1
|
Kim JY, Lee K, Lee MG, Kim SJ. Periodontitis and atherosclerotic cardiovascular disease. Mol Cells 2024; 47:100146. [PMID: 39515611 PMCID: PMC11612374 DOI: 10.1016/j.mocell.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a major global health concern linked to significant morbidity and mortality. Recent research has explored the relationship between ASCVD and periodontitis, a prevalent inflammatory oral condition. Epidemiological studies have suggested a strong association between periodontitis and ASCVD, even proposing that periodontal disease could be a modifiable risk factor for cardiovascular conditions. This review critically analyzes the current evidence for a potential causal role for periodontitis in ASCVD. While randomized controlled trials have demonstrated reductions in surrogate markers of cardiovascular risk following periodontal interventions, these studies remain inconclusive regarding their direct effects on cardiovascular events. Preclinical studies in animal models have suggested a potential causal relationship between periodontitis and ASCVD, proposing several biological mechanisms to explain this connection. These studies, however, are limited in their ability to definitively prove causality. The positive associations observed in epidemiological studies between periodontitis and ASCVD may also be influenced by various biases, such as confounding and collider stratification. Moreover, our systematic review of Mendelian randomization studies on the causal relationship between periodontitis and ASCVD found no evidence of a genetic causality, further challenging the causal hypothesis. This review underscores the need for further high-quality research clarifying the relationship between periodontitis and ASCVD to better guide clinical practice and public health policy.
Collapse
Affiliation(s)
- June Yeon Kim
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyeongho Lee
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Moon Geon Lee
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Jin Kim
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
2
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
3
|
Schenkein HA, Papapanou PN, Genco R, Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000 2020; 83:90-106. [PMID: 32385879 DOI: 10.1111/prd.12304] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is central to the pathology of cardiovascular diseases, a group of diseases in which arteries become occluded with atheromas that may rupture, leading to different cardiovascular events, such as myocardial infarction or ischemic stroke. There is a large body of epidemiologic and animal model evidence associating periodontitis with atherosclerotic disease, and many potential mechanisms linking these diseases have been elucidated. This chapter will update knowledge on these mechanisms, which generally fall into 2 categories: microbial invasion and infection of atheromas; and inflammatory and immunologic. With respect to the invasion and infection of atheromas, it is well established that organisms from the subgingival biofilm can enter the circulation and lodge in most distant tissues. Bacteremias resulting from oral interventions, and even oral hygiene activities, are well documented. More recently, indirect routes of entry of oral organisms (via phagocytes or dendritic cells) have been described for many oral organisms, into many tissues. Such organisms include the periodontal pathogens Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Tannerella forsythia, and Fusobacterium nucleatum. Intracellular survival of these organisms with dissemination to distant sites (The Trojan Horse approach) has been described. Their relative contribution to atheroma formation and progression has been studied mainly in experimental research, with results demonstrating that these organisms can invade endothelial cells and phagocytic cells within the atheroma, leading to pathogenic changes and progression of the atheroma lesion. The second category of mechanisms potentially linking periodontitis to atherosclerosis includes the dumping of inflammatory mediators originating from periodontal lesions into the systemic circulation. These inflammatory mediators, such as C-reactive protein, matrix metalloproteinases, fibrinogen, and other hemostatic factors, would further accelerate atheroma formation and progression, mainly through oxidative stress and inflammatory dysfunction. Moreover, direct effects on lipid oxidation have also been described. In summary, the evidence supports the concept that periodontitis enhances the levels of systemic mediators of inflammation that are risk factors for atherosclerotic diseases.
Collapse
Affiliation(s)
- Harvey A Schenkein
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, NewYork, New York, USA
| | - Robert Genco
- Departments of Oral Biology, and Microbiology and Immunology, Center for Microbiome Research, University at Buffalo, Buffalo, New York, USA
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
4
|
Chidambar CK, Shankar SM, Agarwal RK, Bhushan KS, Gururaj SB. Evaluation of Periodontal Status among Men Undergoing Infertility Treatment. J Hum Reprod Sci 2019; 12:130-135. [PMID: 31293327 PMCID: PMC6594118 DOI: 10.4103/jhrs.jhrs_168_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: It has been estimated that >30% of male infertility cases are of idiopathic etiology. Recent studies revealed a positive connection between periodontal pockets and sperm submotility, which proposes that periodontitis may have a role in male infertility and inadequate semen quality. The aim of the present investigation was to inspect the relationship between male fertility parameters and the periodontal status of male patients attending in vitro treatment (IVF) clinic. Materials and Methods: The study participants comprised 85 men going to the facility for sperm investigation before semen insemination. The nature of sperm was surveyed by the WHO 2010 criteria. On the same day, male patients were examined for periodontal parameters. Results: The patients were determined to have either gingivitis (24.7%) or periodontitis (75.3%). Normospermia was credited to 23.5% and oligozoospermia to 43.5%. Sperm submotility was seen in 76.4% of patients. A higher number of sites with clinical attachment loss showed a positive correlation with sperm submotility and sperm count. Conclusions: The findings of the present study showed a conceivable relationship between male infertility, decreased semen quality, and periodontal diseases in men visiting IVF centers. Periodontitis may subsequently play a role in male infertility.
Collapse
Affiliation(s)
| | - Shrinidhi Maji Shankar
- Department of Periodontics, Sharavathi Dental College and Hospital, Shimoga, Karnataka, India
| | - Raj Kishen Agarwal
- Department of Periodontics, Sharavathi Dental College and Hospital, Shimoga, Karnataka, India
| | - Kala S Bhushan
- Department of Periodontics, Sharavathi Dental College and Hospital, Shimoga, Karnataka, India
| | | |
Collapse
|
5
|
Sugimoto S, Maeda H, Kitamatsu M, Nishikawa I, Shida M. Selective growth inhibition of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by antisense peptide nucleic acids. Mol Cell Probes 2018; 43:45-49. [PMID: 30471338 DOI: 10.1016/j.mcp.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Peptide nucleic acids (PNA) are DNA/RNA analogs in which the sugar-phosphate backbone is replaced by N-2-aminoethylglycine. PNA are widely used for experimental antisense therapy due to their strong affinity to mRNA. By targeting specific genes, protein synthesis and the growth of bacteria or cancer cells can be inhibited by PNA. Here, we report the design and evaluation of antisense PNA for selective growth inhibition of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, potent pathogens associated with periodontitis. Antisense PNA against groEL and acpP were prepared with carrier peptide (KFFKFFKFFK). Anti-groEL PNA for P. gingivalis specifically inhibited growth in a dose-dependent manner, and growth was inhibited for 5 h at a concentration of 3 μM. Anti-groEL PNA for A. actinomycetemcomitans inhibited growth for 2 h at a concentration of 3 μM with reduced GroEL protein expression. Anti-acpP PNA did not show a marked growth inhibitory effect on either species. Although further studies are needed to develop more effective antisense PNA for both species, anti-groEL PNA may be potentially useful species-specific antibacterial tools against oral pathogens.
Collapse
Affiliation(s)
- Sadaomi Sugimoto
- Department of Endodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| | - Hiroshi Maeda
- Department of Endodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.
| | - Mizuki Kitamatsu
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Ikuo Nishikawa
- Department of Endodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| | - Muneyasu Shida
- Department of Endodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan
| |
Collapse
|
6
|
Makkar H, Reynolds MA, Wadhawan A, Dagdag A, Merchant AT, Postolache TT. Periodontal, metabolic, and cardiovascular disease: Exploring the role of inflammation and mental health. Pteridines 2018; 29:124-163. [PMID: 30705520 PMCID: PMC6350811 DOI: 10.1515/pteridines-2018-0013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous evidence connects periodontal disease, a modifiable condition affecting a majority of Americans, with metabolic and cardiovascular morbidity and mortality. This review focuses on the likely mediation of these associations by immune activation and their potential interactions with mental illness. Future longitudinal, and ideally interventional studies, should focus on reciprocal interactions and cascading effects, as well as points for effective preventative and therapeutic interventions across diagnostic domains to reduce morbidity, mortality and improve quality of life.
Collapse
Affiliation(s)
- Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anwar T Merchant
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA; Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD 21201, USA,
| |
Collapse
|
7
|
Choi JI, Chung SW, Kang HS, Rhim BY, Park YM, Kim US, Kim SJ. Epitope Mapping of Porphyromonas gingivalis Heat-shock Protein and Human Heat-shock Protein in Human Atherosclerosis. J Dent Res 2016; 83:936-40. [PMID: 15557401 DOI: 10.1177/154405910408301209] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To identify T- and/or cross-reactive B-cell epitopes of P. gingivalis and human heat-shock protein (HSP)60 in atherosclerosis patients, we synthesized 104 overlapping synthetic peptides spanning whole molecules of P. gingivalis HSP60 and human HSP60, respectively. T-cell epitopes of P. gingivalis HSP were identified with the use of previously established P. gingivalis HSP-reactive T-cell lines. B-cell epitopes of P. gingivalis HSP60 and human HSP60 were identified by the use of patients’ sera. Anti- P. gingivalis, anti- P. gingivalis HSP60, or anti-human HSP60 IgG antibody titers were higher in the atherosclerosis patients compared with the healthy subjects. Five immunodominant peptides of P. gingivalis HSP60, identified as T-cell epitopes, were also found to be B-cell epitopes. Moreover, 6 cross-reactive B-cell epitopes of human HSP60 were identified. It was concluded that P. gingivalis HSP60 might be involved in the immunoregulatory process of atherosclerosis, with common T- and/or B-cell epitope specificities and with cross-reactivity with human HSP60.
Collapse
Affiliation(s)
- J-I Choi
- Department of Periodontology and Research Institute for Oral Biotechnology, School of Dentistry, Pusan National University, 1-10, Ami-Dong, Seo-Ku, Pusan 602-739, Korea.
| | | | | | | | | | | | | |
Collapse
|
8
|
Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Clin Periodontol 2016; 40 Suppl 14:S51-69. [PMID: 23627334 DOI: 10.1111/jcpe.12060] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/17/2022]
Abstract
AIMS In this article, inflammatory mechanisms that link periodontal diseases to cardiovascular diseases are reviewed. METHODS This article is a literature review. RESULTS Studies in the literature implicate a number of possible mechanisms that could be responsible for increased inflammatory responses in atheromatous lesions due to periodontal infections. These include increased systemic levels of inflammatory mediators stimulated by bacteria and their products at sites distant from the oral cavity, elevated thrombotic and hemostatic markers that promote a prothrombotic state and inflammation, cross-reactive systemic antibodies that promote inflammation and interact with the atheroma, promotion of dyslipidemia with consequent increases in pro-inflammatory lipid classes and subclasses, and common genetic susceptibility factors present in both disease leading to increased inflammatory responses. CONCLUSIONS Such mechanisms may be thought to act in concert to increase systemic inflammation in periodontal disease and to promote or exacerbate atherogenesis. However, proof that the increase in systemic inflammation attributable to periodontitis impacts inflammatory responses during atheroma development, thrombotic events or myocardial infarction or stroke is lacking.
Collapse
Affiliation(s)
- Harvey A Schenkein
- Department of Periodontics, Virginia Commonwealth University, Richmond, VA 23298-0566, USA.
| | | |
Collapse
|
9
|
Elfaitouri A, Herrmann B, Bölin-Wiener A, Wang Y, Gottfries CG, Zachrisson O, Pipkorn R, Rönnblom L, Blomberg J. Epitopes of microbial and human heat shock protein 60 and their recognition in myalgic encephalomyelitis. PLoS One 2013; 8:e81155. [PMID: 24312270 PMCID: PMC3842916 DOI: 10.1371/journal.pone.0081155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/08/2013] [Indexed: 12/04/2022] Open
Abstract
Myalgic encephalomyelitis (ME, also called Chronic Fatigue Syndrome), a common disease with chronic fatigability, cognitive dysfunction and myalgia of unknown etiology, often starts with an infection. The chaperonin human heat shock protein 60 (HSP60) occurs in mitochondria and in bacteria, is highly conserved, antigenic and a major autoantigen. The anti-HSP60 humoral (IgG and IgM) immune response was studied in 69 ME patients and 76 blood donors (BD) (the Training set) with recombinant human and E coli HSP60, and 136 30-mer overlapping and targeted peptides from HSP60 of humans, Chlamydia, Mycoplasma and 26 other species in a multiplex suspension array. Peptides from HSP60 helix I had a chaperonin-like activity, but these and other HSP60 peptides also bound IgG and IgM with an ME preference, theoretically indicating a competition between HSP60 function and antibody binding. A HSP60-based panel of 25 antigens was selected. When evaluated with 61 other ME and 399 non-ME samples (331 BD, 20 Multiple Sclerosis and 48 Systemic Lupus Erythematosus patients), a peptide from Chlamydia pneumoniae HSP60 detected IgM in 15 of 61 (24%) of ME, and in 1 of 399 non-ME at a high cutoff (p<0.0001). IgM to specific cross-reactive epitopes of human and microbial HSP60 occurs in a subset of ME, compatible with infection-induced autoimmunity.
Collapse
Affiliation(s)
- Amal Elfaitouri
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn Herrmann
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Agnes Bölin-Wiener
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yilin Wang
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | - Lars Rönnblom
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Klinger A, Hain B, Yaffe H, Schonberger O. Periodontal status of males attending an in vitro fertilization clinic. J Clin Periodontol 2011; 38:542-6. [DOI: 10.1111/j.1600-051x.2011.01720.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ford PJ, Raphael SL, Cullinan MP, Jenkins AJ, West MJ, Seymour GJ. Why should a doctor be interested in oral disease? Expert Rev Cardiovasc Ther 2011; 8:1483-93. [PMID: 20936934 DOI: 10.1586/erc.10.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oral health has been implicated in systemic disease throughout the ages; however, the understanding of the relationship between oral disease and systemic diseases such as cardiovascular disease and Type 2 diabetes mellitus is still emerging today. Chronic periodontal disease is widespread in the general population and a significant proportion of adults suffer from the most severe form of the disease. Dental plaque biofilm is necessary for the development of chronic periodontal disease with genetic and environmental factors contributing towards the pathogenesis. The putative biological mechanisms of the association between oral disease and atherogenesis are discussed, although there is insufficient evidence to establish causality at this time. Regardless of a direct causal relationship between oral disease and cardiovascular disease, treatment of oral disease leads to both a reduction in the systemic inflammatory burden as reflected in inflammatory markers and an improvement in endothelial function and hence improved overall health outcomes. A brief overview of periodontal disease including etiology, pathogenesis, screening and therapeutic implications is presented.
Collapse
Affiliation(s)
- Pauline J Ford
- The University of Queensland, School of Dentistry, 200 Turbot Street, Brisbane, QLD 4000, Australia
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
In terms of the pathogenesis of cardiovascular disease (CVD) the focus has traditionally been on dyslipidemia. Over the decades our understanding of the pathogenesis of CVD has increased, and infections, including those caused by oral bacteria, are more likely involved in CVD progression than previously thought. While many studies have now shown an association between periodontal disease and CVD, the mechanisms underpinning this relationship remain unclear. This review gives a brief overview of the host-bacterial interactions in periodontal disease and virulence factors of oral bacteria before discussing the proposed mechanisms by which oral bacterial may facilitate the progression of CVD.
Collapse
Affiliation(s)
- Shaneen J Leishman
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
14
|
Choi JI, Seymour GJ. Vaccines against periodontitis: a forward-looking review. J Periodontal Implant Sci 2010; 40:153-63. [PMID: 20827324 PMCID: PMC2931303 DOI: 10.5051/jpis.2010.40.4.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/02/2010] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease, as a polymicrobial disease, is globally endemic as well as being a global epidemic. It is the leading cause for tooth loss in the adult population and has been positively related to life-threatening systemic diseases such as atherosclerosis and diabetes. As a result, it is clear that more sophisticated therapeutic modalities need to be developed, which may include vaccines. Up to now, however, no periodontal vaccine trial has been successful in satisfying all the requirements; to prevent the colonization of a multiple pathogenic biofilm in the subgingival area, to elicit a high level of effector molecules such as immunoglobulin sufficient to opsonize and phagocytose the invading organisms, to suppress the induced alveolar bone loss, or to stimulate helper T-cell polarization that exerts cytokine functions optimal for protection against bacteria and tissue destruction. This article reviews all the vaccine trials so as to construct a more sophisticated strategy which may be relevant in the future. As an innovative strategy to circumvent these barriers, vaccine trials to stimulate antigen-specific T-cells polarized toward helper T-cells with a regulatory phenotype (Tregs, CD4+, CD25+, FoxP3+) have also been introduced. Targeting not only a single pathogen, but polymicrobial organisms, and targeting not only periodontal disease, but also periodontal disease-triggered systemic disease could be a feasible goal.
Collapse
Affiliation(s)
- Jeom-Il Choi
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | | |
Collapse
|
15
|
Kebschull M, Demmer RT, Papapanou PN. "Gum bug, leave my heart alone!"--epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res 2010; 89:879-902. [PMID: 20639510 DOI: 10.1177/0022034510375281] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence from epidemiologic studies suggests that periodontal infections are independently associated with subclinical and clinical atherosclerotic vascular disease. Although the strength of the reported associations is modest, the consistency of the data across diverse populations and a variety of exposure and outcome variables suggests that the findings are not spurious or attributable only to the effects of confounders. Analysis of limited data from interventional studies suggests that periodontal treatment generally results in favorable effects on subclinical markers of atherosclerosis, although such analysis also indicates considerable heterogeneity in responses. Experimental mechanistic in vitro and in vivo studies have established the plausibility of a link between periodontal infections and atherogenesis, and have identified biological pathways by which these effects may be mediated. However, the utilized models are mostly mono-infections of host cells by a limited number of 'model' periodontal pathogens, and therefore may not adequately portray human periodontitis as a polymicrobial, biofilm-mediated disease. Future research must identify in vivo pathways in humans that may (i) lead to periodontitis-induced atherogenesis, or (ii) result in treatment-induced reduction of atherosclerosis risk. Data from these studies will be essential for determining whether periodontal interventions have a role in the primary or secondary prevention of atherosclerosis.
Collapse
Affiliation(s)
- M Kebschull
- Division of Periodontics, Section of Oral and Diagnostic Sciences, College of Dental Medicine, 630 W 168th Street, PH-7-E-110, New York, NY 10032, USA
| | | | | |
Collapse
|
16
|
Yamabe K, Maeda H, Kokeguchi S, Soga Y, Meguro M, Naruishi K, Asakawa S, Takashiba S. Antigenic group II chaperonin inMethanobrevibacter oralismay cross-react with human chaperonin CCT. Mol Oral Microbiol 2010; 25:112-22. [DOI: 10.1111/j.2041-1014.2009.00548.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hendrickson EL, Lamont RJ, Hackett M. Tools for interpreting large-scale protein profiling in microbiology. J Dent Res 2008; 87:1004-15. [PMID: 18946006 DOI: 10.1177/154405910808701113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Quantitative proteomic analysis of microbial systems generates large datasets that can be difficult and time-consuming to interpret. Fortunately, many of the data display and gene-clustering tools developed to analyze large transcriptome microarray datasets are also applicable to proteomes. Plots of abundance ratio vs. total signal or spectral counts can highlight regions of random error and putative change. Displaying data in the physical order of the genes in the genome sequence can highlight potential operons. At a basic level of transcriptional organization, identifying operons can give insights into regulatory pathways as well as provide corroborating evidence for proteomic results. Classification and clustering algorithms can group proteins together by their abundance changes under different conditions, helping to identify interesting expression patterns, but often work poorly with noisy data such as typically generated in a large-scale proteomic analysis. Biological interpretation can be aided more directly by overlaying differential protein abundance data onto metabolic pathways, indicating pathways with altered activities. More broadly, ontology tools detect altered levels of protein abundance for different metabolic pathways, molecular functions, and cellular localizations. In practice, pathway analysis and ontology are limited by the level of database curation associated with the organism of interest.
Collapse
Affiliation(s)
- E L Hendrickson
- Departments of Chemical Engineering, Universityof Washington, Box 355014, Seattle, WA 98195, USA
| | | | | |
Collapse
|
18
|
Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect 2007; 13 Suppl 4:3-10. [PMID: 17716290 DOI: 10.1111/j.1469-0691.2007.01798.x] [Citation(s) in RCA: 428] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oral conditions such as gingivitis and chronic periodontitis are found worldwide and are among the most prevalent microbial diseases of mankind. The cause of these common inflammatory conditions is the complex microbiota found as dental plaque, a complex microbial biofilm. Despite 3000 years of history demonstrating the influence of oral status on general health, it is only in recent decades that the association between periodontal diseases and systemic conditions such as coronary heart disease and stroke, and a higher risk of preterm low birth-weight babies, has been realised. Similarly, recognition of the threats posed by periodontal diseases to individuals with chronic diseases such as diabetes, respiratory diseases and osteoporosis is relatively recent. Despite these epidemiological associations, the mechanisms for the various relationships remain unknown. Nevertheless, a number of hypotheses have been postulated, including common susceptibility, systemic inflammation with increased circulating cytokines and mediators, direct infection and cross-reactivity or molecular mimicry between bacterial antigens and self-antigens. With respect to the latter, cross-reactive antibodies and T-cells between self heat-shock proteins (HSPs) and Porphyromonas gingivalis GroEL have been demonstrated in the peripheral blood of patients with atherosclerosis as well as in the atherosclerotic plaques themselves. In addition, P. gingivalis infection has been shown to enhance the development and progression of atherosclerosis in apoE-deficient mice. From these data, it is clear that oral infection may represent a significant risk-factor for systemic diseases, and hence the control of oral disease is essential in the prevention and management of these systemic conditions.
Collapse
Affiliation(s)
- G J Seymour
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
19
|
Gemmell E, Yamazaki K, Seymour GJ. Destructive periodontitis lesions are determined by the nature of the lymphocytic response. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2007; 13:17-34. [PMID: 12097235 DOI: 10.1177/154411130201300104] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is now 35 years since Brandtzaeg and Kraus (1965) published their seminal work entitled "Autoimmunity and periodontal disease". Initially, this work led to the concept that destructive periodontitis was a localized hypersensitivity reaction involving immune complex formation within the tissues. In 1970, Ivanyi and Lehner highlighted a possible role for cell-mediated immunity, which stimulated a flurry of activity centered on the role of lymphokines such as osteoclast-activating factor (OAF), macrophage-activating factor (MAF), macrophage migration inhibition factor (MIF), and myriad others. In the late 1970s and early 1980s, attention focused on the role of polymorphonuclear neutrophils, and it was thought that periodontal destruction occurred as a series of acute exacerbations. As well, at this stage doubt was being cast on the concept that there was a neutrophil chemotactic defect in periodontitis patients. Once it was realized that neutrophils were primarily protective and that severe periodontal destruction occurred in the absence of these cells, attention swung back to the role of lymphocytes and in particular the regulatory role of T-cells. By this time in the early 1990s, while the roles of interleukin (IL)-1, prostaglandin (PG) E(2), and metalloproteinases as the destructive mediators in periodontal disease were largely understood, the control and regulation of these cytokines remained controversial. With the widespread acceptance of the Th1/Th2 paradigm, the regulatory role of T-cells became the main focus of attention. Two apparently conflicting theories have emerged. One is based on direct observations of human lesions, while the other is based on animal model experiments and the inability to demonstrate IL-4 mRNA in gingival extracts. As part of the "Controversy" series, this review is intended to stimulate debate and hence may appear in some places provocative. In this context, this review will present the case that destructive periodontitis is due to the nature of the lymphocytic infiltrate and is not due to periodic acute exacerbations, nor is it due to the so-called virulence factors of putative periodontal pathogens.
Collapse
Affiliation(s)
- E Gemmell
- School of Dentistry, The University of Queensland, Brisbane, Australia.
| | | | | |
Collapse
|
20
|
Roy F, Vanterpool E, Fletcher HM. HtrA in Porphyromonas gingivalis can regulate growth and gingipain activity under stressful environmental conditions. MICROBIOLOGY (READING, ENGLAND) 2006; 152:3391-3398. [PMID: 17074908 DOI: 10.1099/mic.0.29147-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In several micro-organisms, HtrA, a serine periplasmic protease, is considered an important virulence factor that plays a regulatory role in oxidative and temperature stress. The authors have previously shown that the vimA gene product is an important virulence regulator in Porphyromonas gingivalis. Further, purified recombinant VimA physically interacted with the major gingipains and the HtrA from P. gingivalis. To further evaluate a role for HtrA in the pathogenicity of this organism, a 1.5 kb fragment containing the htrA gene was PCR-amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic-resistance cassette and used to create an htrA-deficient mutant by allelic exchange. In one randomly chosen isogenic mutant designated P. gingivalis FLL203, there was increased sensitivity to hydrogen peroxide. Growth of this mutant at an elevated temperature was more inhibited compared to the wild-type. Further, in contrast to the wild-type, there was a significant decrease in Arg-gingipain activity after heat shock in FLL203. However, the gingipain activity in the mutant returned to normal levels after a further 30 min incubation at room temperature. Collectively, these data suggest that HtrA may play a similar role in oxidative and temperature stress in P. gingivalis as observed in other organisms.
Collapse
Affiliation(s)
- F Roy
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - E Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - H M Fletcher
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
21
|
Fukui M, Hinode D, Yokoyama M, Tanabe S, Yoshioka M. Salivary immunoglobulin A directed to oral microbial GroEL in patients with periodontitis and their potential protective role. ACTA ACUST UNITED AC 2006; 21:289-95. [PMID: 16922927 DOI: 10.1111/j.1399-302x.2006.00290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to identify salivary immunoglobulin A (IgA) directed to oral microbial GroEL in patients with periodontitis and to demonstrate their potential protective role through a reduction of inflammatory cytokine production induced by microbial GroEL. Using five different proteins belonging to the heat-shock protein 60 family, Western immunoblot analysis of salivary IgA from 63 subjects revealed immunoreactivities with Campylobacter rectus GroEL and Porphyromonas gingivalis GroEL in subjects with periodontitis (P < 0.05) compared to control subjects. Using the BIACORE 1000 to measure the salivary IgA titers directed towards C. rectus GroEL, high resonance unit (RU) values were observed in the saliva samples from patients with periodontitis (P < 0.01). Furthermore, the number of teeth with deep pocket depth (>or=5 mm) showed a high correlation coefficient with the RU value (r = 0.50, P < 0.01). C. rectus GroEL possessed the ability to stimulate the production of interleukin-6 by gingival fibroblasts. Interestingly, salivary IgA antibody directed to C. rectus GroEL caused a partial inhibition of interleukin-6 production. This study showed a relationship between high levels of salivary IgA directed to GroEL and periodontal disease severity. Although additional investigations are required, salivary IgA to GroEL may have a protective role by reducing the inflammatory response induced by GroEL derived from periodontopathogenic bacteria.
Collapse
Affiliation(s)
- M Fukui
- Clinic of Preventive Dentistry, General Dentistry, The Tokushima University Hospital, Tokushima, Japan
| | | | | | | | | |
Collapse
|
22
|
Lee JY, Yi NN, Kim US, Choi JS, Kim SJ, Choi JI. Porphyromonas gingivalis heat shock protein vaccine reduces the alveolar bone loss induced by multiple periodontopathogenic bacteria. J Periodontal Res 2006; 41:10-4. [PMID: 16409250 DOI: 10.1111/j.1600-0765.2005.00832.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Heat shock protein (HSP) can be utilized as a vaccine to cross-protect against multiple pathogenic species. The present study was performed to evaluate Porphyromonas gingivalis heat shock protein 60 (HSP60) as a vaccine candidate to inhibit multiple bacteria-induced alveolar bone loss. MATERIAL AND METHODS Recombinant P. gingivalis HSP60 was produced and purified from P. gingivalis GroEL gene. Rats were immunized with P. gingivalis HSP60, and experimental alveolar bone loss was induced by infection with multiple periodontopathogenic bacteria. RESULTS There was a very strong inverse relationship between postimmune anti-P. gingivalis HSP immunoglobulin G (IgG) levels and the amount of alveolar bone loss induced by either P. gingivalis or multiple bacterial infection (p=0.007). Polymerase chain reaction data indicated that the vaccine successfully eradicated the multiple pathogenic species. CONCLUSIONS We concluded that P. gingivalis HSP60 could potentially be developed as a vaccine to inhibit periodontal disease induced by multiple pathogenic bacteria.
Collapse
Affiliation(s)
- Ju-Youn Lee
- Department of Periodontology, School of Dentistry and Research Institute for Oral Biotechnology Pusan National University, Pusan, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Hasan A, Sadoh D, Palmer R, Foo M, Marber M, Lehner T. The immune responses to human and microbial heat shock proteins in periodontal disease with and without coronary heart disease. Clin Exp Immunol 2006; 142:585-94. [PMID: 16297172 PMCID: PMC1809534 DOI: 10.1111/j.1365-2249.2005.02953.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The human 60 kDa and microbial 65 kDa heat shock proteins (HSP) have been implicated in the pathogenesis of chronic periodontitis (P) and coronary heart disease (CHD). We have studied four male non-smoking cohorts of 81 subjects, matched for age. Group (a) consisted of a healthy group with minimal gingivitis (n = 18), group (b) were patients with P (n = 23), group (c) patients with CHD and minimal gingivitis (n = 20) and group (d) patients with CHD and P (n = 20). T cells separated from peripheral blood were found to be primed to both microbial HSP65 and human HSP60 but significant CD4, human leucocyte antigen (HLA) class II-restricted proliferative responses were found only with the human HSP60 in patients with P (P < 0.001) and CHD without (P < 0.001) or with (P < 0.00001) periodontitis. Dose-dependent inhibition of T cell proliferative responses was carried out to determine the receptors involved in recognition of HSP60 and HSP65. Monoclonal antibodies to CD14 showed inhibition of T cell proliferation stimulated by both HSP60 and HSP65, consistent with the role of CD14 as a receptor for these HSPs in P and CHD. The toll-like receptor 2 (TLR-) and TLR-4 were then studied and these showed that TLR-4 was recognized by microbial HSP65, whereas TLR-2 was recognised by human HSP60 in both P and CHD. However, a dissociation was found in the HSP60 and TLR4 interaction, as TLR4 appeared to have been recognized by HSP60 in P but not in CHD. The results suggest an autoimmune or cross-reactive CD4(+) class II-restricted T cell response to the human HSP60 in P and CHD. Further studies are required to determine if there is a common epitope within HSP60 that stimulates T cell proliferation in P and CHD.
Collapse
Affiliation(s)
- A Hasan
- Department of Periodontology and Preventive Dentistry, GKT Dental Institute, Guy's Hospital, KCL, University of London, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Goulhen F, Grenier D, Mayrand D. Oral microbial heat-shock proteins and their potential contributions to infections. ACTA ACUST UNITED AC 2003; 14:399-412. [PMID: 14656896 DOI: 10.1177/154411130301400603] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oral cavity is a complex ecosystem in which several hundred microbial species normally cohabit harmoniously. However, under certain special conditions, the growth of some micro-organisms with a pathogenic potential is promoted, leading to infections such as dental caries, periodontal disease, and stomatitis. The physiology and pathogenic properties of micro-organisms are influenced by modifications in environmental conditions that lead to the synthesis of specific proteins known as the heat-shock proteins (HSPs). HSPs are families of highly conserved proteins whose main role is to allow micro-organisms to survive under stress conditions. HSPs act as molecular chaperones in the assembly and folding of proteins, and as proteases when damaged or toxic proteins have to be degraded. Several pathological functions have been associated with these proteins. Many HSPs of oral micro-organisms, particularly periodontopathogens, have been identified, and some of their properties-including location, cytotoxicity, and amino acid sequence homology with other HSPs-have been reported. Since these proteins are immunodominant antigens in many human pathogens, studies have recently focused on the potential contributions of HSPs to oral diseases. The cytotoxicity of some bacterial HSPs may contribute to tissue destruction, whereas the presence of common epitopes in host proteins and microbial HSPs may lead to autoimmune responses. Here, we review the current knowledge regarding HSPs produced by oral micro-organisms and discuss their possible contributions to the pathogenesis of oral infections.
Collapse
Affiliation(s)
- Florence Goulhen
- Groupe de Recherche en Ecologie Buccale, Faculté des Sciences et de Génie, Université Laval, Cité universitaire, Quebec City, Quebec, Canada, G1K 7P4
| | | | | |
Collapse
|
25
|
Al-Rasheed A, Scheerens H, Rennick DM, Fletcher HM, Tatakis DN. Accelerated alveolar bone loss in mice lacking interleukin-10. J Dent Res 2003; 82:632-5. [PMID: 12885849 DOI: 10.1177/154405910308200812] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Interleukin-10 regulates pro-inflammatory cytokines, including those implicated in alveolar bone resorption. We hypothesized that lack of interleukin-10 leads to increased alveolar bone resorption. Male interleukin-10(-/-) mice, on 129/SvEv and C57BL/6J background, were compared with age-, sex-, and strain-matched interleukin-10(+/+) controls for alveolar bone loss. Immunoblotting was used for analysis of serum reactivity against bacteria associated with colitis and periodontitis. Interleukin-10(-/-) mice had significantly greater alveolar bone loss than interleukin-10(+/+) mice (p = 0.006). The 30-40% greater alveolar bone loss in interleukin-10(-/-) mice was evident in both strains, with C57BL/6J interleukin-10(-/-) mice exhibiting the most bone loss. Immunoblotting revealed distinct interleukin-10(-/-) serum reactivity against Bacteroides vulgatus, B. fragilis, Prevotella intermedia, and, to a lesser extent, against B. forsythus. The results of the present study suggest that lack of interleukin-10 leads to accelerated alveolar bone loss.
Collapse
Affiliation(s)
- A Al-Rasheed
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Chung SW, Kang HS, Park HR, Kim SJ, Kim SJ, Choi JI. Immune responses to heat shock protein in Porphyromonas gingivalis-infected periodontitis and atherosclerosis patients. J Periodontal Res 2003; 38:388-93. [PMID: 12828655 DOI: 10.1034/j.1600-0765.2003.00664.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND It has been widely thought that heat shock protein might be involved in autoimmune disease mechanisms in humans. OBJECTIVES The present study was performed to evaluate the recognition of Porphyromonas gingivalis heat shock protein 60 (hsp60) and human hsp60 by immune sera in P. gingivalis-infected periodontitis and atherosclerosis patients. MATERIALS AND METHODS Mononuclear cells from atheroma lesions were stimulated with P. gingivalis hsp and sera from periodontitis or atherosclerosis patients were subjected to Western immunoblotting to P. gingivalis hsp or human hsp, respectively. RESULTS Western immunoblot analysis demonstrated the dual reactivity of anti-P. gingivalis antisera with P. gingivalis hsp and human hsp. We could also establish P. gingivalis hsp-specific T cell lines from the atheroma lesions, a mixture of CD4+ and CD8+ cells producing the cytokines characteristic of both Th1 and Th2 subsets. CONCLUSION These observations suggest the modulating effect of P. gingivalis hsp60 in the immunopathogenesis of periodontitis and atherosclerosis.
Collapse
Affiliation(s)
- Sung-Woon Chung
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, College of Natural Sciences, Pusan, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Tanabe S, Hinode D, Yokoyama M, Fukui M, Nakamura R, Yoshioka M, Grenier D, Mayrand D. Helicobacter pylori and Campylobacter rectus share a common antigen. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:79-87. [PMID: 12654095 DOI: 10.1034/j.1399-302x.2003.00049.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM The aim of this study was to investigate the presence of antigens with immunological cross-reactivity in periodontopathogenic bacteria and Helicobacter pylori, the pathogen associated with gastritis and peptic ulcers in human. MATERIALS AND METHODS/RESULTS Among the putative periodontopathogens tested (Actinobacillus actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia and Treponema denticola), cross-reactive bands were only detected in C. rectus by SDS-PAGE/Western immunoblotting analysis using a polyclonal antibody directed to H. pylori cells. One of these cross-reactive antigens, a 64-kDa band antigen, also reacted with a monoclonal antibody directed to the human heat shock protein (HSP) 60. The N-terminal amino acid sequence of this C. rectus protein revealed a high degree of homology with corresponding regions of other HSPs belonging to the HSP60 family, indicating that the 64-kDa antigen was a GroEL protein. The nucleotide sequence of the C. rectus GroEL protein coded for a 547 amino acid protein with a predicted size of 57.8 kDa. Comparison of the alignment of the deduced amino acid sequence of the GroEL protein of C. rectus with that of H. pylori showed a high degree of similarity throughout its length (76.8%). GroEL protein from C. rectus possessed the ability to stimulate production of IL-6 by a confluent monolayer of human gingival epithelial cells and was cytotoxic when used at a high concentration. CONCLUSIONS This study reveals an immunological relationship between H. pylori and C. rectus, and clearly indicates that one of the shared antigens is a GroEL protein possessing a biological activity that might play a role in the initiation and progression of periodontal disease.
Collapse
Affiliation(s)
- S Tanabe
- Department of Preventive Dentistry, School of Dentistry, The University of Tokushima, Tokushima City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sims TJ, Lernmark A, Mancl LA, Schifferle RE, Page RC, Persson GR. Serum IgG to heat shock proteins and Porphyromonas gingivalis antigens in diabetic patients with periodontitis. J Clin Periodontol 2002; 29:551-62. [PMID: 12296783 DOI: 10.1034/j.1600-051x.2002.290612.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Past studies have reported a correlation between the presence and severity of periodontitis and serum antibody titers to species-specific antigens of Porphyromonas gingivalis or to cross-reactive antigens, such as lipopolysaccharide (LPS) and heat shock proteins (HSP), shared between P. gingivalis and other bacteria. Our recent study of periodontal treatment outcome in insulin-dependent (type 1) diabetes mellitus patients with severe periodontitis (IDDMI/periodontitis) resulted in two key findings: 1. serum glutamic acid decarboxylase autoantibody (GAD65 Ab) levels were significantly associated with periodontal pocket depth change (PDC) and 2. serum IgG titers to P. gingivalis cells were positively associated with GAD65 Ab level in seropositive (GAD65 Ab +) patients. We have therefore hypothesized that profiles of serum autoantibody levels and IgG titers, to P. gingivalis-specific antigens may be useful in assessing risk for refractory periodontitis in such patients. AIM To determine whether PDC resulting from non-surgical periodontal treatment can be predicted using profiles of baseline IgG titers to P. gingivalis-specific antigens, human HSP, and GAD65. METHODS PDC was assessed two months after non-surgical periodontal treatment of 7 GAD65 Ab + and 11 GAD65 AbIDDM/periodontitis patients. Pretreatment titers to GAD65, recombinant human heat shock proteins (HSP90, HSP70, and HSP60), and various P. gingivalis antigens were measured using radioligand precipitation or enzyme-linked immunosorbent (ELISA) assays and compared to the same measurements for 154 recent-onset IDDM patients and 46 non-diabetic controls. RESULTS Median titers (ELISA units) to HSP90 and HSP70 were significantly higher than non-diabetic controls for GAD65 Ab + (p degrees = 0.002) and GAD65 Ab- (p = 0.034) IDDM/periodontitis patients, respectively. Multivariate regression analysis indicated significant partial correlation of PDC with log-transformed titers to HSP90 (r = - 0.62, p = 0.008), HSP70 (r = + 0.62, p = 0.009), GAD65 (r = - 0.60, p = 0.01) and P. gingivalis LPS (r = - 0.5 1, p = 0.04). Furthermore, hierarchical clustering of baseline profiles of log-transformed HSP90, HSP70, and GAD65 Ab titers sorted patients into two distinct clusters with significantly different median PDC (1.45 min, n = 10 vs. 0.65 min, n = 8; p = 0.016, Mann-Whitney). CONCLUSION Pretreatment profiles of serum antibody titers to HSP90, HSP70, GAD65, and P. gingivalis LPS may be useful for predicting which patients with IDDM/periodontitis will have a poor response to non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Tom J Sims
- Department of Oral Medicine, University of Washington, Seattle WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Choi JI, Chung SW, Kang HS, Rhim BY, Kim SJ, Kim SJ. Establishment of Porphyromonas gingivalis heat-shock-protein-specific T-cell lines from atherosclerosis patients. J Dent Res 2002; 81:344-8. [PMID: 12097449 DOI: 10.1177/154405910208100511] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human atherosclerotic plaques contain heat-shock proteins which may serve as potential targets of the immune response in atherosclerosis. Since periodontal infections are suggested as risk factors for the development of cardiovascular diseases, we undertook the present study to evaluate the T-cell immune responses specific to Porphyromonas gingivalis (P. gingivalis) heat-shock protein (hsp)60 in patients suffering from atherosclerosis. Anti-P. gingivalis hsp60 IgG antibody titers were elevated in all patients. We could establish P. gingivalis hsp-specific T-cell lines from the atheroma lesions and the peripheral blood. The T-cell lines were a mixture of CD4+ and CD8+ cells producing the cytokines characteristic of both Th1 and Th2 subsets. The present findings suggest that the T-cell immune response specific to P. gingivalis hsp60 may be involved in the immunopathologic process of atherosclerotic diseases.
Collapse
Affiliation(s)
- J-I Choi
- Department of Periodontology, School of Dentistry, Pusan National University, 1-10 Ami-Dong, Seo-Ku, Pusan 602-739, Korea.
| | | | | | | | | | | |
Collapse
|
30
|
Yamazaki K, Ohsawa Y, Tabeta K, Ito H, Ueki K, Oda T, Yoshie H, Seymour GJ. Accumulation of human heat shock protein 60-reactive T cells in the gingival tissues of periodontitis patients. Infect Immun 2002; 70:2492-501. [PMID: 11953387 PMCID: PMC127937 DOI: 10.1128/iai.70.5.2492-2501.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heat shock protein 60s (hsp60) are remarkably immunogenic, and both T-cell and antibody responses to hsp60 have been reported in various inflammatory conditions. To clarify the role of hsp60 in T-cell responses in periodontitis, we examined the proliferative response of peripheral blood mononuclear cells (PBMC), as well as the cytokine profile and T-cell clonality, for periodontitis patients and controls following stimulation with recombinant human hsp60 and Porphyromonas gingivalis GroEL. To confirm the infiltration of hsp60-reactive T-cell clones into periodontitis lesions, nucleotide sequences within complementarity-determining region 3 of the T-cell receptor (TCR) beta-chain were compared between hsp60-reactive peripheral blood T cells and periodontitis lesion-infiltrating T cells. Periodontitis patients demonstrated significantly higher proliferative responses of PBMC to human hsp60, but not to P. gingivalis GroEL, than control subjects. The response was inhibited by anti-major histocompatibility complex class II antibodies. Analysis of the nucleotide sequences of the TCR demonstrated that human hsp60-reactive T-cell clones and periodontitis lesion-infiltrating T cells have the same receptors, suggesting that hsp60-reactive T cells accumulate in periodontitis lesions. Analysis of the cytokine profile demonstrated that hsp60-reactive PBMC produced significant levels of gamma interferon (IFN-gamma) in periodontitis patients, whereas P. gingivalis GroEL did not induce any skewing toward a type1 or type2 cytokine profile. In control subjects no significant expression of IFN-gamma or interleukin 4 was induced. These results suggest that periodontitis patients have human hsp60-reactive T cells with a type 1 cytokine profile in their peripheral blood T-cell pools.
Collapse
Affiliation(s)
- Kazuhisa Yamazaki
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Messas E, Batista EL, Levine RA, Amar S. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation 2002; 105:861-7. [PMID: 11854128 DOI: 10.1161/hc0702.104178] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Current epidemiological data suggest that dental infections affecting tooth-supporting tissues (periodontitis) can disseminate into the systemic circulation and thereby contribute to atherosclerosis progression. To test this hypothesis, we investigated the effect of repeated systemic inoculations with Porphyromonas gingivalis (Pg), a putative periodontal pathogen, on the progression of atherosclerosis in heterozygous apolipoprotein E-deficient (ApoE(+/-)) mice. METHODS AND RESULTS Ten-week-old, male ApoE(+/-) mice fed either a high-fat diet or regular chow were inoculated intravenously with live Pg (10(7) CFU) or vehicle once per week for 10, 14, or 24 consecutive weeks. Histomorphometry of plaque cross-sectional area in the proximal aortas, en face measurement of plaque area over the aortic trees, Pg 16S ribosomal DNA amplification with polymerase chain reaction, ELISA for systemic proinflammatory mediators, and immunolocalization of macrophages in the proximal aorta were performed. Atherosclerotic lesions of the proximal aortas and aortic trees were more advanced in Pg-challenged animals than in vehicle control animals and occurred earlier (at 10 weeks) when no lesions were apparent in control animals. At 24 weeks after inoculation, proximal aortic lesion size quantified by histomorphometry was 9-fold greater in chow-fed mice inoculated with Pg than in noninoculated mice (P<0.001) and was 2-fold greater in Pg-inoculated versus noninoculated high-fat diet-fed mice (P<0.001); all atherosclerotic lesions were macrophage-rich. Pg ribosomal DNA was found in the aortas, livers, and hearts 24 weeks after inoculation. CONCLUSIONS These results provide evidence that long-term systemic challenge with Porphyromonas gingivalis, an oral pathogen, can accelerate atherogenic plaque progression.
Collapse
Affiliation(s)
- Li Li
- Department of Periodontology and Oral Biology, School of Dental Medicine, Boston University, Boston, Mass 02118, USA
| | | | | | | | | |
Collapse
|
32
|
Hinode D, Yokoyama M, Tanabe S, Yoshioka M, Nakamura R. Antigenic properties of the GroEL-like protein of Campylobacter rectus. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:16-21. [PMID: 11860551 DOI: 10.1046/j.0902-0055.2001.00086.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to clarify the antigenic properties of the GroEL-like protein of Campylobacter rectus using a specific polyclonal antibody directed to the purified 64-kDa GroEL-like protein (pAb-CrGroEL), a polyclonal antibody directed to the Actinobacillus actinomycetemcomitans GroEL-like protein (pAb-AaGroEL) and a monoclonal antibody against the recombinant human HSP60 (mAb-HuHSP60). In SDS-PAGE/Western immunoblotting analysis, mAb-HuHSP60, pAb-CrGroEL and pAb-AaGroEL were found to react with the GroEL-like protein (64-kDa) present in all C. rectus strains. A 150-kDa protein in C. rectus ATCC 33238 also reacted strongly with pAb-CrGroEL. This 150-kDa protein was found to be present on the surface-associated material of bacterial cells, as determined by transmission electron microscopy and immunogold labelling of cells with pAb-CrGroEL. Analysis of the first 20 N-terminal amino acids of the sequence of the 150-kDa protein revealed a strong homology (80%) with the C. rectus surface layer (S-layer) protein. Investigation of the biochemical nature of antigenic determinants using periodic acid and proteolytic enzymes showed that the C. rectus GroEL-like protein possessed immunodominant epitopes in both peptide and carbohydrate chains, and that the immunoreactive determinants of the 150-kDa protein belonged to carbohydrate. These results suggest that the GroEL-like protein and the S-layer protein of C. rectus may share the same carbohydrate epitopes.
Collapse
Affiliation(s)
- D Hinode
- Department of Preventive Dentistry, School of Dentistry, The University of Tokushima, Tokushima 770-8504, Japan
| | | | | | | | | |
Collapse
|
33
|
Sims TJ, Lernmark A, Smith T, Page RC, Persson GR. Treatment outcome for IDDM patients in relation to glutamic acid decarboxylase autoantibodies and serum IgG to periodontal pathogens. J Clin Periodontol 2002; 28:550-7. [PMID: 11350522 DOI: 10.1034/j.1600-051x.2001.028006550.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Patients with insulin-dependent diabetes mellitus (IDDM) have elevated risk for periodontitis (PD) relative to subjects without diabetes. Whether refractory PD in IDDM patients is related to autoimmunity as indicated by serum glutamic acid decarboxylase autoantibody GAD Ab levels or to host bacterial immunity as reflected by serum antibody titers to periodontal pathogens is unknown. AIMS To determine if non-surgical periodontal treatment outcome differs between GAD Ab-seropositive and -seronegative IDDM patients by assessing the following parameters: (1) pretreatment serum levels of GAD Ab, (2) pretreatment serum IgG titers to key periodontal pathogens, and (3) changes in periodontal pocket probing depth (PDC) after treatment. METHODS Before and two months after periodontal treatment of 11 GAD Ab-seronegative and 7 -seropositive subjects, PDC was assessed and serum GAD Ab and IgG to Porphyromonas gingivalis (Pg), Bacteroides forsythus (BJ), and Actinobacillus actinomycetemcomitans (Aa) were studied using established radioligand precipitation and enzyme-linked immunosorbent assays, respectively. RESULTS The PDC decrease was significantly better for GAD Ab-seronegative subjects than for seropositive subjects (median 1.4 mm+/-0.5 s.d. versus 0.5 mm+/-0.3 s.d., p<0.03, Mann-Whitney). GAD Ab levels and PDC were positively correlated (r=+0.71, p<0.05) for sero-positive subjects but were neutral (r=-0.07) for seronegative subjects. Serum IgG to Pg and GAD Ab levels were positively associated (r2=0.42) in seropositive subjects. Logistic regression analysis confirmed that GAD Ab status was the primary discriminator for PDC (p<0.04). CONCLUSION Detection of elevated GAD Ab levels in combination with elevated IgG titers to Pg before treatment is indicative of IDDM patients with refractory PD.
Collapse
Affiliation(s)
- T J Sims
- Department of Oral Medicine, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
34
|
Ueki K, Tabeta K, Yoshie H, Yamazaki K. Self-heat shock protein 60 induces tumour necrosis factor-alpha in monocyte-derived macrophage: possible role in chronic inflammatory periodontal disease. Clin Exp Immunol 2002; 127:72-7. [PMID: 11882035 PMCID: PMC1906293 DOI: 10.1046/j.1365-2249.2002.01723.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Heat shock protein 60 (hsp60) has been increasingly recognized as an important molecule in infectious and autoimmune diseases. We have demonstrated previously that serum antibodies to both human hsp60 and Porphyromonas gingivalis GroEL were elevated in periodontitis patients compared with healthy subjects. In order to clarify the relative importance of hsp60 in the inflammatory response in periodontal disease, the stimulatory effect of human and bacterial hsp60 on the production of tumour necrosis factor-alpha (TNF-alpha) was examined in phorbol myristate acetate (PMA)-stimulated THP-1 cells. As bacterial hsp60s, recombinant P. gingivalis and Actinobacillus actinomycetemcomitans GroEL was used. Human hsp60 but not P. gingivalis or A. actinomycetemcomitans GroEL demonstrated stimulatory activity similar to lipopolysaccharide (LPS) derived from the bacteria. The activity of hsp60 was inhibited by anti-CD14 and anti-Toll-like receptor 4 (TLR4) antibodies, suggesting that both CD14 and TLR4 mediate hsp60 signalling. Immunohistochemical analysis demonstrated that hsp60 is abundantly expressed in periodontitis lesions. Therefore, it is postulated that periodontopathic bacteria stimulate the cells in the periodontium to up-regulate the expression of hsp60, which in turn may stimulate macrophage and possibly other cells to produce proinflammatory cytokines. These mechanisms may be involved in the chronicity and tissue destruction of periodontal disease.
Collapse
Affiliation(s)
- K Ueki
- Division of Periodontology, Department of Oral Biological Sciences, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|
35
|
Podmore M, Ebersole JL, Kinane DF. Immunodominant antigens in periodontal disease: a real or illusive concept? CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:179-85. [PMID: 11345527 DOI: 10.1177/10454411010120020701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The humoral arm of the immune system provides protection from many medically significant pathogens. The antigenic epitopes of the pathogens which induce these responses, and the subsequent characteristics of the host response, have been extensively documented in the medical literature, and in many cases have resulted in the development and implementation of effective vaccines or diagnostic tests. There is a substantial body of literature on the humoral immune response in periodontal disease, which is targeted at micro-organisms present within periodontal pockets. However, the significance and specificity of the immune response in periodontal disease have proved difficult to elucidate, due to the large number of potential pathogens in the plaque biofilm and the apparent commensal nature of many of these opportunistic pathogens. This review addresses our current knowledge of the approaches and strategies which have been used to elucidate and examine the concept of immunodominant antigens in medical infections and, more recently, periodontal disease. An identification/understanding of the immunodominant antigens would be informative with respect to: (i) the relative importance of the implicated pathogens, (ii) new approaches to immunological diagnosis, (iii) specific bacterial virulence determinants, (iv) natural protective responses, and (v) the selection of potential vaccine candidate antigens. We conclude that immunodominance of antigens in periodontal disease may be relevant to our understanding of periodontal disease pathogenesis, but due to the complexity and diversity of the 'pathogenic microbial ecology', it is currently an enigmatic topic requiring a multidisciplinary approach linking clinical, microbiological, and immunological investigations. We also conclude, after assessing the literature available on the topic of immunodominance, that it is a term that, if used, must be clearly defined and understood, since it is often used loosely, leading to a general misinterpretation by readers of oral and medical literature.
Collapse
Affiliation(s)
- M Podmore
- University of Glasgow Dental Hospital and School, Scotland, UK
| | | | | |
Collapse
|
36
|
Maeda H, Miyamoto M, Kokeguchi S, Kono T, Nishimura F, Takashiba S, Murayama Y. Epitope mapping of heat shock protein 60 (GroEL) from Porphyromonas gingivalis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 28:219-24. [PMID: 10865174 DOI: 10.1111/j.1574-695x.2000.tb01480.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porphyromonas gingivalis, a putative pathogen in human periodontal disease, possesses a 60-kDa heat shock protein (hsp60, GroEL). The GroEL homologs are known to be key molecules in auto-immune reactions because of the sequence similarity with human hsp60. In this study, B-cell epitopes on P. gingivalis GroEL (PgGroEL) were analyzed by both Western immunoblotting with truncated PgGroEL and by the multi-pin synthetic peptide approach. To examine auto-antibody production in periodontitis patients, Western immunoblotting with human gingival fibroblasts was performed. Deletion mutants were constructed from the cloned PgGroEL gene (P. gingivalis groEL), and four C-terminal truncated PgGroEL and one N-terminal truncated PgGroEL were prepared from the deletants. Sera from periodontitis patients reacted with all truncated PgGroEL used in this study. The results suggest that the B-cell epitopes were overlaid throughout PgGroEL. To determine the detailed locations of the B-cell epitope, 84 decapeptides covering the entire PgGroEL were synthesized and the serum IgG response to the peptides was examined. Epitope mapping using the synthetic peptides confirmed that the B-cell epitopes were overlaid throughout the length of PgGroEL and revealed that highly conserved peptides between PgGroEL and human hsp60 were recognized by the serum antibodies. Immuno-reactivity against human gingival fibroblasts was examined with sera from 30 periodontitis patients and 10 periodontally healthy subjects. IgG antibody against the 65-kDa antigen in human gingival fibroblasts (same molecular mass as human hsp60) was detected in two patients. Although IgG production against human hsp60 may be rare case in periodontitis patients, the results of epitope mapping demonstrated the potential of PgGroEL to cause the cross-reactions with human hsp60.
Collapse
Affiliation(s)
- H Maeda
- Department of Periodontology and Endodontology, Okayama University Dental School, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Tabeta K, Yamazaki K, Hotokezaka H, Yoshie H, Hara K. Elevated humoral immune response to heat shock protein 60 (hsp60) family in periodontitis patients. Clin Exp Immunol 2000; 120:285-93. [PMID: 10792378 PMCID: PMC1905647 DOI: 10.1046/j.1365-2249.2000.01216.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2000] [Indexed: 11/20/2022] Open
Abstract
The presence of antibodies to the 60-kD human and Porphyromonas gingivalis GroEL hsp60 in the sera and inflamed gingival tissues of periodontitis patients was examined. In order to obtain the antigens, recombinant plasmids carrying human hsp60 and P. gingivalis GroEL genes were constructed and expressed as histidine-tagged recombinant proteins. Immunoreactivities of these proteins were confirmed by MoAbs specific to mammalian hsp60 and cross-reactive with both mammalian and bacterial hsp60. Western blot analysis clearly demonstrated that the number of periodontitis patients showing a positive response to P. gingivalis GroEL was higher than the number of periodontally healthy subjects. Furthermore, anti-P. gingivalis GroEL antibody was detected in all samples of gingival tissue extracts. For human hsp60, a higher frequency of seropositivity was found in the periodontitis patients than in the healthy subjects. In addition, the periodontitis patients demonstrated stronger reactivity compared with the healthy subjects. Quantitative analysis of serum antibodies by ELISA also demonstrated that the levels of antibodies in the sera of patients were significantly higher than those of control subjects. In the gingival tissue extracts, seven out of 10 patients demonstrated a positive response to human hsp60 and tso of these demonstrated strong positivity. Affinity-purified serum antibodies to human hsp60 and P. gingivalis GroEL from selected patients reacted with P. gingivalis GroEL and human hsp60, respectively, suggesting cross-reactivity of antibodies. These results suggest that molecular mimicry between GroEL of the periodontopathic bacterium P. gingivalis and autologous human hsp60 may play some role in immune mechanisms in periodontitis.
Collapse
Affiliation(s)
- K Tabeta
- Department of Periodontology, Faculty of Dentistry, Niigata University, Niigata, Japan
| | | | | | | | | |
Collapse
|
38
|
Lopatin DE, Combs A, Sweier DG, Fenno JC, Dhamija S. Characterization of heat-inducible expression and cloning of HtpG (Hsp90 homologue) of Porphyromonas gingivalis. Infect Immun 2000; 68:1980-7. [PMID: 10722592 PMCID: PMC97376 DOI: 10.1128/iai.68.4.1980-1987.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is implicated in the etiology of periodontal disease. Associations between microbial virulence and stress protein expression have been identified in other infections. For example, Hsp90 homologues in several microbial species have been shown to contribute to virulence. We previously reported that P. gingivalis possessed an Hsp90 homologue (HtpG) which cross-reacts with human Hsp90. In addition, we found that elevated levels of serum antibody to Hsp90 stress protein in individuals colonized with this microorganism were associated with periodontal health. However, the role of HtpG in P. gingivalis has not been explored. Therefore, we cloned the htpG gene and investigated the characteristics of HtpG localization and expression in P. gingivalis. htpG exists as a single gene of 2,052 bp from which a single message encoding a mature protein of approximately 68 kDa is transcribed. Western blot analysis revealed that the 68-kDa polypeptide was stress inducible and that a major band at 44 kDa and a minor band at 40 kDa were present at constitutive levels. Cellular localization studies revealed that the 44- and 40-kDa species were associated with membrane and vesicle fractions, while the 68-kDa polypeptide was localized to the cytosolic fractions.
Collapse
Affiliation(s)
- D E Lopatin
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | | | |
Collapse
|
39
|
Reid HI, Riggio MP. Identification and nucleotide sequence of the heat shock protein 60 (GroEL) gene of Bacteroides forsythus. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:359-64. [PMID: 10524765 DOI: 10.3109/10425179809008477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bacteroides forsythus is a Gram negative anaerobe associated with human periodontal disease. Heat shock proteins are immunodominant antigens in bacteria that can elicit strong and protective immune responses. The gene specifying the GroEL protein (hsp60, heat shock protein 60) of B. forsythus was isolated by PCR amplification using consensus primers based upon published nucleotide sequences of the groEL genes of several bacterial species. Translation of the gene sequence predicts a protein of 544 amino acids in length with a molecular mass of 58 kDa. B. forsythus GroEL demonstrates identities of 50 to 81% with the predicted amino acid sequences of GroEL proteins of several bacterial species and the human mitochondrial P1 protein.
Collapse
Affiliation(s)
- H I Reid
- Infection Research Group, University of Glasgow Dental School, UK
| | | |
Collapse
|
40
|
Lynch MC, Kuramitsu HK. Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immun 1999; 67:3367-75. [PMID: 10377114 PMCID: PMC116519 DOI: 10.1128/iai.67.7.3367-3375.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, obligate anaerobe strongly associated with chronic adult periodontitis. A previous study has demonstrated that this organism requires superoxide dismutase (SOD) for its modest aerotolerance. In this study, we have constructed a mutant deficient in SOD activity by insertional inactivation as well as a sod::lacZ reporter translational fusion construct to study the regulation of expression of this gene. We have confirmed that SOD is essential for tolerance to atmospheric oxygen but does not appear to be protective against hydrogen peroxide or exogenously generated reactive oxygen species. Furthermore, the sod mutant appeared to be no more sensitive to killing by neutrophils than the parental strain 381. SOD appears to be protective against oxygen-dependent DNA damage as measured by increased mutation to rifampin resistance by the sod mutant. Use of the sod::lacZ construct confirmed that SOD expression is maximal at mid-log phase and is influenced by oxygen, temperature, and pH. However, expression does not appear to be significantly affected by iron depletion, osmolarity, or nutrient depletion. The transcription start site of the sod gene was determined to be 315 bp upstream of the sod start codon and to be within an upstream open reading frame. Our studies demonstrate the essential role that SOD plays in aerotolerance of this organism as well as the selective induction of this enzyme by environmental stimuli.
Collapse
Affiliation(s)
- M C Lynch
- Departments of Oral Biology, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
41
|
Olsen I, Shah HN, Gharbia SE. Taxonomy and biochemical characteristics of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol 2000 1999; 20:14-52. [PMID: 10522221 DOI: 10.1111/j.1600-0757.1999.tb00156.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway
| | | | | |
Collapse
|
42
|
Dale CJH, Moses EK, Ong CC, Morrow CJ, Reed MB, Hasse D, Strugnell RA. Identification and sequencing of the groE operon and flanking genes of Lawsonia intracellularis: use in phylogeny. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2073-2084. [PMID: 9720028 DOI: 10.1099/00221287-144-8-2073] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proliferative enteropathy (PE) is a complex of diseases of commercial importance to the pig industry. The obligate intracellular bacterium Lawsonia intracellularis is consistently associated with PE and pure cultures of this bacterium have been used to reproduce PE in pigs. In this study L. intracellularis bacteria were purified directly from PE-affected tissue. DNA extracted from purified bacteria was used to construct a partial genomic library which was screened using sera from L. intracellularis-immunized rabbits. Two seroreactive recombinant clones were identified, one of which expressed proteins of 10 and 60 kDa. The sequence of the insert from this clone, pISI-2, revealed ORFs with sequence similarity to the groES/EL operon of Escherichia coli, the 505 ribosomal proteins L21 and L27 of E. coli, a GTP-binding protein of Bacillus subtilis and a possible protoporphyrinogen oxidase, HemK, of E. coli. Primers designed from unique sequences from the pISI-2 insert amplified DNA from infected, but not non-infected, porcine ilea; the amplicon sequence obtained from tissue-cultured L. intracellularis was identical to the corresponding sequence in pISI-2, confirming the origin of the clone. The sequence of L. intracellularis GroEL and other GroEL sequences in the databases were used to construct a partial phylogenetic tree. Analysis of the GroEL sequence relationship suggested that L. intracellularis is not significantly related to other organisms whose GroEL sequences are held in the databases and supports previous data from 16S sequence analyses suggesting that L. intracellularis is a member of a novel group of enteric pathogens.
Collapse
Affiliation(s)
- C Jane H Dale
- Microbiology and Immunology Department, University of MelbourneRoyal Parade, Parkville, Victoria 3052Australia
- Victorian Institute of Animal Science475 Mickleham Road, Attwood, Victoria 3049Australia
| | - Eric K Moses
- Victorian Institute of Animal Science475 Mickleham Road, Attwood, Victoria 3049Australia
| | - Chin-Chui Ong
- Microbiology and Immunology Department, University of MelbourneRoyal Parade, Parkville, Victoria 3052Australia
- Victorian Institute of Animal Science475 Mickleham Road, Attwood, Victoria 3049Australia
| | - Chris J Morrow
- Victorian Institute of Animal Science475 Mickleham Road, Attwood, Victoria 3049Australia
| | - Michael B Reed
- Microbiology and Immunology Department, University of MelbourneRoyal Parade, Parkville, Victoria 3052Australia
- Victorian Institute of Animal Science475 Mickleham Road, Attwood, Victoria 3049Australia
| | - Dete Hasse
- Victorian Institute of Animal Science475 Mickleham Road, Attwood, Victoria 3049Australia
| | - Richard A Strugnell
- Microbiology and Immunology Department, University of MelbourneRoyal Parade, Parkville, Victoria 3052Australia
| |
Collapse
|
43
|
Hinode D, Nakamura R, Grenier D, Mayrand D. Cross-reactivity of specific antibodies directed to heat shock proteins from periodontopathogenic bacteria and of human origin [corrected]. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:55-8. [PMID: 9573824 DOI: 10.1111/j.1399-302x.1998.tb00752.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study describes the immunological characterization of two different classes of heat shock proteins isolated from periodontopathogenic bacteria. Analysis of the N-terminal amino acid sequence of a 74-kDa protein from Bacteroides forsythus showed a high degree of homology with the DnaK protein from Escherichia coli. However, this heat shock protein from B. forsythus reacted very weakly with a commercial anti-DnaK polyclonal antibody by dot-blotting. GroEL-like proteins isolated from Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and B. forsythus showed a high degree of homology of their N-terminal amino acid sequences. In general, polyclonal antibodies raised against each GroEL-like protein showed a high level of cross-reactivity. The cross-reactivity of antibodies to bacterial DnaK-like proteins was much more limited. Our findings suggest that DnaK- and GroEL-like proteins from periodontal pathogens are well conserved and that the GroEL-like proteins resemble each other more closely.
Collapse
Affiliation(s)
- D Hinode
- Department of Preventive Dentistry, School of Dentistry, University of Tokushima, Tokushima City, Japan
| | | | | | | |
Collapse
|
44
|
Hotokezaka H, Ohara N, Hayashida H, Matsumoto S, Matsuo T, Naito M, Kobayashi K, Yamada T. Transcriptional analysis of the groESL operon from Porphyromonas gingivalis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1997; 12:236-9. [PMID: 9467393 DOI: 10.1111/j.1399-302x.1997.tb00385.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptional analysis of the groESL operon from Porphyromonas gingivalis, one of the obligative anaerobic oral microorganisms implicated in adult periodontitis, was performed. P. gingivalis 381 cultured at 37 degrees C was shifted to 42 degrees C, 45 degrees C or 48 degrees C for 10 mins. Northern hybridization analysis revealed that a band with 2.1-kb (kilo base pair) was observed, and the transcripts increased greatly by heat shock. Primer extension and S1 mapping detected four different 5'-ending sites of the mRNAs at the upstream region of the groES. Three sites out of the four were heat-inducible. There were inverted repeats and a Escherichia coli sigma 32-recognizing consensus sequence in the promoter region of the groESL, which may be relevant to the regulation of transcription of groESL operon in P. gingivalis. Both a heat shock promoter and inverted repeats may be relevant to the transcriptional regulation of the groESL operon in P. gingivalis.
Collapse
|
45
|
Hinode D, Grenier D, Mayrand D. A general procedure for the isolation of heat-shock proteins from periodontopathogenic bacteria. J Microbiol Methods 1996. [DOI: 10.1016/0167-7012(96)00008-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|