1
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. PLoS Pathog 2024; 20:e1012122. [PMID: 38558079 PMCID: PMC11008901 DOI: 10.1371/journal.ppat.1012122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - Andrew Santiago-Frangos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
2
|
Faith DR, Kinnersley M, Brooks DM, Drecktrah D, Hall LS, Luo E, Santiago-Frangos A, Wachter J, Samuels DS, Secor PR. Characterization and genomic analysis of the Lyme disease spirochete bacteriophage ϕBB-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574763. [PMID: 38260690 PMCID: PMC10802411 DOI: 10.1101/2024.01.08.574763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Margie Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Eric Luo
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | | | - Jenny Wachter
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
3
|
Stevenson B, Brissette CA. Erp and Rev Adhesins of the Lyme Disease Spirochete's Ubiquitous cp32 Prophages Assist the Bacterium during Vertebrate Infection. Infect Immun 2023; 91:e0025022. [PMID: 36853019 PMCID: PMC10016077 DOI: 10.1128/iai.00250-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
4
|
Krajacich BJ, Lopez JE, Raffel SJ, Schwan TG. Vaccination with the variable tick protein of the relapsing fever spirochete Borrelia hermsii protects mice from infection by tick-bite. Parasit Vectors 2015; 8:546. [PMID: 26490040 PMCID: PMC4618142 DOI: 10.1186/s13071-015-1170-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Background Tick-borne relapsing fevers of humans are caused by spirochetes that must adapt to both warm-blooded vertebrates and cold-blooded ticks. In western North America, most human cases of relapsing fever are caused by Borrelia hermsii, which cycles in nature between its tick vector Ornithodoros hermsi and small mammals such as tree squirrels and chipmunks. These spirochetes alter their outer surface by switching off one of the bloodstream-associated variable major proteins (Vmps) they produce in mammals, and replacing it with the variable tick protein (Vtp) following their acquisition by ticks. Based on this reversion to Vtp in ticks, we produced experimental vaccines comprised on this protein and tested them in mice challenged by infected ticks. Methods The vtp gene from two isolates of B. hermsii that encoded antigenically distinct types of proteins were cloned, expressed, and the recombinant Vtp proteins were purified and used to vaccinate mice. Ornithodoros hermsi ticks that were infected with one of the two strains of B. hermsii from which the vtp gene originated were used to challenge mice that received one of the two Vtp vaccines or only adjuvant. Mice were then followed for infection and seroconversion. Results The Vtp vaccines produced protective immune responses in mice challenged with O. hermsi ticks infected with B. hermsii. However, polymorphism in Vtp resulted in mice being protected only from the spirochete strain that produced the same Vtp used in the vaccine; mice challenged with spirochetes producing the antigenically different Vtp than the vaccine succumbed to infection. Conclusions We demonstrate that by having knowledge of the phenotypic changes made by B. hermsii as the spirochetes are acquired by ticks from infected mammals, an effective vaccine was developed that protected mice when challenged with infected ticks. However, the Vtp vaccines only protected mice from infection when challenged with that strain producing the identical Vtp. A vaccine containing multiple Vtp types may have promise as an oral vaccine for wild mammals if applied to geographic settings such as small islands where the mammal diversity is low and the Vtp types in the B. hermsii population are defined.
Collapse
Affiliation(s)
- Benjamin J Krajacich
- Present address: Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Job E Lopez
- Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Sandra J Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT, 59840-2932, USA.
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT, 59840-2932, USA.
| |
Collapse
|
5
|
Borrelia afzelii ospC genotype diversity in Ixodes ricinus questing ticks and ticks from rodents in two Lyme borreliosis endemic areas: contribution of co-feeding ticks. Ticks Tick Borne Dis 2011; 2:137-42. [PMID: 21890066 DOI: 10.1016/j.ttbdis.2011.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/16/2011] [Accepted: 06/25/2011] [Indexed: 11/23/2022]
Abstract
In Europe, the Lyme borreliosis (LB) agents like Borrelia burgdorferi sensu stricto (ss), B. afzelii, and B. garinii are maintained in nature by enzoonotic transmission cycles between vertebrate hosts and Ixodes ricinus ticks. The outer surface protein C is a highly antigenic protein expressed by spirochaetes during transmission from ticks to mammals as well as during dissemination in the vertebrate hosts. Previous studies based on analysis of ospC gene sequences have led to the classification of ospC genotypes into ospC groups. The aim of this study was to analyse and compare ospC group distribution among isolates of the rodent-associated genospecies, B. afzelii, at 3 levels (questing ticks, ticks feeding on rodents, and xenodiagnostic ticks). Isolates were obtained during a study carried out in 2 LB endemic areas located on the Swiss Plateau [Portes-Rouges (PR) and Staatswald (SW)], where rodents were differently infested by co-feeding ticks (Pérez et al., unpublished data). Overall, we identified 10 different ospC groups with different distributions among isolates from questing ticks, ticks that detached from rodents, and xenodiagnostic ticks at the 2 sites. We observed a higher ospC diversity among isolates from ticks that fed on rodents at SW, and mixed infections with 2 ospC groups were also more frequent among isolates from ticks that fed on rodents at SW (n=18) than at PR (n=1). At both sites, B. afzelii isolates obtained from larvae that were feeding on the rodents simultaneously with nymphs displayed a higher diversity of ospC groups (mean number of ospC groups: 2.25 for PR and 1.75 for SW) than isolates from larvae feeding without nymphs (mean number of ospC groups: 1.17 for PR and 1 for SW). We suggest that co-feeding transmission of Borrelia, previously described in laboratory models, contributes in nature in promoting and maintaining ospC diversity within local tick populations.
Collapse
|
6
|
Kraiczy P, Seling A, Brissette CA, Rossmann E, Hunfeld KP, Bykowski T, Burns LH, Troese MJ, Cooley AE, Miller JC, Brade V, Wallich R, Casjens S, Stevenson B. Borrelia burgdorferi complement regulator-acquiring surface protein 2 (CspZ) as a serological marker of human Lyme disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:484-91. [PMID: 18160620 PMCID: PMC2268266 DOI: 10.1128/cvi.00415-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/19/2007] [Accepted: 12/14/2007] [Indexed: 11/20/2022]
Abstract
Serological diagnosis of Lyme disease may be complicated by antigenic differences between infecting organisms and those used as test references. Accordingly, it would be helpful to include antigens whose sequences are well conserved by a broad range of Lyme disease spirochetes. In the present study, line blot analyses were performed using recombinant complement regulator-acquiring surface protein 2 (BbCRASP-2) from Borrelia burgdorferi sensu stricto strain B31 and serum samples from human Lyme disease patients from throughout the United States and Germany. The results indicated that a large proportion of the patients had produced antibodies recognizing recombinant BbCRASP-2. In addition, Lyme disease spirochetes isolated from across North America and Europe were found to contain genes encoding proteins with high degrees of similarity to the B. burgdorferi type strain B31 BbCRASP-2, consistent with the high percentage of serologically positive patients. These data indicate that BbCRASP-2 may be valuable for use in a widely effective serological assay.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lovrich SD, Jobe DA, Schell RF, Callister SM. Borreliacidal OspC antibodies specific for a highly conserved epitope are immunodominant in human lyme disease and do not occur in mice or hamsters. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:746-51. [PMID: 15939749 PMCID: PMC1151971 DOI: 10.1128/cdli.12.6.746-751.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Humans produce highly specific borreliacidal antibodies against outer surface protein C (OspC) shortly after infection with Borrelia burgdorferi sensu stricto. We previously demonstrated the epitope recognized by immunoglobulin M (IgM) and IgG OspC borreliacidal antibodies was located within the 50 amino acids nearest the carboxy (C) terminus. In this study, we show the immunodominant epitope is located in the highly conserved region within the seven C-terminal amino acids. Six early Lyme disease sera that contained borreliacidal activity and IgM and/or IgG OspC antibodies were chosen randomly and adsorbed with truncated OspC containing the 16 or 7 amino acids nearest the C terminus. Adsorptions with each truncated protein abrogated the borreliacidal activity completely. In addition, only small concentrations of OspC antibodies remained detectable by enzyme-linked immunosorbent assay and Western blotting. Moreover, borreliacidal OspC antibodies were not induced in laboratory mice or hamsters despite heavy infections with B. burgdorferi spirochetes. These findings confirm that borreliacidal antibodies comprise the majority of the IgM and IgG OspC antibody response in human Lyme disease and that the epitope is located in the highly conserved C terminus. In addition, rodent animal models appear to be inappropriate subjects for assessing the effectiveness of the epitope for serodiagnosis or as a human Lyme disease vaccine.
Collapse
Affiliation(s)
- Steven D Lovrich
- Microbiology Research Laboratory, Gundersen Lutheran Medical Center, 1300 Badger Street, La Crosse, WI 54601, USA
| | | | | | | |
Collapse
|
8
|
Coburn J, Fischer JR, Leong JM. Solving a sticky problem: new genetic approaches to host cell adhesion by the Lyme disease spirochete. Mol Microbiol 2005; 57:1182-95. [PMID: 16101994 DOI: 10.1111/j.1365-2958.2005.04759.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Lyme disease spirochetes, comprised of at least three closely related species, Borrelia burgdorferi, Borrelia garinii and Borrelia afzelii, are fascinating and enigmatic bacterial pathogens. They are maintained by tick-mediated transmission between mammalian hosts, usually small rodents. The ability of these bacteria, which have relatively small genomes, to survive and disseminate in both an immunocompetent mammal and in an arthropod vector suggests that they have evolved elegant and indispensable strategies for interacting with their hosts. Recognition of specific mammalian and tick tissues is likely to be essential for successful completion of the enzootic life cycle but, given the historical difficulties in genetic manipulation of these organisms, characterization of factors promoting cell adhesion has until recently largely been confined to either the manipulation of host cells or the analysis of potential bacterial ligands in the form of recombinant proteins. These studies have led to the identification of several mammalian receptors for Lyme disease spirochetes, including glycosaminoglycans, decorin, fibronectin and integrins, as well as a tick receptor for the bacterium, and also candidate cognate bacterial ligands. Recent advances in our ability to genetically manipulate Lyme disease spirochetes, particularly B. burgdorferi, are now providing us with firm evidence that these ligands indeed do promote bacterial adherence to host cells, and with new insights into the roles of these multifacted Borrelia-host cell interactions during mammalian and arthropod infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Box 41, 750 Washington Street, Boston, MA 02111, USA
| | | | | |
Collapse
|
9
|
Porcella SF, Raffel SJ, Anderson DE, Gilk SD, Bono JL, Schrumpf ME, Schwan TG. Variable tick protein in two genomic groups of the relapsing fever spirochete Borrelia hermsii in western North America. Infect Immun 2005; 73:6647-58. [PMID: 16177341 PMCID: PMC1230938 DOI: 10.1128/iai.73.10.6647-6658.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia hermsii is the primary cause of tick-borne relapsing fever in North America. When its tick vector, Ornithodoros hermsi, acquires these spirochetes from the blood of an infected mammal, the bacteria switch their outer surface from one of many bloodstream variable major proteins (Vmps) to a unique protein, Vtp (Vsp33). Vtp may be critical for successful tick transmission of B. hermsii; however, the gene encoding this protein has been described previously in only one isolate. Here we identified and sequenced the vtp gene in 31 isolates of B. hermsii collected over 40 years from localities throughout much of its known geographic distribution. Seven major Vtp types were found. Little or no sequence variation existed within types, but between them significant variation was observed, similar to the pattern of diversity described for the outer surface protein C (OspC) gene in Lyme disease spirochetes. The pattern of sequence relatedness among the Vtp types was incongruent in two branches compared to two genomic groups identified among the isolates by multilocus sequence typing of the 16S rRNA, flaB, gyrB, and glpQ genes. Therefore, both horizontal transfer and recombination within and between the two genomic groups were responsible for some of the variation observed in the vtp gene. O. hermsi ticks were capable of transmitting spirochetes in the newly identified genomic group. Therefore, given the longevity of the tick vector and persistent infection of spirochetes in ticks, these arthropods rather than mammals may be the likely host where the exchange of spirochetal DNA occurs.
Collapse
Affiliation(s)
- Stephen F Porcella
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The outer surface protein C (ospC) locus of the Lyme disease bacterium, Borrelia burgdorferi, is at least an order of magnitude more variable than other genes in the species. This variation is classified into 22 ospC major groups, 15 of which are found in the northeastern United States. The frequency distributions of ospC within populations suggest that this locus is under balancing selection. In multiple-niche polymorphism, a type of balancing selection, diversity within a population can be maintained when the environment is heterogeneous and no one genotype has the highest fitness in all environments. Genetically different individuals within vertebrate species and different vertebrate species constitute diverse environments for B. burgdorferi. We examined four important host species of B. burgdorferi and found that the strains that infected each species had different sets of ospC major groups. We found no variation among conspecific hosts in the ospC major groups of their infecting strains. These results suggest multiple niches create balancing selection at the ospC locus.
Collapse
Affiliation(s)
- Dustin Brisson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794-5245, USA.
| | | |
Collapse
|
11
|
Babb K, McAlister JD, Miller JC, Stevenson B. Molecular characterization of Borrelia burgdorferi erp promoter/operator elements. J Bacteriol 2004; 186:2745-56. [PMID: 15090516 PMCID: PMC387816 DOI: 10.1128/jb.186.9.2745-2756.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/24/2004] [Indexed: 11/20/2022] Open
Abstract
Many Borrelia burgdorferi Erp outer surface proteins have been demonstrated to bind the host complement regulator factor H, which likely contributes to the ability of these organisms to evade the host innate immune system. B. burgdorferi controls Erp protein synthesis throughout the bacterial infectious cycle, producing the proteins during mammalian infections but repressing their synthesis during tick infections. Defining the mechanism by which B. burgdorferi regulates the expression of these virulence determinants will provide important insight into the biological and pathogenic properties of the Lyme disease spirochete. The present study demonstrates that two highly conserved DNA sequences located 5' of erp operons specifically bind bacterial proteins. Analyses with B. burgdorferi of transcriptional fusions between erp promoter/operator DNAs and the gene for green fluorescent protein indicated that the expression of these operons is regulated at the level of transcriptional initiation. These analyses also indicated significant differences in the promoter strengths of various erp operons, which likely accounts for reported variations in expression levels of different Erp proteins. Mutagenesis of promoter-gfp fusions demonstrated that at least one of the proteins which bind erp operator DNA functions as a repressor of transcription.
Collapse
Affiliation(s)
- Kelly Babb
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
12
|
Stevenson B, Miller JC. Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. J Mol Evol 2004; 57:309-24. [PMID: 14629041 DOI: 10.1007/s00239-003-2482-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All isolates of the spirochete Borrelia burgdorferi contain multiple, different plasmids of the cp32 family, each of which contains a locus encoding Erp surface proteins. Many of these proteins are known to bind host complement regulatory factor H, enabling the bacteria to avoid killing by the alternative complement pathway during vertebrate infection. In the present study, we characterized the erp loci and cp32 plasmids of strains N40, Sh-2-82, and 297 and compared them to the previously determined cp32 sequences of type strain B31. Bacteria of strain N40 contain 6 different cp32s, those of Sh-2-82 contain 10, and 297 bacteria contain 9 cp32s. Significant conservation between all strains was noted for the cp32 loci responsible for plasmid maintenance, indicating close relationships that appear to correspond with incompatibility groups. In contrast, considerable diversity was found between erp gene sequences, both within individual bacteria and between different strains. However, examples of identities among erp loci were found, with strains Sh-2-82, 297, and B31 each containing three identical loci that likely arose through intrabacterial genetic rearrangements. These studies also found the first evidence of large-scale genetic exchanges between Lyme disease spirochetes in nature, including the apparent transfer of an entire cp32 plasmid between two different bacteria.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, MS415 Chandler Medical Center, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
13
|
Miller JC, Stevenson B. Immunological and genetic characterization of Borrelia burgdorferi BapA and EppA proteins. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1113-1125. [PMID: 12724373 DOI: 10.1099/mic.0.26120-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A large majority of examined Lyme disease spirochaete isolates were demonstrated to contain one or both of the paralogous genes bapA and eppA. Immunological analyses of serum samples collected from infected patients coupled with comparative sequence analyses indicated that bapA gene sequences are quite stable but the encoded proteins do not provoke a strong immune response in most individuals. Conversely, EppA proteins are much more antigenic but vary widely in sequence between different bacteria. Considerable evidence of insertion, deletion and other mutations within eppA genes was observed. A number of significant recombination events were also found to have occurred in regions flanking bapA genes, while the genes themselves rarely exhibited evidence of mutation, suggesting strong selective pressure to maintain BapA sequences within narrow limits. Data from these and other studies suggest important roles for BapA and EppA during the Borrelia burgdorferi infectious cycle.
Collapse
Affiliation(s)
- Jennifer C Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
14
|
Lin T, Oliver JH, Gao L. Genetic diversity of the outer surface protein C gene of southern Borrelia isolates and its possible epidemiological, clinical, and pathogenetic implications. J Clin Microbiol 2002; 40:2572-83. [PMID: 12089279 PMCID: PMC120588 DOI: 10.1128/jcm.40.7.2572-2583.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ospC genes of 20 southern Borrelia strains were sequenced. The strains consisted of B. burgdorferi sensu stricto, B. andersonii, B. bissettii, one undescribed genospecies, MI-8, and one probably new Borrelia species, TXW-1. A high degree of similarity exists between B. burgdorferi sensu stricto and B. bissettii and between B. bissettii and B. andersonii. Lateral transfers of the ospC gene probably occurred between B. burgdorferi sensu stricto and B. bissettii and between B. bissettii and B. andersonii. Internal gene recombination appears to occur among them. The highest degree of genetic diversity among them was observed in the two variable domains (V1 and V2), semivariable domain (SV), and the species-specific epitopes (between amino acids 28 and 31). Differences in ospC sequences among southern strains reflect diversity at the strain and genospecies levels. MI-8, which was recognized as an undescribed genospecies in our previous reports, remains distinguishable in our current analysis of ospC genes and is distinct from B. burgdorferi sensu stricto. Interestingly, another undescribed southern isolate, TXW-1, was not amplified under various PCR conditions. Compared to European B. burgdorferi sensu stricto strains, American B. burgdorferi sensu stricto strains show greater genetic heterogeneity. Southern B. burgdorferi sensu stricto, B. andersonii, and B. bissettii isolates were intermixed with each other in the phylogenetic trees. In the derived trees in our work, at least one southeastern strain of B. burgdorferi, MI-2, most closely aligns with a so-called invasive cluster that possesses many proven human-invasive strains. Transmission experiments show that MI-2 and the strains in this group of southern spirochetes are able to infect mice and hamsters and that the typical vector of Lyme disease, Ixodes scapularis, can acquire the spirochetes from infected mammals. Currently, strain MI-2 appears to be the only southern isolate among the 20 we analyzed that clusters with an OspC invasive group and thus might be invasive for humans.
Collapse
Affiliation(s)
- Tao Lin
- Institute of Arthropodology and Parasitology, Georgia Southern University, Statesboro, Georgia 30460-8056, USA
| | | | | |
Collapse
|
15
|
Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 2001; 98:12724-9. [PMID: 11675503 PMCID: PMC60121 DOI: 10.1073/pnas.231442498] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2001] [Indexed: 11/18/2022] Open
Abstract
RpoS and RpoN are two alternative sigma factors typically associated with general stress responses in bacteria. To date, there has been no experimental evidence that RpoS and RpoN can directly control the expression of one another. Herein, using a combined strategy of gene disruption and genetic complementation targeting rpoN and rpoS in Borrelia burgdorferi strain 297, we describe a regulatory network for B. burgdorferi. In this network, RpoN controls the expression of RpoS, which, in turn, governs the expression of two important membrane lipoproteins, outer surface protein C and decorin-binding protein A, and likely other proteins of B. burgdorferi. Our findings provide a foundation for elucidating further key regulatory networks that potentially impact many aspects of B. burgdorferi's parasitic strategy, host range, and virulence expression.
Collapse
Affiliation(s)
- A Hübner
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
16
|
Eicken C, Sharma V, Klabunde T, Owens RT, Pikas DS, Höök M, Sacchettini JC. Crystal structure of Lyme disease antigen outer surface protein C from Borrelia burgdorferi. J Biol Chem 2001; 276:10010-5. [PMID: 11139584 DOI: 10.1074/jbc.m010062200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The outer surface protein C (OspC) is one of the major host-induced antigens of Borrelia burgdorferi, the causative agent of Lyme disease. We have solved the crystal structure of recombinant OspC to a resolution of 2.5 A. OspC, a largely alpha-helical protein, is a dimer with a characteristic central four-helical bundle formed by association of the two longest helices from each subunit. OspC is very different from OspA and similar to the extracellular domain of the bacterial aspartate receptor and the variant surface glycoprotein from Trypanosoma brucei. Most of the surface-exposed residues of OspC are highly variable among different OspC isolates. The membrane proximal halves of the two long alpha-helices are the only conserved regions that are solvent accessible. As vaccination with recombinant OspC has been shown to elicit a protective immune response in mice, these regions are candidates for peptide-based vaccines.
Collapse
Affiliation(s)
- C Eicken
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ikushima M, Matsui K, Yamada F, Kawahashi S, Nishikawa SK. Specific immune response to a synthetic peptide derived from outer surface protein C of Borrelia burgdorferi predicts protective borreliacidal antibodies. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 29:15-21. [PMID: 10967255 DOI: 10.1111/j.1574-695x.2000.tb01499.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In a previous study, we described the development of a new specific serodiagnostic test for Lyme disease involving enzyme-linked immunosorbent assay and a synthetic peptide, OspC-I. The OspC-I peptide is derived from part of the outer surface protein C (OspC) amino acid sequence of Borrelia burgdorferi and is located in the region conserved among B. burgdorferi sensu stricto or sensu lato isolates. In this study, we demonstrate that sera containing antibodies against OspC-I from patients with early Lyme disease had borreliacidal activity against isolates of three genospecies of Lyme disease spirochete, B. burgdoreferi B31, B. garinii HPI and B. afzelii HT61. However, the borreliacidal activity against B. burgdorferi, which has not been isolated in Japan, was weaker than that against the other species. Vaccination of mice with OspC-I induced the production of anti-OspC-I antibodies in serum with borreliacidal activity. The immune mouse serum had significantly higher levels of borreliacidal activity against HP1 and HT61, than against B31. Neutralization of borreliacidal activity with anti-IgM antibodies showed that the borreliacidal activity of anti-OspC-I antibodies in serum was due to IgM. Furthermore. mice vaccinated with OspC-I were protected against challenge with HPI and HT61. but not fully protected against infection with B31. These results suggest that OspC-I is not only a specific antigen for use in serodiagnostic tests for Lyme disease, but is also a potential candidate for a Lyme disease vaccine in Japan.
Collapse
Affiliation(s)
- M Ikushima
- Division of Clinical Microbiology, Saitama Institute of Public Health, Japan
| | | | | | | | | |
Collapse
|
18
|
Fikrig E, Feng W, Barthold SW, Telford SR, Flavell RA. Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5344-51. [PMID: 10799897 DOI: 10.4049/jimmunol.164.10.5344] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antisera to BBK32 (a Borrelia burgdorferi fibronectin-binding protein) and BBK50, two Ags synthesized during infection, protect mice from experimental syringe-borne Lyme borreliosis. Therefore, B. burgdorferi bbk32 and bbk50 expression within Ixodes scapularis ticks and the murine host, and the effect of BBK32 and BBK50 antisera on spirochetes throughout the vector-host life cycle were investigated. bbk32 and bbk50 mRNA and protein were first detected within engorged ticks, demonstrating regulated expression within the vector. Then bbk32 expression increased in mice at the cutaneous site of inoculation. During disseminated murine infection, bbk32 and bbk50 were expressed in several murine tissues, and mRNA levels were greatest in the heart and spleen at 30 days. BBK32 antisera protected mice from tick-borne B. burgdorferi infection and spirochete numbers were reduced by 90% within nymphs that engorged on immunized mice. Moreover, 75% of these ticks did not retain spirochetes upon molting, and subsequent B. burgdorferi transmission by adult ticks was impaired. Larval acquisition of B. burgdorferi by I. scapularis was also inhibited by BBK32 antisera. These data demonstrate that bbk32 and bbk50 are expressed during tick engorgement and that BBK32 antisera can interfere with spirochete transmission at various stages of the vector-host life cycle. These studies provide insight into mechanisms of immunity to Lyme borreliosis and other vector-borne diseases.
Collapse
Affiliation(s)
- E Fikrig
- Section of Rheumatology, Department of Internal Medicine, Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
19
|
Miller JC, El-Hage N, Babb K, Stevenson B. Borrelia burgdorferi B31 Erp proteins that are dominant immunoblot antigens of animals infected with isolate B31 are recognized by only a subset of human lyme disease patient sera. J Clin Microbiol 2000; 38:1569-74. [PMID: 10747145 PMCID: PMC86492 DOI: 10.1128/jcm.38.4.1569-1574.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sera from animals infected with Borrelia burgdorferi isolates yield intense immunoblot signals from the B31 ErpA/I/N and ErpB/J/O proteins, which have apparent molecular masses of 19 and 60 kDa, respectively. Since B. burgdorferi proteins with those molecular masses are of immunodiagnostic importance, Lyme disease patient sera were used in studies of B31 lysates and recombinant B31 ErpA/I/N and ErpB/J/O proteins. Immunoblot analyses indicated that only a minority of the patients produced antibodies that recognized the tested B31 Erp proteins. Southern blot analyses of Lyme disease spirochetes cultured from 16 of the patients indicated that all these bacteria contain genes related to the B31 erpA/I/N and erpB/J/O genes, although signal strengths indicated only weak similarities in many cases, suggestive of genetic variability of erp genes among these bacteria. These data indicate that Erp proteins are generally not the 19- and 60-kDa antigens observed on serodiagnostic immunoblots.
Collapse
Affiliation(s)
- J C Miller
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
20
|
Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000; 35:490-516. [PMID: 10672174 DOI: 10.1046/j.1365-2958.2000.01698.x] [Citation(s) in RCA: 609] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genome's 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non-functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes >/=300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.
Collapse
Affiliation(s)
- S Casjens
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Medical School, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang G, van Dam AP, Schwartz I, Dankert J. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 1999; 12:633-53. [PMID: 10515907 PMCID: PMC88929 DOI: 10.1128/cmr.12.4.633] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi sensu lato, the spirochete that causes human Lyme borreliosis (LB), is a genetically and phenotypically divergent species. In the past several years, various molecular approaches have been developed and used to determine the phenotypic and genetic heterogeneity within the LB-related spirochetes and their potential association with distinct clinical syndromes. These methods include serotyping, multilocus enzyme electrophoresis, DNA-DNA reassociation analysis, rRNA gene restriction analysis (ribotyping), pulsed-field gel electrophoresis, plasmid fingerprinting, randomly amplified polymorphic DNA fingerprinting analysis, species-specific PCR and PCR-based restriction fragment length polymorphism (RFLP) analysis, and sequence analysis of 16S rRNA and other conserved genes. On the basis of DNA-DNA reassociation analysis, 10 different Borrelia species have been described within the B. burgdorferi sensu lato complex: B. burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, Borrelia japonica, Borrelia andersonii, Borrelia valaisiana, Borrelia lusitaniae, Borrelia tanukii, Borrelia turdi, and Borrelia bissettii sp. nov. To date, only B. burgdorferi sensu stricto, B. garinii, and B. afzelii are well known to be responsible for causing human disease. Different Borrelia species have been associated with distinct clinical manifestations of LB. In addition, Borrelia species are differentially distributed worldwide and may be maintained through different transmission cycles in nature. In this paper, the molecular methods used for typing of B. burgdorferi sensu lato are reviewed. The current taxonomic status of B. burgdorferi sensu lato and its epidemiological and clinical implications, especiallly correlation between the variable clinical presentations and the infecting Borrelia species, are discussed in detail.
Collapse
Affiliation(s)
- G Wang
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
El Hage N, Lieto LD, Stevenson B. Stability of erp loci during Borrelia burgdorferi infection: recombination is not required for chronic infection of immunocompetent mice. Infect Immun 1999; 67:3146-50. [PMID: 10338534 PMCID: PMC96635 DOI: 10.1128/iai.67.6.3146-3150.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi can persistently infect mammals despite their production of antibodies directed against bacterial proteins, including the Erp lipoproteins. We sequenced erp loci of bacteria reisolated from laboratory mice after 1 year of infection and found them to be identical to those of the inoculant bacteria. We conclude that recombination of erp genes is not essential for chronic mammalian infection.
Collapse
Affiliation(s)
- N El Hage
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky, 40536-0084, USA
| | | | | |
Collapse
|
23
|
Rosa P, Stevenson B, Tilly K. 7 Genetic Methods in Borrelia and Other Spirochaetes. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
24
|
Ramamoorthy R, Philipp MT. Differential expression of Borrelia burgdorferi proteins during growth in vitro. Infect Immun 1998; 66:5119-24. [PMID: 9784512 PMCID: PMC108638 DOI: 10.1128/iai.66.11.5119-5124.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 08/31/1998] [Indexed: 11/20/2022] Open
Abstract
In an earlier paper we described the transcriptionally regulated differential levels of expression of two lipoproteins of Borrelia burgdorferi, P35 and P7.5, during growth of the spirochetes in culture from logarithmic phase to stationary phase (K. J. Indest, R. Ramamoorthy, M. Solé, R. D. Gilmore, B. J. B. Johnson, and M. T. Philipp, Infect. Immun. 65:1165-1171, 1997). Here we further assess this phenomenon by investigating whether the expression of other antigens of B. burgdorferi, including some well-characterized ones, are also regulated in a growth-phase-dependent manner in vitro. These studies revealed 13 additional antigens, including OspC, BmpD, and GroEL, that were upregulated 2- to 66-fold and a 28-kDa protein that was downregulated 2- to 10-fold, during the interval between the logarithmic- and stationary-growth phases. Unlike with these in vitro-regulated proteins, the levels of expression of OspA, OspB, P72, flagellin, and BmpA remained unchanged throughout growth of the spirochetes in culture. Furthermore, ospAB, bmpAB, groEL, and fla all exhibited similar mRNA profiles, which is consistent with the constitutive expression of these genes. By contrast, the mRNA and protein profiles of ospC and bmpD indicated regulated expression of these genes. While bmpD exhibited a spike in mRNA expression in early stationary phase, ospC maintained a relatively higher level of mRNA throughout culture. These findings demonstrate that there are additional genes besides P7.5 and P35 whose regulated expression can be investigated in vitro and which may thus serve as models to facilitate the study of regulatory mechanisms in an organism that cycles between an arthropod and a vertebrate host.
Collapse
Affiliation(s)
- R Ramamoorthy
- Department of Parasitology, Tulane Regional Primate Research Center, Tulane University Medical Center, Covington, Louisiana 70433, USA
| | | |
Collapse
|
25
|
Mathiesen MJ, Holm A, Christiansen M, Blom J, Hansen K, Ostergaard S, Theisen M. The dominant epitope of Borrelia garinii outer surface protein C recognized by sera from patients with neuroborreliosis has a surface-exposed conserved structural motif. Infect Immun 1998; 66:4073-9. [PMID: 9712750 PMCID: PMC108488 DOI: 10.1128/iai.66.9.4073-4079.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1998] [Accepted: 05/27/1998] [Indexed: 11/20/2022] Open
Abstract
Epitope mapping of outer surface protein C (OspC) by using sera from patients with neuroborreliosis led to the identification of one single major immunodominant epitope within the C-terminal 10 amino acid residues. Peptide binding studies and alanine replacement scanning of the C-terminal decapeptide, PVVAESPKKP, revealed a critical role for the PKKP sequence and its terminal carboxyl group for the binding of immunoglobulin M (IgM) antibodies from patients with Lyme borreliosis. Electron microscopy of antibody-labeled spirochetes indicated that the C-terminal region is exposed on the surface of the spirochete. Based on homology to proteins of known function, this region most probably adopts a polyproline II-like helix, which is found in surface-exposed structures involved in protein-protein interactions. This structural motif is highly conserved in Borrelia species causing Lyme borreliosis and subjected to purifying selection. We suggest that the abundance of the C-terminal region of OspC on the surface of B. burgdorferi allows a multimeric high-avidity interaction between the spirochete and surface Igs on B cells. The resulting cross-linking of surface Igs on B cells may induce a T-cell-independent B-cell activation without IgM-to-IgG switching, thus explaining the lack of IgG antibodies to OspC in neuroborreliosis.
Collapse
Affiliation(s)
- M J Mathiesen
- Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
26
|
Stevenson B, Casjens S, Rosa P. Evidence of past recombination events among the genes encoding the Erp antigens of Borrelia burgdorferi. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1869-1879. [PMID: 9695920 DOI: 10.1099/00221287-144-7-1869] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A single Borrelia burgdorferi bacterium may contain six or more different 32 kb circular plasmids (cp32s). Although these plasmids are homologous throughout much of their sequences, two loci have been identified at which they can vary significantly. The cp32 plasmids and their relatives each contain two adjacent genes, orfC and orf3, that vary in sequence between plasmids found within clones of individual bacteria. The orfC gene product is homologous to proteins involved in partitioning of bacterial plasmids, and the differences at this locus between plasmids may account for their compatibility. The orfC-orf3 loci are located approximately 5 kb from another variable locus called erp. The orfC-orf3 loci were used as physically linked markers to assess genetic rearrangements in the erp loci; this revealed examples of recombination involving both individual genes and entire erp loci. Recombination of the genes encoding the Erp antigens might contribute to the evasion of the mammalian immune response and could play roles in the establishment and persistence of B. burgdorferi infections in mammalian hosts.
Collapse
Affiliation(s)
- Brian Stevenson
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNIH, Hamilton, MT 59840USA
| | - Sherwood Casjens
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of UtahSalt Lake City, UT 84132USA
| | - Patricia Rosa
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNIH, Hamilton, MT 59840USA
| |
Collapse
|
27
|
Hinnebusch BJ, Barbour AG, Restrepo BI, Schwan TG. Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect Immun 1998; 66:432-40. [PMID: 9453591 PMCID: PMC107923 DOI: 10.1128/iai.66.2.432-440.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1997] [Accepted: 11/17/1997] [Indexed: 02/06/2023] Open
Abstract
The tick-borne relapsing fever spirochete Borrelia hermsii evades the mammalian immune system by periodically switching expression among members of two multigene families that encode immunogenic, antigenically distinct outer surface proteins. The type strain, B. hermsii HS1, has at least 40 complete genes and pseudogenes that participate in this multiphasic antigenic variation. Originally termed vmp (for variable major protein) genes, they have been reclassified as vsp (for variable small protein) and vlp (for variable large protein) genes, based on size and amino acid sequence similarities. To date, antigenic variation in B. hermsii has been studied only in the type strain, HS1. Nucleotide sequence comparisons of 23 B. hermsii HS1 genes revealed five distinct groups, the vsp gene family and four subfamilies of vlp genes. We used PCR with family- and subfamily-specific primers, followed by restriction fragment length polymorphism analysis, to compare the vsp and vlp repertoires of HS1 and seven other B. hermsii isolates from Washington, Idaho, and California. This analysis, together with pulsed-field gel electrophoresis genome profiles, revealed that the eight isolates formed three distinct groups, which likely represent clonal lineages. Members of the three groups coexisted in the same geographic area, but they could also be isolated across large geographical distances. This population structure may result from immune selection by the host, as has been proposed for other pathogens with polymorphic antigens.
Collapse
Affiliation(s)
- B J Hinnebusch
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
28
|
Casjens S, van Vugt R, Tilly K, Rosa PA, Stevenson B. Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol 1997; 179:217-27. [PMID: 8982001 PMCID: PMC178682 DOI: 10.1128/jb.179.1.217-227.1997] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have characterized seven different 32-kb circular plasmids carried by Borrelia burgdorferi isolate B31. Restriction endonuclease recognition site mapping and partial sequencing of these plasmids indicated that all seven are probably closely related to each other throughout their lengths and have substantial relationships to cp8.3, an 8.3-kb circular plasmid of B. burgdorferi sensu lato isolate Ip21. With the addition of the seven 32-kb plasmids, this bacterial strain is known to carry at least 10 linear and 9 circular plasmids. Variant cultures of B. burgdorferi B31 lacking one or more of the 32-kb circular plasmids are viable and, at least in some cases, infectious. We have examined a number of different natural isolates of Lyme disease borreliae and found that all of the B. burgdorferi sensu stricto isolates and most of the B. burgdorferi sensu lato isolates tested appear to carry multiple 32-kb circular plasmids related to those of B. burgdorferi B31. The ubiquity of these plasmids suggests that they may be important in the natural life cycle of these organisms. They may be highly conjugative plasmids or prophage genomes, which could prove to be useful in genetically manipulating B. burgdorferi.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| | | | | | | | | |
Collapse
|
29
|
Rosa P, Samuels DS, Hogan D, Stevenson B, Casjens S, Tilly K. Directed insertion of a selectable marker into a circular plasmid of Borrelia burgdorferi. J Bacteriol 1996; 178:5946-53. [PMID: 8830691 PMCID: PMC178451 DOI: 10.1128/jb.178.20.5946-5953.1996] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Studies of the biology of Borrelia burgdorferi and the pathogenesis of Lyme disease are severely limited by the current lack of genetic tools. As an initial step toward facile genetic manipulation of this pathogenic spirochete, we have investigated gene inactivation by allelic exchange using a mutated borrelial gyrB gene that confers resistance to the antibiotic coumermycin A1 as a selectable marker. We have transformed B. burgdorferi by electroporation with a linear fragment of DNA in which this selectable marker was flanked by sequences from a native borrelial 26-kb circular plasmid. We have identified coumermycin A1-resistant transformants in which gyrB had interrupted the targeted site on the 26-kb plasmid via homologous recombination with the flanking sequences. Antibiotic resistance conferred by the mutated gyrB gene on the plasmid is dominant, and transformed spirochetes carrying this plasmid do not contain any unaltered copies of the plasmid. Coumermycin A1 resistance can be transferred to naive B. burgdorferi by transformation with borrelial plasmid DNA from the initial transformants. This work represents the first example of a directed mutation in B. burgdorferi whereby a large segment of heterologous DNA (gyrB) has been inserted via homologous recombination with flanking sequences, thus demonstrating the feasibility of specific gene inactivation by allelic exchange.
Collapse
Affiliation(s)
- P Rosa
- Laboratory of Microbial Structure and Function, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Grewe C, Nuske JH. Immunolocalization of a 22 kDa protein (IPLA7, P22) of Borrelia burgdorferi. FEMS Microbiol Lett 1996; 138:215-9. [PMID: 9026449 DOI: 10.1111/j.1574-6968.1996.tb08160.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The monoclonal antibody LA7 was raised against the species-specific Borrelia burgdorferi lipoprotein P22 (= IPLA7), which induces antibody formation in patients with Lyme arthritis. It is composed of 194 amino acids with a calculated molecular mass of 21.8 kDa. Its gene on the linear chromosome is 582 nucleotides in length. The aim of this study was to localize the protein P22 by immune electron microscopy. Immunolabeling of Borrelia burgdorferi with LA7 and an anti-mouse immunogold conjugate proved that P22 is an outer membrane protein. This finding was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis of the outer envelope fraction, which contained 99% of the P22 proteins.
Collapse
Affiliation(s)
- C Grewe
- Institut für Mikrobiologie und Immunologie der Universität, Bonn, Germany
| | | |
Collapse
|
31
|
Stevenson B, Schwan TG, Rosa PA. Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 1995; 63:4535-9. [PMID: 7591099 PMCID: PMC173648 DOI: 10.1128/iai.63.11.4535-4539.1995] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies have demonstrated that Borrelia burgdorferi in the midguts of infected ticks shows increased expression of the antigenic outer surface protein OspC after the ticks have ingested a blood meal. This differential expression is at least partly due to a change in temperature, as an increase in OspC levels is also observed when cultures are shifted from 23 to 35 degrees C. Immunoblotting of bacterial lysates with sera from infected mice indicated that the levels of several additional antigens were also increased in bacterial cultures shifted to 35 degrees C; we have identified one antigen as OspE. We have also observed differential expression of OspF, which has been proposed to be coexpressed in an operon with the gene encoding OspE.
Collapse
Affiliation(s)
- B Stevenson
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
32
|
Norgard MV, Baker SI, Radolf JD. Chemiluminescent analysis of Borrelia burgdorferi penicillin-binding proteins using ampicillin conjugated to digoxigenin. Microb Pathog 1995; 19:257-72. [PMID: 8825913 DOI: 10.1016/s0882-4010(95)90308-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Knowledge of the penicillin-binding proteins (PBPs) of Borrelia burgdorferi is important for understanding both the targets of beta-lactams used therapeutically for Lyme borreliosis and the complex membrane biology of the distinctive spirochetal pathogen which causes Lyme disease. In this study, the PBPs of a number of B. burgdorferi strains and variants were examined using a rapid and sensitive chemiluminescent assay which employs ampicillin conjugated to digoxigenin (dig-amp). The minimum inhibitory concentration of dig-amp for B. burgdorferi high-passage strain B31 (0.012 micrograms/ml) was essentially no different from that of free ampicillin (0.025 micrograms/ml). Dig-amp bound specifically to B. burgdorferi B31 PBPs with molecular masses of 92, 80, 65, 46, 40, 34, 31, 29, 22, 20 and 13 kDa; the 31 kDa and 34 kDa PBPs were proven to be OspA and OspB, respectively. All of the borrelial PBPs were present in the cytoplasmic membrane fraction of B. burgdorferi, findings consistent with their activities as PBPs but inconsistent with OspA and OspB as surface-exposed outer membrane lipoproteins. Furthermore, among the PBP profiles of other high- and low-passage variants of B. burgdorferi strains Sh-2-82, HB19, and N40, which differed somewhat from one another, OspD (28 kDa) but not OspC (22-25 kDa) also was strongly implicated as a PBP; however, OspC possessed a gel mobility easily misconstrued as that of a 26 kDa PBP often expressed reciprocally with OspB. The ramifications of classifying OspA, OspB, and OspD as PBPs are discussed. While the current inability to genetically manipulate B. burgdorferi hinders determining which of the borrelial PBPs are essential for spirochetal viability (i.e., are the lethal targets of beta-lactams), a priori knowledge of the borrelial PBPs will facilitate the production and purification of recombinant derivatives whose activities can be assessed further in vitro.
Collapse
Affiliation(s)
- M V Norgard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
33
|
Jauris-Heipke S, Liegl G, Preac-Mursic V, Rössler D, Schwab E, Soutschek E, Will G, Wilske B. Molecular analysis of genes encoding outer surface protein C (OspC) of Borrelia burgdorferi sensu lato: relationship to ospA genotype and evidence of lateral gene exchange of ospC. J Clin Microbiol 1995; 33:1860-6. [PMID: 7665660 PMCID: PMC228286 DOI: 10.1128/jcm.33.7.1860-1866.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has been shown by analysis with monoclonal and polyclonal antibodies that outer surface protein C (OspC) of Borrelia burgdorferi sensu lato is highly heterogeneous. To determine if the heterogeneity has a genetic basis, the genes of 18 different B. burgdorferi sensu lato strains have been amplified by PCR, cloned, and sequenced. The ospC genes could be amplified from all strains tested, even from two strains which did not express OspC in detectable amounts. Among the 18 strains, 16 significantly different types of ospC sequences have been found. The sequence identities of the deduced amino acid sequences of different ospC genotypes range between 62 and 80% (determined without the leader peptide). The sequences range between 62 and 80% (determined without the leader peptide). The sequences correspond to one of the 13 OspC types distinguishable by analysis with monoclonal antibodies (B. Wilske, S. Jauris-Heipke, R. Lobentanzer, I. Pradel, V. Preac-Mursic, D. Roessler, E. Soutschek, and R. C. Johnson, J. Clin. Microbiol. 33:103-109, 1995) or represent additional types. Two completely new types were found, and OspC type 8 (which was found in Borrelia afzelii and Borrelia garinii) could be divided into two groups with different sequences but the same antibody pattern. Thus, strains belonging to different species or OspA serotypes were always significantly different in their ospC sequences. This was also confirmed by ospA sequence analysis. Interestingly, some strains of the same OspA serotype or genotype were very heterogeneous with respect to OspC, while others had nearly identical OspC proteins. Such groups of strains were found among B. burgdorferi sensu stricto, B. afzelii, and B. garinii strains. Cluster analysis of 5'-terminal and 3'-terminal stretches of ospC suggested recent intragenic recombination events in the ospC gene at least one B. afzelii strain. In addition, other recombination events between ancestors of strains belonging to the same or different species were evidenced by this type of analysis.
Collapse
Affiliation(s)
- S Jauris-Heipke
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie der Universität München, Germany
| | | | | | | | | | | | | | | |
Collapse
|