residue and organic manure condition. And the FA, HA and HM C contents in > 2000 μm and 2000–50 μm fractions with MF, RF and OM treatments were significant higher than that of CK treatment. Meanwhile, the alkyl C and Oalkyl C groups of FA and HA in > 2000 μm fraction with MF, RF, OM and CK treatments were higher than that of the other fractions. There had higher AL% and lower ARO% of FA and HA in different particle-size fractions with MF, RF, OM and CK treatments. The results indicated that abundance of cbhI and GH48 genes in different particle-size fractions with RF and OM treatments were significant increased, compared with CK treatment. There had significant positive correlation between soil humus C components (FA and HA) with abundance of cbhI and GH48 genes, and the o-alkyl C and AL% of FA were positively correlated with abundance of cbhI and GH48 genes. As a result, the community abundance of cbhI and GH48 genes were significant increased under combined application of crop residue and organic manure with chemical fertilizer condition.
Collapse
|
13
|
Hu D, Baskin JM, Baskin CC, Liu R, Yang X, Huang Z. A Seed Mucilage-Degrading Fungus From the Rhizosphere Strengthens the Plant-Soil-Microbe Continuum and Potentially Regulates Root Nutrients of a Cold Desert Shrub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:538-546. [PMID: 33596107 DOI: 10.1094/mpmi-01-21-0014-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seed mucilage plays important roles in the adaptation of desert plants to the stressful environment. Artemisia sphaerocephala is an important pioneer plant in the Central Asian cold desert, and it produces a large quantity of seed mucilage. Seed mucilage of A. sphaerocephala can be degraded by soil microbes, but it is unknown which microorganisms can degrade mucilage or how the mucilage-degrading microorganisms affect rhizosphere microbial communities or root nutrients. Here, mucilage-degrading microorganisms were isolated from the rhizosphere of A. sphaerocephala, were screened by incubation with mucilage stained with Congo red, and were identified by sequencing and phylogenetic analyses. Fungal-bacterial networks based on high-throughput sequencing of rhizosphere microbes were constructed to explore the seasonal dynamic of interactions between a mucilage-degrading microorganism and its closely related microorganisms. The structural equation model was used to analyze effects of the mucilage-degrading microorganism, rhizosphere fungal-bacterial communities, and soil physicochemical properties on root C and N. The fungus Phanerochaete chrysosporium was identified as a mucilage-degrading microorganism. Relative abundance of the mucilage-degrading fungus (MDF) was highest in May. Subnetworks showed that the abundance of fungi and bacteria closely related to the MDF also were highest in May. Interactions between the MDF and related fungi and bacteria were positive, which might enhance mucilage degradation. In addition, the MDF might regulate root C and N by affecting rhizosphere microbial community structure. Our results suggest that MDF from the rhizosphere strengthens the plant-soil-microbe continuum, thereby potentially regulating microbial interactions and root nutrients of A. sphaerocephala.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Rong Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
14
|
Falade AO, Mabinya LV, Okoh AI, Nwodo UU. Studies on peroxidase production and detection of Sporotrichum thermophile-like catalase-peroxidase gene in a B acillus species isolated from Hogsback forest reserve, South Africa. Heliyon 2020; 5:e03012. [PMID: 31890960 PMCID: PMC6926187 DOI: 10.1016/j.heliyon.2019.e03012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022] Open
Abstract
This study sought to determine the process conditions for optimum peroxidase production by a Bacillus species (Bacillus sp. FALADE-1-KX640922) isolated from Hogsback forest reserve in South Africa and characterize the peroxidase gene in the bacteria. We optimized peroxidase production by manipulating the environmental and nutritional parameters under submerged fermentation. Subsequently, the gene encoding heme-peroxidase was determined through nested polymerase chain reaction and Sanger DNA sequencing. The studied bacteria had maximum peroxidase production at pH 8, 30 °C and 150 rpm. The addition of guaiacol to lignin fermentation medium enhanced peroxidase production by over 100 % in the studied bacteria. However, the other lignin monomers (veratryl alcohol, vanillin, vanillic acid and ferulic acid) repressed the enzyme activity. Modification of the fermentation medium with ammonium sulphate gave the maximum peroxidase yield (8.87 U mL−1). Under the predetermined culture conditions, Bacillus sp. FALADE-1 expressed maximum specific peroxidase activity at 48 h (8.32 U mg−1). Interestingly, a search of the sequenced gene in PeroxiBase showed 100% similarity to Sporotrichum thermophile catalase-peroxidase gene (katG), as well, the deduced protein sequence clustered with bacterial catalase-peroxidases and had a molecular weight of about 11.45 kDa with 7.01 as the estimated isoelectric point. Subsequently, the nucleotide sequence was deposited in the National Center for Biotechnology Information (NCBI) repository with the accession number MF407314. In conclusion, Bacillus sp. FALADE-1 is a promising candidate for improved peroxidase production.
Collapse
Affiliation(s)
- Ayodeji O. Falade
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
- Department of Biochemistry, University of Medical Sciences, Ondo, 351101, Ondo State, Nigeria
- Corresponding author.
| | - Leonard V. Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
15
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
16
|
Exoproduction and Molecular Characterization of Peroxidase from Ensifer adhaerens. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increased industrial application potentials of peroxidase have led to high market demand, which has outweighed the commercially available peroxidases. Hence, the need for alternative and efficient peroxidase-producers is imperative. This study reported the process parameters for enhanced exoperoxidase production by Ensifer adhaerens NWODO-2 (accession number: KX640918) for the first time, and characterized the enzyme using molecular methods. Peroxidase production by the bacteria was optimal at 48 h, with specific productivity of 12.76 U mg−1 at pH 7, 30 °C and 100 rpm in an alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen source. Upon assessment of some agricultural residues as sources of carbon for the enzyme production, sawdust gave the highest peroxidase productivity (37.50 U mg−1) under solid-state fermentation. A search of the polymerase chain reaction (PCR)-amplified peroxidase gene in UniProtKB using blastx showed 70.5% similarity to an uncharacterized protein in Ensifer adhaerens but phylogenetic analysis suggests that the gene may encode a catalase-peroxidase with an estimated molecular weight of approximately 31 kDa and isoelectric point of about 11. The nucleotide sequence of the detected gene was deposited in the GenBank under the accession number MF374336. In conclusion, the ability of the strain to utilize lignocellulosic materials for peroxidase production augurs well for biotechnological application as this would greatly reduce cost, which is a major challenge in industrial enzyme production.
Collapse
|
17
|
de Menezes AB, Prendergast-Miller MT, Macdonald LM, Toscas P, Baker G, Farrell M, Wark T, Richardson AE, Thrall PH. Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiol Ecol 2019; 94:4951599. [PMID: 29579181 DOI: 10.1093/femsec/fiy051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
European earthworms have colonised many parts of Australia, although their impact on soil microbial communities remains largely uncharacterised. An experiment was conducted to contrast the responses to Aporrectodea trapezoides introduction between soils from sites with established (Talmo, 64 A. trapezoides m-2) and rare (Glenrock, 0.6 A. trapezoides m-2) A. trapezoides populations. Our hypothesis was that earthworm introduction would lead to similar changes in bacterial communities in both soils. The effects of earthworm introduction (earthworm activity and cadaver decomposition) did not lead to a convergence of bacterial community composition between the two soils. However, in both soils, the Firmicutes decreased in abundance and a common set of bacteria responded positively to earthworms. The increase in the abundance of Flavobacterium, Chitinophagaceae, Rhodocyclaceae and Sphingobacteriales were consistent with previous studies. Evidence for possible soil resistance to earthworms was observed, with lower earthworm survival in Glenrock microcosms coinciding with A. trapezoides rarity in this site, lower soil organic matter and clay content and differences in the diversity and abundance of potential earthworm mutualist bacteria. These results suggest that while the impacts of earthworms vary between different soils, the consistent response of some bacteria may aid in predicting the impacts of earthworms on soil ecosystems.
Collapse
Affiliation(s)
| | | | - Lynne M Macdonald
- CSIRO Agriculture & Food, Locked bag 2, Glen Osmond, SA 5064, Australia
| | - Peter Toscas
- Data61, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Geoff Baker
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601, Australia
| | - Mark Farrell
- CSIRO Agriculture & Food, Locked bag 2, Glen Osmond, SA 5064, Australia
| | - Tim Wark
- Data61, QCAT, Pullenvale, QLD 4069, Australia
| | - Alan E Richardson
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601, Australia
| | - Peter H Thrall
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Asemaninejad A, Thorn RG, Branfireun BA, Lindo Z. Vertical stratification of peatland microbial communities follows a gradient of functional types across hummock–hollow microtopographies. ECOSCIENCE 2019. [DOI: 10.1080/11956860.2019.1595932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Asma Asemaninejad
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Vale Living with Lakes Centre, Laurentian University, Sudbury, Ontario, Canada
| | - R. Greg Thorn
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Brian A. Branfireun
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Centre for Environment and Sustainability, University of Western Ontario, London, Ontario, Canada
| | - Zoë Lindo
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Javaid R, Sabir A, Sheikh N, Ferhan M. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals. Molecules 2019; 24:E786. [PMID: 30813221 PMCID: PMC6412211 DOI: 10.3390/molecules24040786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H₂O₂. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.
Collapse
Affiliation(s)
- Rehman Javaid
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Aqsa Sabir
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| | - Nadeem Sheikh
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Muhammad Ferhan
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| |
Collapse
|
20
|
Zhou X, Qiao M, Su JQ, Wang Y, Cao ZH, Cheng WD, Zhu YG. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:902-908. [PMID: 30179818 DOI: 10.1016/j.scitotenv.2018.08.368] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 05/20/2023]
Abstract
The composting of fresh manure is an effective way to inactivate pathogens and reduce the levels of antibiotics and some antibiotic resistance genes (ARGs) prior to its application on agricultural land as organic fertilizer. However, some ARGs could still exist and even be enriched after composting. This study investigated whether converting composted pig manure into biochar could reduce the dissemination of ARGs into the soil in comparison with a compost amendment. We performed a pot experiment using pakchoi (Brassica chinensis), with two pig manure-based composts and the biochar derived from composted pig manure, as organic fertilizers. The distributions of the antibiotic resistome, mobile genetic elements (MGEs) and bacterial community composition in soils during cultivation were evaluated by high-throughput qPCR and Illumina sequencing. The total ARGs and MGEs abundance in the biochar-treated soils were significantly lower than those in the compost-amended soils during cultivation. The total ARGs abundance in the biochar-amended soils was similar to that in the control soils during cultivation. Thus, the dissemination of ARGs from animal waste to the environment can be effectively mitigated by converting manure into biochar.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhi-Hong Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wang-Da Cheng
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
21
|
Falade AO, Mabinya LV, Okoh AI, Nwodo UU. Agrowastes utilization by Raoultella ornithinolytica for optimal extracellular peroxidase activity. Biotechnol Appl Biochem 2018; 66:60-67. [PMID: 30303255 DOI: 10.1002/bab.1696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/04/2018] [Indexed: 11/12/2022]
Abstract
The industrial applications and prospects of microbial peroxidase are on the upwards trend, thus necessitating the search for sources with high turnaround time. Actinobacterial species have been a major source of peroxidase for the obvious reasons of having robust metabolite expression capabilities. However, other bacteria species have been underexplored for peroxidase production, hence the motivation for the investigation into the peroxidase production potential of Raoultella ornithinolytica OKOH-1 (KX640917). The bacteria expressed optimum specific peroxidase activity of 16.48 ± 0.89 U mg-1 , which is higher than those previously reported. The optimal fermentation conditions were pH 5 (3.44 ± 0.64 U mL-1 ), incubation temperature of 35 °C (5.25 ± 0.00 U mL-1 ), and agitation speed of 150 rpm (9.45 ± 2.57 U mL-1 ), with guaiacol and ammonium chloride as the best inducer and nitrogen supplement, respectively. On valorization of agrowastes as a sole carbon source for the secretion of peroxidase, sawdust gave the best peroxidase yield (15.21 ± 2.48 U mg-1 ) under solid-state fermentation. Also, a nonperoxide-dependent enzyme activity, which suggests probable laccase activity, was observed. The ability of the bacteria to utilize agrowastes is highly economical and as well a suitable waste management strategy. Consequently, R. ornithinolytica OKOH-1 is a promising industrial strain with dexterity for enhanced peroxidase production.
Collapse
Affiliation(s)
- Ayodeji O Falade
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
22
|
Jones JA, Kerr R, Haltli B, Tinto WF. Temperature and pH effect on glucose production from pretreated bagasse by a novel species of Citrobacter and other bacteria. Heliyon 2018; 4:e00657. [PMID: 29942873 PMCID: PMC6010966 DOI: 10.1016/j.heliyon.2018.e00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022] Open
Abstract
Cellulolytic bacteria that produce cellulases, which are active over a range of pH and temperatures, can be used to catalyze hydrolysis of pretreated lignocellulosic material. This is important in the production of second generation biofuels among other biotechnological applications. In this investigation, bacteria isolated from sugarcane bagasse were identified as strains of Enterobacter xiangfangensis, Serratia rubidaea, Klebsiella pneumoniae and a novel species of Citrobacter designated Citrobacter sp. UWIBGS10. The glucose production potential of these strains was studied on thermally and solvent pretreated sugarcane bagasse. This was performed at 24-hour intervals up to 168 hours in the range of pH 5-9 and temperature range 25-40 °C. Maximal concentrations of glucose for Citrobacter sp. UWIBGS10 occurred at pH 6 and 25 °C. For E. xiangfangensis, S. rubidaea, K. pneumoniae glucose concentrations were consistent across the pH and temperature ranges examined. From these results it could be concluded that the bacteria demonstrated ability for lignocellulolytic hydrolysis for the production of glucose and could be further explored for the characterization of commercial cellulolytic enzymes.
Collapse
Affiliation(s)
- Jamila A.D. Jones
- Department of Biological and Chemical Sciences, Faculty of Science and Technology, University of the West Indies, Cave Hill Campus, St. Michael, Barbados
| | - R.G. Kerr
- Department of Biomedical Sciences, University of Prince Edwards Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - B.A. Haltli
- Department of Biomedical Sciences, University of Prince Edwards Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Winston F. Tinto
- Department of Biological and Chemical Sciences, Faculty of Science and Technology, University of the West Indies, Cave Hill Campus, St. Michael, Barbados
| |
Collapse
|
23
|
Guo T, Zhang Q, Ai C, Liang G, He P, Zhou W. Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Sci Rep 2018; 8:1847. [PMID: 29382917 PMCID: PMC5789828 DOI: 10.1038/s41598-018-20293-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/16/2018] [Indexed: 11/30/2022] Open
Abstract
Litter bag method was conducted to investigate the decomposition characteristics of rice straw (6000 kg ha−1) and its associated microbial community under different nitrogen (N) addition rates (0, 90, 180 and 270 kg N ha−1) under double-rice rotation. Generally, straw mass reduction and nutrient release of rice straw were faster in early stage of decomposition (0−14 days after decomposition), when easily-utilized carbohydrates and amines were the preferential substrates for involved decomposers. Straw-associated N-acetyl-glucosamidase and L-leucine aminopeptidase activities, which were higher under 180 and 270 kg N ha−1 addition, showed more activities in the early stage of decomposition. Gram-positive bacteria were the quantitatively predominant microorganisms, while fungi and actinomycetes played a key role in decomposing recalcitrant compounds in late decomposition stage. Straw residue at middle decomposition stage was associated with greater cbhI and GH48 abundance and was followed by stronger β-glucosidase, β-cellobiohydrolase and β-xylosidase activities. Although enzyme activities and cellulolytic gene abundances were enhanced by 180 and 270 kg N ha−1 application, microbial communities and metabolic capability associated with rice straw were grouped by sampling time rather than specific fertilizer treatments. Thus, we recommended 180 kg N ha−1 application should be the economical rate for the current 6000 kg ha−1 rice straw returning.
Collapse
Affiliation(s)
- Tengfei Guo
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Qian Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Chao Ai
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Guoqing Liang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Ping He
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Wei Zhou
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China.
| |
Collapse
|
24
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
25
|
Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol 2017; 70:235-54. [PMID: 27607553 DOI: 10.1146/annurev-micro-102215-095748] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.
Collapse
Affiliation(s)
- Gina R Lewin
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Heidi A Horn
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706;
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Robert J Stankey
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Brian G Fox
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726.,Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| |
Collapse
|
26
|
Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau. Appl Environ Microbiol 2017; 83:AEM.03020-16. [PMID: 28087533 DOI: 10.1128/aem.03020-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023] Open
Abstract
Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.
Collapse
|
27
|
Suriya J, Bharathiraja S, Manivasagan P, Kim SK. Enzymes From Rare Actinobacterial Strains. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:67-98. [PMID: 27770864 DOI: 10.1016/bs.afnr.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
28
|
Nguyen NL, Kim YJ, Hoang VA, Subramaniyam S, Kang JP, Kang CH, Yang DC. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time. PLoS One 2016; 11:e0155055. [PMID: 27187071 PMCID: PMC4871511 DOI: 10.1371/journal.pone.0155055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/24/2016] [Indexed: 12/12/2022] Open
Abstract
Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.
Collapse
Affiliation(s)
- Ngoc-Lan Nguyen
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (D-CY); (Y-JK)
| | - Van-An Hoang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jong-Pyo Kang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, JinJu-si, Gyeongsangnam-do, Republic of Korea
| | - Deok-Chun Yang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- Graduation of Biotechnology, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (D-CY); (Y-JK)
| |
Collapse
|
29
|
Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111. Appl Biochem Biotechnol 2016; 179:863-79. [DOI: 10.1007/s12010-016-2036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/01/2016] [Indexed: 02/02/2023]
|
30
|
Kshirsagar S, Saratale G, Saratale R, Govindwar S, Oh M. An isolated Amycolatopsis
sp. GDS for cellulase and xylanase production using agricultural waste biomass. J Appl Microbiol 2015; 120:112-25. [DOI: 10.1111/jam.12988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- S.D. Kshirsagar
- Department of Biotechnology; Shivaji University; Kolhapur Maharashtra India
| | - G.D. Saratale
- Department of Chemical and Biological Engineering; Korea University; Seongbuk-gu Seoul South Korea
| | - R.G. Saratale
- Department of Environmental Science and Engineering; Ewha Womans University; Seoul South Korea
| | - S.P. Govindwar
- Department of Biochemistry; Shivaji University; Kolhapur Maharashtra India
| | - M.K. Oh
- Department of Chemical and Biological Engineering; Korea University; Seongbuk-gu Seoul South Korea
| |
Collapse
|
31
|
Hunt CJ, Tanksale A, Haritos VS. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation. Appl Microbiol Biotechnol 2015; 100:1777-1787. [DOI: 10.1007/s00253-015-7044-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
32
|
C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity. Appl Environ Microbiol 2015; 81:3016-28. [PMID: 25710367 DOI: 10.1128/aem.00067-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle.
Collapse
|
33
|
Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. Int J Biol Macromol 2015; 73:253-63. [DOI: 10.1016/j.ijbiomac.2014.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022]
|
34
|
Microbial population, stability and maturity analysis of rotary drum composting of water hyacinth. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0450-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 2014; 98:9527-44. [PMID: 25343973 DOI: 10.1007/s00253-014-6142-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/24/2022]
Abstract
A number of prokaryotes actively contribute to lignin degradation in nature and their activity could be of interest for many applications including the production of biogas/biofuel from lignocellulosic biomass and biopulping. This review compares the reliability and efficiency of the culture-dependent screening methods currently used for the isolation of ligninolytic prokaryotes. Isolated prokaryotes exhibiting lignin-degrading potential are presented according to their phylogenetic groups. With the development of bioinformatics, culture-independent techniques are emerging that allow larger-scale data mining for ligninolytic prokaryotic functions but today, these techniques still have some limits. In this work, two phylogenetic affiliations of isolated prokaryotes exhibiting ligninolytic potential and laccase-encoding prokaryotes were determined on the basis of 16S rDNA sequences, providing a comparative view of results obtained by the two types of screening techniques. The combination of laboratory culture and bioinformatics approaches is a promising way to explore lignin-degrading prokaryotes.
Collapse
Affiliation(s)
- Jiang-Hao Tian
- IRSTEA, UR GERE, 17 avenue de Cucillé, CS 64427, 35044, Rennes, France
| | | | | | | | | |
Collapse
|
36
|
Ting ASY, Hermanto A, Peh KL. Indigenous actinomycetes from empty fruit bunch compost of oil palm: Evaluation on enzymatic and antagonistic properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Urbanová Z, Bárta J. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types. FEMS Microbiol Ecol 2014; 90:633-46. [PMID: 25195805 DOI: 10.1111/1574-6941.12422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/21/2014] [Accepted: 08/31/2014] [Indexed: 11/30/2022] Open
Abstract
It is not well understood how the ecological status and microbial community composition of spruce swamp forests (SSF) relate to those found in bogs and fens. To clarify this, we investigated biogeochemical parameters and microbial community composition in a bog, a fen and two SSF using high throughput barcoded sequencing of the small ribosomal subunit (SSU) variable region V4. The results demonstrated that the microbial community of SSF is positioned between those of bogs and fens, and this was confirmed by in silico predicted metabolic potentials. This corresponds well with the position of SSF on the trophic gradient and reflects distinct responses of microbial communities to environmental variables. Species richness and microbial diversity increased significantly from bog to fen, with SSF in between, reflecting the variation in pH, nutrient availability and peat decomposability. The archaeal community, dominated by hydrogenotrophic methanogens, was more similar in SSF and the bog compared with the fen. The composition of the bacterial community of SSF was intermediate between those of bog and fen. However, the production of CO2 (an indicator of peat decomposability) did not differ between SSF and bog, suggesting the limiting effect of low pH and poor litter quality on the functioning of the bacterial community in SSF. These results help to clarify the transitional position of SSF between bogs and fens and showed the strong effect of environmental conditions on microbial community composition and functioning.
Collapse
Affiliation(s)
- Zuzana Urbanová
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | | |
Collapse
|
38
|
Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 2014; 5:263. [PMID: 24917856 PMCID: PMC4040508 DOI: 10.3389/fmicb.2014.00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles within salt marsh benthic food web pathways. We used DNA stable isotope probing (SIP) utilizing 13C-labeled lignocellulose as a proxy to evaluate the fate of macrophyte-derived carbon in benthic salt marsh bacterial communities. Overall, 146 bacterial species were detected using SIP, of which only 12 lineages were shared between enriched and non-enriched communities. Abundant groups from the 13C-labeled community included Desulfosarcina, Spirochaeta, and Kangiella. This study is the first to use heavy-labeled lignocellulose to identify bacteria responsible for macrophyte carbon utilization in salt marsh sediments and will allow future studies to target specific lineages to elucidate their role in salt marsh carbon cycling and ultimately aid our understanding of the potential of salt marshes to store carbon.
Collapse
Affiliation(s)
- Lindsay E Darjany
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | | | - Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
39
|
Ilieva S, Bakalova N, Petrova S, Atev A. Production of β-Xylanase fromAspergillus AwamoriK-1. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2002.10819162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
40
|
Gittel A, Bárta J, Kohoutová I, Mikutta R, Owens S, Gilbert J, Schnecker J, Wild B, Hannisdal B, Maerz J, Lashchinskiy N, Čapek P, Šantrůčková H, Gentsch N, Shibistova O, Guggenberger G, Richter A, Torsvik VL, Schleper C, Urich T. Distinct microbial communities associated with buried soils in the Siberian tundra. THE ISME JOURNAL 2014; 8:841-53. [PMID: 24335828 PMCID: PMC3960545 DOI: 10.1038/ismej.2013.219] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 01/22/2023]
Abstract
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.
Collapse
Affiliation(s)
- Antje Gittel
- Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
- Austrian Polar Research Institute, Vienna, Austria
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Iva Kohoutová
- Department of Ecosystems Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Robert Mikutta
- Institut für Bodenkunde, Leibniz Universität Hannover, Hannover, Germany
| | - Sarah Owens
- Institute of Genomics and Systems Biology, Argonne National Laboratory, Argonne, IL, USA
- Computation Institute, University of Chicago, Chicago, IL, USA
| | - Jack Gilbert
- Institute of Genomics and Systems Biology, Argonne National Laboratory, Argonne, IL, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jörg Schnecker
- Austrian Polar Research Institute, Vienna, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Birgit Wild
- Austrian Polar Research Institute, Vienna, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Bjarte Hannisdal
- Department of Earth Science, Centre for Geobiology, University of Bergen, Bergen, Norway
| | - Joeran Maerz
- Division of Ecosystem Modelling, Institute of Coastal Research, Helmholtz Zentrum Geesthacht, Geesthacht, Germany
| | - Nikolay Lashchinskiy
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Petr Čapek
- Department of Ecosystems Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Hana Šantrůčková
- Department of Ecosystems Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Norman Gentsch
- Institut für Bodenkunde, Leibniz Universität Hannover, Hannover, Germany
| | - Olga Shibistova
- Institut für Bodenkunde, Leibniz Universität Hannover, Hannover, Germany
- VN Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Akademgorodok, Russia
| | - Georg Guggenberger
- Institut für Bodenkunde, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Richter
- Austrian Polar Research Institute, Vienna, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Vigdis L Torsvik
- Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
| | - Christa Schleper
- Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
- Austrian Polar Research Institute, Vienna, Austria
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Tim Urich
- Austrian Polar Research Institute, Vienna, Austria
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Větrovský T, Steffen KT, Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 2014; 9:e89108. [PMID: 24551229 PMCID: PMC3923840 DOI: 10.1371/journal.pone.0089108] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/18/2014] [Indexed: 11/25/2022] Open
Abstract
While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform 14C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic
| | - Kari Timo Steffen
- Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic
- * E-mail:
| |
Collapse
|
42
|
Wang C, Guo X, Deng H, Dong D, Tu Q, Wu W. New insights into the structure and dynamics of actinomycetal community during manure composting. Appl Microbiol Biotechnol 2013; 98:3327-37. [DOI: 10.1007/s00253-013-5424-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
43
|
Musengi A, Khan N, Le Roes-Hill M, Pletschke B, Burton S. Increasing the scale of peroxidase production by Streptomyces
sp. strain BSII#1. J Appl Microbiol 2013; 116:554-62. [PMID: 24176016 DOI: 10.1111/jam.12380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/15/2013] [Accepted: 10/27/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A. Musengi
- Biocatalysis and Technical Biology Research Group; Cape Peninsula University of Technology; Bellville South Africa
| | - N. Khan
- Biocatalysis and Technical Biology Research Group; Cape Peninsula University of Technology; Bellville South Africa
| | - M. Le Roes-Hill
- Biocatalysis and Technical Biology Research Group; Cape Peninsula University of Technology; Bellville South Africa
| | - B.I. Pletschke
- Department of Biochemistry; Microbiology and Biotechnology; Faculty of Science; Rhodes University; Grahamstown South Africa
| | - S.G. Burton
- University of Pretoria; Hatfield Pretoria South Africa
| |
Collapse
|
44
|
Saritha M, Arora A, Singh S, Nain L. Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. BIORESOURCE TECHNOLOGY 2013; 135:12-17. [PMID: 23265820 DOI: 10.1016/j.biortech.2012.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Biological pretreatment of paddy straw was carried out using an actinomycete isolate, identified as Streptomyces griseorubens ssr38, for delignification under solid state fermentation and enhanced sugar recovery by enzymatic saccharification. After 10 days incubation, the inoculated paddy straw was extracted with mild alkali and high absorbance at 205 nm was shown by the extracts indicating the ability of S. griseorubens ssr38 to depolymerize/solubilize lignin to a high extent. Also, almost 25% of depolymerized lignin could be recovered as value-added acid-precipitable polymeric lignin (APPL) as compared to controls. Enrichment in carbohydrate content of inoculated paddy straw following delignification led to a high saccharification efficiency of 97.8% upon enzymatic hydrolysis with Accelerase®1500. The study, therefore, proves the potential of actinomycetes, besides the conventionally used white-rot fungi, for biological pretreatment, in the biomass to bioethanol process, with respect to the high extent of delignification, lignin recovery, cellulose enrichment and very high saccharification efficiency.
Collapse
Affiliation(s)
- M Saritha
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110 012, India
| | | | | | | |
Collapse
|
45
|
Singh KP, Mahendra AL, Jayaraj V, Wangikar PP, Jadhav S. Distribution of live and dead cells in pellets of an actinomycete Amycolatopsis balhimycina and its correlation with balhimycin productivity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10295-012-1215-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Abstract
Secondary metabolites such as antibiotics are typically produced by actinomycetes as a response to growth limiting stress conditions. Several studies have shown that secondary metabolite production is correlated with changes observed in actinomycete pellet morphology. Therefore, we investigated the correlation between the production of balhimycin and the spatio-temporal distribution of live and dead cells in pellets of Amycolatopsis balhimycina in submerged cultures. To this end, we used laser scanning confocal microscopy to analyze pellets from balhimycin producing and nonproducing media containing 0.2 and 1.0 g l−1 of potassium di-hydrogen phosphate, respectively. We observed a substantially higher fraction of live cells in pellets from cultures yielding larger amounts of balhimycin. Moreover, in media that resulted in no balhimycin production, the pellets exhibit an initial death phase which commences from the centre of the pellet and extends in the radial direction. A second growth phase was observed in these pellets, where live mycelia are seen to appear in the dead core of the pellets. This secondary growth was absent in pellets from media producing higher amounts of balhimycin. These results suggest that distribution of live and dead cells and its correlation with antibiotic production in the non-sporulating A. balhimycina differs markedly than that observed in Streptomycetes.
Collapse
Affiliation(s)
- Kamaleshwar P Singh
- grid.417971.d 0000000121987527 Department of Biosciences and Bioengineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Amit L Mahendra
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Vibha Jayaraj
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Pramod P Wangikar
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Sameer Jadhav
- grid.417971.d 0000000121987527 Department of Chemical Engineering Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
46
|
Mai Z, Yang J, Tian X, Li J, Zhang S. Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine streptomycete. Appl Biochem Biotechnol 2013; 169:1512-22. [PMID: 23319184 DOI: 10.1007/s12010-012-0080-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022]
Abstract
The gene BglNH encoding a β-glucosidase was cloned from a marine streptomycete. Sequence analysis revealed that BglNH encoded a 456-aa peptide with a calculated mass of 51 kDa. The deduced amino acid sequence of BglNH showed the highest identities of 61 % with known β-glucosidases and contained a catalytic domain which belonged to the glycoside hydrolase family 1. The gene BglNH was expressed in Escherichia coli and the recombinant enzyme (r-BglNH) was purified. The optimum pH and temperature of r-BglNH were pH6.0 and 45 °C, respectively. The r-BglNH displayed the typical salt-tolerant and glucose-enhanced characteristics. Its activity was remarkably enhanced in the presence of 0.5 M NaCl (rose more than 1.6-fold) and 0.1 M glucose (rose more than 1.4-fold). Moreover, r-BglNH displayed good pH stability and metal tolerance. It remained stable after incubating with buffers from pH4.0 to 10.0, and most metal ions had no significant inhibition on its activity. These properties indicate that r-BglNH is an ideal candidate for further research and industrial applications.
Collapse
Affiliation(s)
- Zhimao Mai
- Key Laboratory of Marine Bio-resources Sustainable Utilization CAS, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1225-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Porca E, Jurado V, Žgur-Bertok D, Saiz-Jimenez C, Pašić L. Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microbiol Ecol 2012; 81:255-66. [DOI: 10.1111/j.1574-6941.2012.01383.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/21/2012] [Accepted: 04/02/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Estefania Porca
- Instituto de Recursos Naturales y Agrobiologia; IRNAS-CSIC; Seville; Spain
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia; IRNAS-CSIC; Seville; Spain
| | - Darja Žgur-Bertok
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana; Slovenia
| | | | - Lejla Pašić
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana; Slovenia
| |
Collapse
|
49
|
Santhanam N, Badri DV, Decker SR, Manter DK, Reardon KF, Vivanco JM. Lignocellulose Decomposition by Microbial Secretions. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Abstract
The biodegradation of lignocellulose, the most abundant organic material in the biosphere, is a feature of many aerobic, facultatively anaerobic and obligately anaerobic bacteria and fungi. Despite widely recognized difficulties in the isolation and cultivation of individual microbial species from complex microbial populations and environments, significant progress has been made in recovering cellulolytic taxa from a range of ecological niches including the human, herbivore, and termite gut, and terrestrial, aquatic, and managed environments. Knowledge of cellulose-degrading microbial taxa is of significant importance with respect to nutrition, biodegradation, biotechnology, and the carbon-cycle, providing insights into the metabolism, physiology, and functional enzyme systems of the cellulolytic bacteria and fungi that are responsible for the largest flow of carbon in the biosphere. In this chapter, several strategies employed for the isolation and cultivation of cellulolytic microorganisms from oxic and anoxic environments are described.
Collapse
|