1
|
Pradhan B, Liedtke J, Sleutel M, Lindbäck T, Zegeye ED, O´Sullivan K, Llarena A, Brynildsrud O, Aspholm M, Remaut H. Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli. EMBO J 2021; 40:e106887. [PMID: 34031903 PMCID: PMC8408608 DOI: 10.15252/embj.2020106887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by β-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.
Collapse
Affiliation(s)
- Brajabandhu Pradhan
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Janine Liedtke
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Mike Sleutel
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Toril Lindbäck
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ephrem Debebe Zegeye
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Kristin O´Sullivan
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ann‐Katrin Llarena
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ola Brynildsrud
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
- Division of Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Marina Aspholm
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Han Remaut
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
2
|
Importance of Individual Germination Receptor Subunits in the Cooperative Function between GerA and Ynd. J Bacteriol 2019; 201:JB.00451-19. [PMID: 31427390 DOI: 10.1128/jb.00451-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Germination of Bacillus spores is triggered by the binding of specific nutrients to germinant receptors (GRs) located in the spore's inner membrane. The GRs typically consist of A, B, and C subunits, encoded by tricistronic ger operons. The Bacillus licheniformis genome contains the gerA family operons gerA, ynd, and gerK In contrast to the ABC(D) organization that characterizes gerA operons of many Bacillus species, B. licheniformis genomes contain a pentacistronic ynd operon comprising the yndD, yndE3 , yndE2 , yndF1 , and yndE1 genes encoding A, B, B, C, and B GR subunits, respectively (subscripts indicate paralogs). Here we show that B. licheniformis spores can germinate in the absence of the Ynd and GerK GRs, although cooperation between all three GRs is required for optimal germination with amino acids. Spores carrying an incomplete set of Ynd B subunits demonstrated reduced germination efficiencies, while depletion of all three Ynd B subunits restored germination of the spore population to levels only slightly lower than those of wild-type spores at high germinant concentrations. This suggests that the presence of an incomplete set of Ynd B subunits exhibits a dominant negative effect on germination and that the A and C subunits of the Ynd GR are sufficient for the cooperative functionality between Ynd and GerA. In contrast to the B subunits of Ynd, the B subunit of GerA was essential for amino acid-induced germination. This study provides novel insights into the role of individual GR subunits in the cooperative interaction between GRs in triggering spore germination.IMPORTANCE Spore-forming bacteria are problematic for the food industry, as spores can survive decontamination procedures and subsequently revive in food products, with the risk of food spoilage and foodborne disease. The Ynd and GerA germination receptors (GRs) cooperate in triggering efficient germination of Bacillus licheniformis spores when nutrients are present in the surrounding environment. This study shows that the single B subunit of GerA is essential for the cooperative function between Ynd and GerA, while the three B subunits of the Ynd GR are dispensable. The ability of GRs lacking individual subunits to stimulate germination together with other GRs could explain why ger operons lacking GR subunit genes are maintained in genomes of spore-forming species.
Collapse
|
3
|
Aspholm ME, Kollerud KK, Høgberg Hansen HC, Granum PE, Christie G, Lindbäck T. Biochemical and mutational analysis of spore cortex-lytic enzymes in the food spoiler Bacillus licheniformis. Food Microbiol 2019; 84:103259. [PMID: 31421778 DOI: 10.1016/j.fm.2019.103259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Bacillus licheniformis is frequently associated with food spoilage due to its ability to form highly resistant endospores. The present study reveals that B. licheniformis spore peptidoglycan shares a similar structure to spores of other species of Bacillus. Two enzymatic activities associated with depolymerisation of the cortical peptidoglycan, which represents a crucial step in spore germination, were detected by muropeptide analysis. These include lytic transglycosylase and N-acetylglucosaminidase activity, with non-lytic epimerase activity also being detected. The role of various putative cortex-lytic enzymes that account for the aforementioned activity was investigated by mutational analysis. These analyses indicate that SleB is the major lysin involved in cortex depolymerisation in B. licheniformis spores, with CwlJ and SleL having lesser roles. Collectively, the results of this work indicate that B. licheniformis spores employ a similar approach for cortical depolymerisation during germination as spores of other Bacillus species.
Collapse
Affiliation(s)
- Marina E Aspholm
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Kristian K Kollerud
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Helge C Høgberg Hansen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Per Einar Granum
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Toril Lindbäck
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway.
| |
Collapse
|
4
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
5
|
Lindbäck T, Mols M, Basset C, Granum PE, Kuipers OP, Kovács ÁT. CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus. Environ Microbiol 2012; 14:2233-46. [PMID: 22540344 DOI: 10.1111/j.1462-2920.2012.02766.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In response to nutrient limitation in the environment, the global transcriptional regulator CodY modulates various pathways in low G+C Gram-positive bacteria. In Bacillus subtilis CodY triggers adaptation to starvation by secretion of proteases coupled to the expression of amino acid transporters. Furthermore, it is involved in modulating survival strategies like sporulation, motility, biofilm formation, and CodY is also known to affect virulence factor production in pathogenic bacteria. In this study, the role of CodY in Bacillus cereus ATCC 14579, the enterotoxin-producing type strain, is investigated. A marker-less deletion mutant of codY (ΔcodY) was generated in B.cereus and the transcriptome changes were surveyed using DNA microarrays. Numerous genes involved in biofilm formation and amino acid transport and metabolism were upregulated and genes associated with motility and virulence were repressed upon deletion of codY. Moreover, we found that CodY is important for efficient production of toxins and for adapting from nutrient-rich to nutrient-limited growth conditions of B.cereus. In contrast, biofilm formation is highly induced in the ΔcodY mutant, suggesting that CodY represses biofilm formation. Together, these results indicate that CodY plays a crucial role in the growth and persistence of B.cereus in different environments such as soil, food, insect guts and the human body.
Collapse
Affiliation(s)
- Toril Lindbäck
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Løvdal IS, From C, Madslien EH, Romundset KCS, Klufterud E, Rosnes JT, Granum PE. Role of the gerA operon in L-alanine germination of Bacillus licheniformis spores. BMC Microbiol 2012; 12:34. [PMID: 22420404 PMCID: PMC3359204 DOI: 10.1186/1471-2180-12-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genome of Bacillus licheniformis DSM 13 harbours three neighbouring open reading frames showing protein sequence similarities to the proteins encoded from the Bacillus subtilis subsp. subtilis 168 gerA operon, GerAA, GerAB and GerAC. In B. subtilis, these proteins are assumed to form a germinant receptor involved in spore germination induced by the amino acid L-alanine. RESULTS In this study we show that disruption of the gerAA gene in B. licheniformis MW3 hamper L-alanine and casein hydrolysate-triggered spore germination, measured by absorbance at 600 nm and confirmed by phase contrast microscopy. This ability was restored by complementation with a plasmid-borne copy of the gerA locus. Addition of D-alanine in the casein hydrolysate germination assay abolished germination of both B. licheniformis MW3 and the complementation mutant. Germination of both B. licheniformis MW3 and the gerA disruption mutant was induced by the non-nutrient germinant Ca2+-Dipicolinic acid. CONCLUSIONS These results demonstrate that the B. licheniformis MW3 gerA locus is involved in germination induced by L-alanine and potentially other components present in casein hydrolysate.
Collapse
Affiliation(s)
- Irene S Løvdal
- Nofima AS, Department of Process Technology, Måltidets hus, Richard Johnsens gate 4, P Box 8034, N-4068 Stavanger, Norway
| | | | | | | | | | | | | |
Collapse
|
7
|
Buasri W, Panbangred W. Large crystal toxin formation in chromosomally engineered Bacillus thuringiensis subsp. aizawai due to σE accumulation. Appl Environ Microbiol 2012; 78:1682-91. [PMID: 22267677 PMCID: PMC3298149 DOI: 10.1128/aem.06505-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/02/2012] [Indexed: 11/20/2022] Open
Abstract
Seven distinct Bacillus thuringiensis subsp. aizawai integrants were constructed that carried the chitinase (chiBlA) gene from B. licheniformis under the control of the cry11Aa promoter and terminator with and without p19 and p20 genes. The toxicity of B. thuringiensis subsp. aizawai integrants against second-instar Spodoptera litura larvae was increased 1.8- to 4.6-fold compared to that of the wild-type strain (BTA1). Surprisingly, the enhanced toxicity in some strains of B. thuringiensis subsp. aizawai integrants (BtaP19CS, BtaP19CSter, and BtaCAT) correlated with an increase in toxin formation. To investigate the role of these genes in toxin production, the expression profiles of the toxin genes, cry1Aa and chiBlA, as well as their transcriptional regulators (sigK and sigE), were analyzed by quantitative real-time RT-PCR (qPCR) from BTA1, BtaP19CS, and BtaCAT. Expression levels of cry1Aa in these two integrants increased about 2- to 3-fold compared to those of BTA1. The expression of the transcription factor sigK also was prolonged in the integrants compared to that of the wild type; however, sigE expression was unchanged. Western blot analysis of σ(E) and σ(K) showed the prolonged accumulation of σ(E) in the integrants compared to that of BTA1, resulting in the increased synthesis of pro-σ(K) up to T(17) after the onset of sporulation in both BtaP19CS and BtaCAT compared to that of T(13) in BTA1. The results from qPCR indicate clearly that the cry1Aa promoter activity was influenced most strongly by σ(E), whereas cry11Aa depended mostly on σ(K). These results on large-crystal toxin formation with enhanced toxicity should provide useful information for the generation of strains with improved insecticidal activity.
Collapse
Affiliation(s)
- Wasin Buasri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Mahidol University and Osaka University Collaborative Research Center of Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Mellegård H, Kovács ÁT, Lindbäck T, Christensen BE, Kuipers OP, Granum PE. Transcriptional responses of Bacillus cereus towards challenges with the polysaccharide chitosan. PLoS One 2011; 6:e24304. [PMID: 21931677 PMCID: PMC3169574 DOI: 10.1371/journal.pone.0024304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/04/2011] [Indexed: 01/18/2023] Open
Abstract
The antibacterial activity of the polysaccharide chitosan towards different bacterial species has been extensively documented. The response mechanisms of bacteria exposed to this biopolymer and the exact molecular mechanism of action, however, have hardly been investigated. This paper reports the transcriptome profiling using DNA microarrays of the type-strain of Bacillus cereus (ATCC 14579) exposed to subinhibitory concentrations of two water-soluble chitosan preparations with defined chemical characteristics (molecular weight and degree of acetylation (F(A))). The expression of 104 genes was significantly altered upon chitosan A (weight average molecular weight (M(w)) 36.0 kDa, F(A) = 0.01) exposure and 55 genes when treated with chitosan B (M(w) 28.4 kDa, F(A) = 0.16). Several of these genes are involved in ion transport, especially potassium influx (BC0753-BC0756). Upregulation of a potassium transporting system coincides with previous studies showing a permeabilizing effect on bacterial cells of this polymer with subsequent loss of potassium. Quantitative PCR confirmed the upregulation of the BC0753 gene encoding the K(+)-transporting ATPase subunit A. A markerless gene replacement method was used to construct a mutant strain deficient of genes encoding an ATP-driven K(+) transport system (Kdp) and the KdpD sensor protein. Growth of this mutant strain in potassium limiting conditions and under salt stress did not affect the growth pattern or growth yield compared to the wild-type strain. The necessity of the Kdp system for potassium acquisition in B. cereus is therefore questionable. Genes involved in the metabolism of arginine, proline and other cellular constituents, in addition to genes involved in the gluconeogenesis, were also significantly affected. BC2798 encoding a chitin binding protein was significantly downregulated due to chitosan exposure. This study provides insight into the response mechanisms of B. cereus to chitosan treatment and the significance of the Kdp system in potassium influx under challenging conditions.
Collapse
Affiliation(s)
- Hilde Mellegård
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | - Ákos T. Kovács
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | - Bjørn E. Christensen
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oscar P. Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Per E. Granum
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| |
Collapse
|
9
|
Darsi S, Divya Prakash G, Udayasuriyan V. Cloning and characterization of truncated cry1Ab gene from a new indigenous isolate of Bacillus thuringiensis. Biotechnol Lett 2010; 32:1311-5. [DOI: 10.1007/s10529-010-0301-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
|
10
|
Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J Appl Microbiol 2009; 106:1849-58. [PMID: 19291242 DOI: 10.1111/j.1365-2672.2009.04151.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To elaborate an effective electroporation protocol for large plasmids and wild type strains of Bacillus thuringiensis. METHODS AND RESULTS The effect of DNA desalting, wall-weakening agency, cell growth conditions, electroporation solutions, and electric fields on electroporation efficiency was evaluated to optimize electroporation conditions for B. thuringiensis. By using this improved method, the greatest efficiency was reached 2 x 10(10 )CFU microg(-1) with pHT304, which is 10(4) times higher than previously reported. Four large plasmids (29.1, 44.9, 58 and 60 kb) were successfully transferred into the acrystalliferous B. thuringiensis strain BMB171; these results have not been achieved with previous protocols. Three wild type B. thuringiensis strains which could not be transformed previously were also transferred successfully. CONCLUSIONS This improved method is more efficient for small plasmids; it is also appropriate for large plasmids and wild type B. thuringiensis strains which were not transformed by previous procedures. SIGNIFICANCE AND IMPACT OF THE STUDY The present study established an effective electroporation protocol for large plasmids and wild type strains of B. thuringiensis. This method is well suited for the cloning and expression of huge DNA fragments such as gene clusters in B. thuringiensis. It also can be used as a reference method for other Bacillus strains that are refractory to electroporate.
Collapse
Affiliation(s)
- D Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yue C, Sun M, Yu Z. Broadening the insecticidal spectrum of Lepidoptera-specificBacillus thuringiensis strains by chromosomal integration ofcry3A. Biotechnol Bioeng 2005; 91:296-303. [PMID: 15984034 DOI: 10.1002/bit.20493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A TnpI-TnpIA-mediated and thermosensitive recombination system was developed to construct genetically modified Bacillus thuringiensis strains encoding a crystal protein particularly active against Coleopteran species. Based on B. thuringiensis transposon Tn4430, an integrative vector, pBMB-R14E, was constructed, by which the cry3A delta-endotoxin gene highly toxic to Lepidoptera was delivered into a wildtype B. thuringiensis subsp. kurstaki strain YBT1520. The cry3A gene was integrated into the chromosome of the host strain. Then the integrative vector was eliminated by moving recombinant cultures to 46 degrees C. Two recombinant B. thuringiensis strains, BMB1520-S and BMB1520-T, were obtained. In recombinant strains, the cry3A gene was stably expressed in measurable amounts and did not reduce the expression of endogenous crystal protein genes. Bioassay results showed that BMB1520-S and BMB1520-T, in addition to the activity against lepidopteran Plutella xylostella third-instar larvae present in the parental strains, exhibited a high level of activity against coleopteran Rhyllodecta vulgatissima third-instar larvae, absent from the parental strains.
Collapse
Affiliation(s)
- Chaoyin Yue
- Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei, People's Republic of China
| | | | | |
Collapse
|
12
|
Nantapong N, Tanapongpipat S, Cole J, Panyim S. Development of a method for heterologous gene expression in Enterobacter amnigenus, a potential host for the biological control of mosquito larvi. J Microbiol Methods 2002; 49:329-34. [PMID: 11869800 DOI: 10.1016/s0167-7012(01)00384-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An integrative plasmid containing a 1.3 kb fragment of chromosomal DNA from Enterobacter amnigenus was constructed. The Omega fragment encoding spectinomycin/streptomycin resistance was cloned into the unique BglII site of the resulting plasmid, and the interrupted fragment was transferred via plasmid pMAK705 by electroporation into E. amnigenus with a selection for spectinomycin resistance. Cointegrants were resolved to generate an E. amnigenus strain that expressed spectinomycin resistance, but grew as rapidly as the parental strain. The cloned fragment encodes a putative homologue of the proW gene of Escherichia coli that is not essential for E. amnigenus growth. The integrative plasmid is now available to introduce any heterologous DNA into the E. amnigenus chromosome, for the construction of promoter-probe vectors for the studies of gene regulation, or to construct plasmids suitable for the isolation of secretion signals. Immediate applications of this system will include the expression and secretion of crystal toxins from bacilli for the biological control of mosquito larvae infected with the bacterial host.
Collapse
Affiliation(s)
- Nawarat Nantapong
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom, 73170 Thailand
| | | | | | | |
Collapse
|
13
|
Mizuki E, Park YS, Saitoh H, Yamashita S, Akao T, Higuchi K, Ohba M. Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:625-34. [PMID: 10882663 PMCID: PMC95925 DOI: 10.1128/cdli.7.4.625-634.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unusual property, human leukemic cell-recognizing activity, associated with parasporal inclusions of a noninsecticidal Bacillus thuringiensis soil isolate was investigated, and a protein (named parasporin in this study) responsible for the activity was cloned. The parasporin, encoded by a gene 2,169 bp long, was a polypeptide of 723 amino acid residues with a predicted molecular weight of 81, 045. The sequence of parasporin contained the five conserved blocks commonly found in B. thuringiensis Cry proteins; however, only very low homologies (<25%) between parasporin and the existing classes of Cry and Cyt proteins were detected. Parasporin exhibited cytocidal activity only when degraded by proteases into smaller molecules of 40 to 60 kDa. Trypsin and proteinase K activated parasporin, while chymotrypsin did not. The activated parasporin showed strong cytocidal activity against human leukemic T cells (MOLT-4) and human uterus cervix cancer cells (HeLa) but not against normal T cells.
Collapse
Affiliation(s)
- E Mizuki
- Biotechnology & Food Research Institute, Fukuoka Industrial Technology Center, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Saitoh H, Hwang SH, Park YS, Higuchi K, Mizuki E, Ohba M. Cloning and characterization of a Bacillus thuringiensis serovar higo gene encoding a novel class of the delta-endotoxin protein, Cry27A, specifically active on the Anopheles mosquito. Syst Appl Microbiol 2000; 23:25-30. [PMID: 10879975 DOI: 10.1016/s0723-2020(00)80042-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel gene encoding a 98-kDa mosquitocidal delta-endotoxin protein, designated Cry27A, was cloned from a Bacillus thuringiensis serovar higo strain. The Cry27A protein contained the five sequence blocks of amino acids commonly conserved in most B. thuringiensis Cry proteins. Relatively high homologies, ranging from 43.0% to 84.4%, existed between the Cry27A protein and several established classes of mosquitocidal Cry proteins (Cry4A, Cry10A, Cry19A, Cry19B, and Cry20A) in the sequence of 51 N-terminal amino acids. The complete sequence of this protein, however, showed low levels (<40%) of amino acid identity to those of the known Cry proteins. Although the expression level of the cry27A gene was low in the transformants under the control of its own promoter, the use of the cyt1A promoter resulted in high-level expression of the gene, leading to the formation of inclusions. The expressed Cry27A protein showed larvicidal activity highly specific for Anopheles stephensi, but lacked the toxicity against Culex pipiens molestus and Aedes aegypti. The results suggest that the Cry27A protein is responsible for the Anopheles-preferential toxicity of the B. thuringiensis serovar higo strain.
Collapse
Affiliation(s)
- H Saitoh
- Biotechnology & Food Research Institute, Fukuoka Industrial Technology Center, Kurume, Japan
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:775-806. [PMID: 9729609 PMCID: PMC98934 DOI: 10.1128/mmbr.62.3.775-806.1998] [Citation(s) in RCA: 1690] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism's pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.
Collapse
Affiliation(s)
- E Schnepf
- Mycogen Corp., San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Léonard C, Zekri O, Mahillon J. Integrated physical and genetic mapping of Bacillus cereus and other gram-positive bacteria based on IS231A transposition vectors. Infect Immun 1998; 66:2163-9. [PMID: 9573103 PMCID: PMC108177 DOI: 10.1128/iai.66.5.2163-2169.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Accepted: 02/16/1998] [Indexed: 02/07/2023] Open
Abstract
The genome structure of Bacillus cereus is relatively complex, its DNA being modulated between a size-varying chromosome and large plasmids. To study the genetic organization of the B. cereus type strain ATCC 14579, thermosensitive transposition vectors were designed on the basis of IS231A-derived cassettes containing uncommon restriction sites. A highly preferred insertion site for IS231A was detected in the chromosome by Southern blotting and pulsed-field gel electrophoresis (PFGE) analyses of independent insertion mutants. However, once this insertional hot spot was occupied, secondary IS231A insertions occurred randomly, as demonstrated by isolation of independent B. cereus auxotrophs at a frequency of approximately 0.6%. The hot-spot site, as well as several auxotrophic mutations, were mapped by using NotI, SfiI, and AscI PFGE restriction profiles. It was confirmed by sequencing that one of the insertions, generating an Ade- phenotype, had disrupted a gene of the purine synthesis pathway. These results showed that combined PFGE and sequencing analyses of mini-IS231A insertions enable the construction of integrated physical and genetic maps of B. cereus type strain. Moreover, the presence of the ultrarare I-SceI restriction site in the mini-IS231A allowed the isolation, in double-insertion mutants, of contiguous and nonoverlapping large chromosomal fragments, convenient for direct sequencing. The system detailed in this report is therefore a powerful tool for comparative genetic studies among members of the B. cereus group (i.e., B. cereus, B. thuringiensis, B. mycoides, and B. anthracis) and could also be applied to more distantly related gram-positive bacteria.
Collapse
Affiliation(s)
- C Léonard
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
18
|
Hoflack L, Seurinck J, Mahillon J. Nucleotide sequence and characterization of the cryptic Bacillus thuringiensis plasmid pGI3 reveal a new family of rolling circle replicons. J Bacteriol 1997; 179:5000-8. [PMID: 9260939 PMCID: PMC179355 DOI: 10.1128/jb.179.16.5000-5008.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complete nucleotide sequence of plasmid pGI3 from Bacillus thuringiensis subsp. thuringiensis H1.1. was obtained. Although this 11,365-bp molecule contained at least 11 putative open reading frames (ORFs), extensive database searches did not reveal any homologous sequences with the exception of ORF6, which displayed similarity to the largest ORF of pSTK1, a 1,883-bp cryptic plasmid isolated from Bacillus stearothermophilus. Deletion analysis to determine the pGI3 minimal replicon revealed that ORF6 is the rep gene. Replication occurred via a single-stranded DNA (ssDNA) intermediate, as demonstrated by S1 treatment and Southern hybridization in nondenaturating conditions. Interestingly, however, no homology was found between the pGI3 (ORF6) and pSTK1 (ORF3) rep genes and those from other single-stranded DNA plasmids, nor was there any DNA similarity to the double-strand origins of replication characterized so far, indicating that pGI3 and pSTK1 form another, new family of ssDNA plasmids. PCR analysis revealed that the pGI3 rep gene is largely distributed among B. thuringiensis strains but can also be found in B. cereus and B. mycoides strains, albeit at a lower frequency. Finally, segregation experiments performed with B. subtilis and B. thuringiensis showed that the pGI3 derivatives, including the minimal replicon, were segregationally stable at temperatures suitable for B. thuringiensis growth (<43 degrees C).
Collapse
Affiliation(s)
- L Hoflack
- Laboratorium Genetika, Universiteit Gent, Belgium
| | | | | |
Collapse
|
19
|
|
20
|
Platteeuw C, Michiels F, Joos H, Seurinck J, de Vos WM. Characterization and heterologous expression of the tetL gene and identification of iso-ISS1 elements from Enterococcus faecalis plasmid pJH1. Gene 1995; 160:89-93. [PMID: 7628724 DOI: 10.1016/0378-1119(95)00208-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tetracycline-resistance (TcR) determinant of the Enterococcus faecalis plasmid pJH1 has been identified and located on a 2.2-kb RsaI-EcoRI fragment. The fragment was cloned in Escherichia coli, and specified TcR in this host. The nucleotide (nt) sequence of the cloned fragment showed the presence of an open reading frame (ORF) of 1374 bp, designated tetL. The nt sequence of tetL from pJH1 was identical to that of the tetL present on pLS1 from Streptococcus agalactiae. Upstream of the pJH1 tetL, part of another ORF was found that, except for two single-nt substitutions, was identical to an iso-ISS1 element from Lactococcus lactis. Hybridization studies indicated the presence of several ISS1-like elements in plasmid pJH1, but not on the En. faecalis chromosome. To study its usefulness as a marker in Gram+ organisms, the pJH1 tetL was cloned on the broad-host-range plasmid pNZ124, resulting in pNZ280, that was found to give resistance to 40 micrograms Tc/ml in Lc. lactis and Bacillus subtilis.
Collapse
Affiliation(s)
- C Platteeuw
- Molecular Genetics Group, NIZO, Ede, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Wiwat C, Panbangred W, Mongkolsuk S, Pantuwatana S, Bhumiratana A. Inhibition of a conjugation-like gene transfer process in Bacillus thuringiensis subsp. israelensis by the anti-s-layer protein antibody. Curr Microbiol 1995. [DOI: 10.1007/bf00294185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S. Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. ACTA ACUST UNITED AC 1992; 10:418-21. [PMID: 1369394 DOI: 10.1038/nbt0492-418] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a novel approach for the insertion of an insecticidal toxin gene into a resident plasmid in Bacillus thuringiensis (Bt). A gene encoding a coleopteran-specific toxin was cloned within a fragment of IS232 and inserted into a plasmid thermosensitive for replication in Bt. The plasmid was used to transform a Bt strain toxic to lepidoptera, and the transformants were then selected at non-permissive temperature for clones in which the vector had integrated into a copy of IS232 present on a resident plasmid. A second recombination event was selected such that the vector was eliminated and the newly introduced toxin gene was conserved. The resulting strain contained only DNA of Bt origin, and displayed insecticidal activity against both lepidoptera and coleoptera.
Collapse
Affiliation(s)
- D Lereclus
- Unité de Biochimie Microbienne, URA 1300, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
We describe below a set of plasmid-based vehicles which can be used for delivery of IS10-derived transposons into Gram- bacteria. These vehicles replicate via a Gram+ plasmid origin that is inactive in Escherichia coli; they are easily maintained in Bacillus subtilis. Transposons are introduced by electroporation or transformation with the plasmid, and as in previous delivery systems, transpositions are selected with the appropriate antibiotic. This system should be particularly useful in situations where the standard delivery vehicles, based on bacteriophage lambda, are inappropriate. The system described incorporates a number of useful features: a variety of antibiotic markers (Er, Cm, Km or Tc), a polylinker containing restriction sites for rare-cutting endonucleases to facilitate physical mapping of chromosomal insertions, a mutant transposase that confers a relaxation in insertion specificity and positioning of the transposase-encoding gene outside of the transposing segment to ensure the stability of insertions once isolated.
Collapse
Affiliation(s)
- J Mahillon
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
24
|
Baum JA, Gilbert MP. Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J Bacteriol 1991; 173:5280-9. [PMID: 1885511 PMCID: PMC208237 DOI: 10.1128/jb.173.17.5280-5289.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The replication origins of three large Bacillus thuringiensis plasmids, derived from B. thuringiensis HD263 subsp. kurstaki, have been cloned in Escherichia coli and sequenced. The replication origins, designated ori 43, ori 44, and ori 60, were isolated from plasmids of 43, 44, and 60 MDa, respectively. Each cloned replication origin exhibits incompatibility with the resident B. thuringiensis plasmid from which it was derived. Recombinant plasmids containing the three replication origins varied in their ability to transform strains of B. thuringiensis, Bacillus megaterium, and Bacillus subtilis. Analysis of the derived nucleotide and amino acid sequences indicates that the replication origins are nonhomologous, implying independent derivations. No significant homology was found to published sequences of replication origins derived from the single-stranded DNA plasmids of gram-positive bacteria, and shuttle vectors containing the three replication origins do not appear to generate single-stranded DNA intermediates in B. thuringiensis. The replication origin regions of the large plasmids are each characterized by a single open reading frame whose product is essential for replication in B. thuringiensis. The putative replication protein of ori 60 exhibits partial homology to the RepA protein of the Bacillus stearothermophilus plasmid pTB19. The putative replication protein of ori 43 exhibits weak but extensive homology to the replication proteins of several streptococcal plasmids, including the open reading frame E replication protein of the conjugative plasmid pAM beta 1. The nucleotide sequence of ori 44 and the amino acid sequence of its putative replication protein appear to be nonhomologous to other published replication origin sequences.
Collapse
Affiliation(s)
- J A Baum
- Ecogen Inc. Langhorne, Pennsylvania 19047-1810
| | | |
Collapse
|
25
|
Zink A, Klein JÃR, Plapp R. Transformation of Lactobacillus delbrückiissp. lactisby electroporation and cloning of origins of replication by use of a positive selection vector. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04444.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Abstract
The transformation efficiency of Bacillus thuringiensis depends upon the source of plasmid DNA. DNA isolated from B. thuringiensis, Bacillus megaterium, or a Dam- Dcm- Escherichia coli strain efficiently transformed several B. thuringiensis strains, B. thuringiensis strains were grouped according to which B. thuringiensis backgrounds were suitable sources of DNA for transformation of other B. thuringiensis strains, suggesting that B. thuringiensis strains differ in DNA modification and restriction. Efficient transformation allowed the demonstration of developmental regulation of cloned crystal protein genes in B. thuringiensis.
Collapse
|
27
|
Stephenson M, Jarrett P. Transformation of Bacillus subtilis by electroporation. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf00152746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Gawron-Burke C, Baum JA. Genetic Manipulation of Bacillus Thuringiensis Insecticidal Crystal Protein Genes in Bacteria. GENETIC ENGINEERING 1991; 13:237-63. [PMID: 1367416 DOI: 10.1007/978-1-4615-3760-1_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|
29
|
Baum JA, Coyle DM, Gilbert MP, Jany CS, Gawron-Burke C. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 1990; 56:3420-8. [PMID: 2268153 PMCID: PMC184969 DOI: 10.1128/aem.56.11.3420-3428.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven replication origins from resident plasmids of Bacillus thuringienis subsp. kurstaki HD263 and HD73 were cloned in Escherichia coli. Three of these replication origins, originating from plasmids of 43, 44, and 60 MDa, were used to construct a set of compatible shuttle vectors that exhibit structural and segregational stability in the Cry- strain B. thuringiensis HD73-26. These shuttle vectors, pEG597, pEG853, and pEG854, were designed with rare restriction sites that permit various adaptations, including the construction of small recombinant plasmids lacking antibiotic resistance genes. The cryIA(c) and cryIIA insecticidal crystal protein genes were inserted into these vectors to demonstrate crystal protein production in B. thuringiensis. Introduction of a cloned cryIA(c) gene from strain HD263 into a B. thuringiensis subsp. aizawai strain exhibiting good insecticidal activity against Spodoptera exigua resulted in a recombinant strain with an improved spectrum of insecticidal activity. Shuttle vectors of this sort should be valuable in future genetic studies of B. thuringiensis as well as in the development of B. thuringiensis strains for use as microbial pesticides.
Collapse
Affiliation(s)
- J A Baum
- Ecogen Inc., Langhorne, Pennsylvania 19047-1810
| | | | | | | | | |
Collapse
|
30
|
Desomer J, Dhaese P, Montagu MV. Transformation of
Rhodococcus fascians
by High-Voltage Electroporation and Development of
R. fascians
Cloning Vectors. Appl Environ Microbiol 1990; 56:2818-25. [PMID: 16348290 PMCID: PMC184849 DOI: 10.1128/aem.56.9.2818-2825.1990] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of the virulence determinants of phytopathogenic
Rhodococcus fascians
has been hampered by the lack of a system for introducing exogenous DNA. We investigated the possibility of genetic transformation of
R. fascians
by high-voltage electroporation of intact bacterial cells in the presence of plasmid DNA. Electrotransformation in
R. fascians
D188 resulted in transformation frequencies ranging from 10
5
/μg of DNA to 10
7
/μg of DNA, depending on the DNA concentration. The effects of different electrical parameters and composition of electroporation medium on transformation efficiency are presented. By this transformation method, a cloning vector (pRF28) for
R. fascians
based on an indigenous 160-kilobase (chloramphenicol and cadmium resistance-encoding) plasmid pRF2 from strain NCPPB 1675 was developed. The origin of replication and the chloramphenicol resistance gene on pRF28 were used to construct cloning vectors that are capable of replication in
R. fascians
and
Escherichia coli.
The electroporation method presented was efficient enough to allow detection of the rare integration of replication-deficient pRF28 derivatives in the
R. fascians
D188 genome via either homologous or illegitimate recombination.
Collapse
Affiliation(s)
- J Desomer
- Laboratorium voor Genetica, Rijksuniversiteit Gent, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
31
|
|