1
|
Subramaniyan Y, Khan A, Fathima F, Rekha PD. Differential expression of urease genes and ureolytic activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa isolates in different nutritional conditions. Arch Microbiol 2023; 205:383. [PMID: 37973630 DOI: 10.1007/s00203-023-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.
Collapse
Affiliation(s)
- Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Altaf Khan
- Department of Urology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
In Streptococcus thermophilus, Ammonia from Urea Hydrolysis Paradoxically Boosts Acidification and Reveals a New Regulatory Mechanism of Glycolysis. Microbiol Spectr 2022; 10:e0276021. [PMID: 35467410 PMCID: PMC9241937 DOI: 10.1128/spectrum.02760-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is widely used in the dairy industry for the manufacturing of fermented milk and cheeses and probiotic formulations. S. thermophilus evolved from closely phylogenetically related pathogenic streptococci through loss-of-function events counterbalanced by the acquisition of relevant traits, such as lactose and urea utilization for the adaptation to the milk environment. In the context of regressive evolution, the urease gene cluster accounts for 0.9% of the total coding sequence belonging to known functional categories. The fate of ammonia and carbon dioxide derived by urea hydrolysis in several biosynthetic pathways have been depicted, and the positive effect of urease activity on S. thermophilus growth fitness and lactic acid fermentation in milk has been already addressed by several authors. However, the mechanistic effect of urea hydrolysis on the energetic metabolisms of S. thermophilus is still unclear. This study aimed to assess the effect of urease activity on the growth and energy metabolism of Streptococcus thermophilus in milk. In milk, 13C-urea was completely hydrolyzed in the first 150 min of S. thermophilus growth, and urea hydrolysis was accompanied by an increase in cell density and a reduction in the generation time. By using energetically discharged cells with gene transcription and translation blocked, we showed that in the presence of fermentable carbon sources, urease activity, specifically the production of ammonia, could dramatically boost glycolysis and, in cascade, homolactic fermentation. Furthermore, we showed that ammonia, specifically ammonium ions, were potent effectors of phosphofructokinase, a key glycolytic enzyme. IMPORTANCE Finding that ammonia-generating enzymes, such as urease, and exogenous ammonia act on phosphofructokinase activity shed new light on the regulatory mechanisms that govern glycolysis. Phosphofructokinase is the key enzyme known to exert a regulatory role on glycolytic flux and, therefore, ammonia as an effector of phosphofructokinase acts, in cascade, modulating the glycolytic pathway. Apart from S. thermophilus, due to the high conservation of glycolytic enzymes in all branches of the tree of life and being aware of the role of ammonia as an effector of phosphofructokinase, we propose to reevaluate the physiological role of the ammonia production pathways in all organisms whose energy metabolism is supported by glycolysis.
Collapse
|
3
|
Deacidification of Cranberry Juice Reduces Its Antibacterial Properties against Oral Streptococci but Preserves Barrier Function and Attenuates the Inflammatory Response of Oral Epithelial Cells. Foods 2021; 10:foods10071634. [PMID: 34359504 PMCID: PMC8305880 DOI: 10.3390/foods10071634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Cranberry (Vaccinium macrocarpon) may be a potent natural adjuvant for the prevention of oral diseases due to its anti-adherence, anti-cariogenic, and anti-inflammatory properties. However, the high titrable acidity of cranberry juice (CJ) has been reported to cause gastrointestinal discomfort, leading consumers to restrict their intake of this beverage. Electrodialysis with a bipolar membrane (EDBM) can reduce the organic acid content of CJ while retaining the flavonoids associated with potential health benefits. This study aimed to assess how the deacidification of CJ by EDBM impacts the antibacterial properties of the beverage against cariogenic (Streptococcus mutans, Streptococcus sobrinus) and commensal (Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius) streptococci, and how it affects oral epithelial barrier function and inflammatory response in an in vitro model. The removal of organic acids from CJ (deacidification rate ≥42%) reduced the bactericidal activity of the beverage against planktonic S. mutans and S. gordonii after a 15-min exposure, whereas only the viability of S. gordonii was significantly impacted by CJ deacidification rate when the bacteria were embedded in a biofilm. Moreover, conditioning saliva-coated hydroxyapatite with undiluted CJ samples significantly lowered the adherence of S. mutans, S. sobrinus, and S. oralis. With respect to epithelial barrier function, exposure to CJ deacidified at a rate of ≥19% maintained the integrity of a keratinocyte monolayer over the course of 24 h compared to raw CJ, as assessed by the determination of transepithelial electrical resistance (TER) and fluorescein isothiocyanate-conjugated dextran paracellular transport. These results can be in part attributed to the inability of the deacidified CJ to disrupt two tight junction proteins, zonula occludens-1 and occludin, following exposure, unlike raw CJ. Deacidification of CJ impacted the secretion of IL-6, but not of IL-8, by oral epithelial cells. In conclusion, deacidification of CJ appears to provide benefits with respect to the maintenance of oral health.
Collapse
|
4
|
Kataria R, Khatkar A. Lead Molecules for Targeted Urease Inhibition: An Updated Review from 2010 -2018. Curr Protein Pept Sci 2020; 20:1158-1188. [PMID: 30894105 DOI: 10.2174/1389203720666190320170215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
The field of enzyme inhibition is a tremendous and quickly growing territory of research. Urease a nickel containing metalloenzyme found in bacteria, algae, fungi, and plants brings hydrolysis of urea and plays important role in environmental nitrogen cycle. Apart from this it was found to be responsible for many pathological conditions due to its presence in many microorganisms such as H. Pylori, a ureolytic bacteria having urease which elevates pH of gastric medium by hydrolyzing urea present in alimentary canal and help the bacteria to colonize and spread infection. Due to the infections caused by the various bacterial ureases such as Bacillus pasteurii, Brucella abortus, H. pylori, H. mustelae, Klebsiella aerogenes, Klebsiella tuberculosis, Mycobacterium tuberculosis, Pseudomonas putida, Sporosarcina pasteurii and Yersinia enterocolitica, it has been the current topic of today's research. About a wide range of compounds from the exhaustive literature survey has been discussed in this review which is enveloped into two expansive classes, as Inhibitors from synthetic origin and Inhibitors from natural origin. Moreover active site details of enzyme, mechanism of catalysis of substrate by enzyme, uses of plant urease and its pathogenic behavior has been included in the current review. So, overall, this review article diagrams the current landscape of the developments in the improvements in the thriving field of urease inhibitory movement in medicinal chemistry from year 2010 to 2018, with an emphasis on mechanism of action of inhibitors that may be used for more development of recent and strong urease inhibitors and open up new doors for assist examinations in a standout amongst the most lively and promising regions of research.
Collapse
Affiliation(s)
- Ritu Kataria
- International Institute of Pharmaceutical Sciences, Sonepat, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
5
|
Kolbeck S, Behr J, Vogel RF, Ludwig C, Ehrmann MA. Acid stress response ofStaphylococcus xylosuselicits changes in the proteome and cellular membrane. J Appl Microbiol 2019; 126:1480-1495. [DOI: 10.1111/jam.14224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/05/2023]
Affiliation(s)
- S. Kolbeck
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - J. Behr
- Leibniz‐Institut für Lebensmittel‐Systembiologie Technische Universität München Freising Germany
| | - R. F. Vogel
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| | - C. Ludwig
- Bayrisches Zentrum für biomolekulare Massenspektrometrie (BayBioMS) Freising Germany
| | - M. A. Ehrmann
- Lehrstuhl für Technische Mikrobiologie Technische Universität München Freising Germany
| |
Collapse
|
6
|
Impact of growth pH and glucose concentrations on the CodY regulatory network in Streptococcus salivarius. BMC Genomics 2018; 19:386. [PMID: 29792173 PMCID: PMC5966866 DOI: 10.1186/s12864-018-4781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus salivarius is an abundant isolate of the human oral microbiota. Since both pH and glucose availability fluctuate frequently in the oral cavity, the goal of this study was to investigate regulation by CodY, a conserved pleiotropic regulator of Gram positive bacteria, in response to these two signals. The chemostat culture system was employed to precisely control the growth parameters, and the transcriptomes of wild-type S. salivarius 57.I and its CodY-null derivative (ΔcodY) grown at pH 7 and 5.5, with limited and excessive glucose supply were determined. Results The transcriptomic analysis revealed that CodY was most active at pH 7 under conditions of glucose limitation. Based on whether a CodY binding consensus could be located in the 5′ flanking region of the identified target, the transcriptomic analysis also found that CodY shaped the transcriptome via both direct and indirect regulation. Inactivation of codY reduced the glycolytic capacity and the viability of S. salivarius at pH 5.5 or in the presence of H2O2. Studies using the Galleria mellonella larva model showed that CodY was essential for the toxicity generated from S. salivarius infection, suggesting that CodY regulation was critical for immune evasion and systemic infections. Furthermore, the CodY-null mutant strain exhibited a clumping phenotype and reduced attachment in biofilm assays, suggesting that CodY also modulates cell wall metabolism. Finally, the expression of genes belonging to the CovR regulon was affected by codY inactivation, but CodY and CovR regulated these genes in opposite directions. Conclusions Metabolic adaptation in response to nutrient availability and growth pH is tightly linked to stress responses and virulence expression in S. salivarius. The regulation of metabolism by CodY allows for the maximal utilization of available nutrients and ATP production. The counteractive regulation of the CovR regulon could fine tune the transcriptomes in response to environmental changes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4781-z) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
8
|
Role of VicRKX and GlnR in pH-Dependent Regulation of the Streptococcus salivarius 57.I Urease Operon. mSphere 2016; 1:mSphere00033-16. [PMID: 27303745 PMCID: PMC4888889 DOI: 10.1128/msphere.00033-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
Dental plaque rich in alkali-producing bacteria is less cariogenic, and thus, urease-producing Streptococcus salivarius has been considered as a therapeutic agent for dental caries control. Being one of the few ureolytic microbes in the oral cavity, S. salivarius strain 57.I promotes its competitiveness by mass-producing urease only at acidic growth pH. Here, we demonstrated that the downregulation of the transcription of the ure operon at neutral pH is controlled by a two-component system, VicRKX, whereas the upregulation at acidic pH is mediated by the global transcription regulator of nitrogen metabolism, GlnR. In the absence of VicR-mediated repression, the α subunit of RNA polymerase gains access to interact with the AT-rich sequence within the operator of VicR, leading to further activation of transcription. The overall regulation provides an advantage for S. salivarius to cope with the fluctuation of environmental pH, allowing it to persist in the mouth successfully. Ureolysis by Streptococcus salivarius is critical for pH homeostasis of dental plaque and prevention of dental caries. The expression of S. salivarius urease is induced by acidic pH and carbohydrate excess. The differential expression is mainly controlled at the transcriptional level from the promoter 5′ to ureI (pureI). Our previous study demonstrates that CodY represses pureI by binding to a CodY box 5′ to pureI, and the repression is more pronounced in cells grown at pH 7 than in cells grown at pH 5.5. Recent sequence analysis revealed a putative VicR consensus and two GlnR boxes 5′ to the CodY box. The results of DNA affinity precipitation assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation-PCR analysis confirmed that both GlnR and VicR interact with the predicted binding sites in pureI. Isogenic mutant strains (vicRKX null and glnR null) and their derivatives (harboring S. salivariusvicRKX and glnR, respectively) were generated in a recombinant Streptococcus gordonii strain harboring a pureI-chloramphenicol acetyltransferase gene fusion on gtfG to investigate the regulation of VicR and GlnR. The results indicated that GlnR activates, whereas VicR represses, pureI expression. The repression by VicR is more pronounced at pH 7, whereas GlnR is more active at pH 5.5. Furthermore, the VicR box acts as an upstream element to enhance pureI expression in the absence of the cognate regulator. The overall regulation by CodY, VicR, and GlnR in response to pH ensures an optimal expression of urease in S. salivarius when the enzyme is most needed. IMPORTANCE Dental plaque rich in alkali-producing bacteria is less cariogenic, and thus, urease-producing Streptococcus salivarius has been considered as a therapeutic agent for dental caries control. Being one of the few ureolytic microbes in the oral cavity, S. salivarius strain 57.I promotes its competitiveness by mass-producing urease only at acidic growth pH. Here, we demonstrated that the downregulation of the transcription of the ure operon at neutral pH is controlled by a two-component system, VicRKX, whereas the upregulation at acidic pH is mediated by the global transcription regulator of nitrogen metabolism, GlnR. In the absence of VicR-mediated repression, the α subunit of RNA polymerase gains access to interact with the AT-rich sequence within the operator of VicR, leading to further activation of transcription. The overall regulation provides an advantage for S. salivarius to cope with the fluctuation of environmental pH, allowing it to persist in the mouth successfully.
Collapse
|
9
|
Abstract
OBJECTIVE Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. METHODS 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3-V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. RESULTS Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001). CONCLUSIONS Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children's dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.
Collapse
|
10
|
The pH-dependent expression of the urease operon in Streptococcus salivarius is mediated by CodY. Appl Environ Microbiol 2014; 80:5386-93. [PMID: 24951785 DOI: 10.1128/aem.00755-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Urease gene expression in Streptococcus salivarius 57.I, a strain of one of the major alkali producers in the mouth, is induced by acidic pH and excess amounts of carbohydrate. Expression is controlled primarily at the transcriptional level from a promoter, pureI. Recent sequencing analysis revealed a CodY box located 2 bases 5' to the -35 element of pureI. Using continuous chemostat culture, transcription from pureI was shown to be repressed by CodY, and at pH 7 the repression was more pronounced than that in cells grown at pH 5.5 under both 20 and 100 mM glucose. The direct binding of CodY to pureI was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP)-quantitative real-time PCR (qPCR). The result of ChIP-qPCR also confirmed that the regulation of CodY is indeed modulated by pH and the binding of CodY at neutral pH is further enhanced by a limited supply of glucose (20 mM). In the absence of CodY, the C-terminal domain of the RNA polymerase (RNAP) α subunit interacted with the AT tracks within the CodY box, indicating that CodY and RNAP compete for the same binding region. Such regulation could ensure optimal urease expression when the enzyme is most required, i.e., at an acidic growth pH with an excess amount of carbon nutrients.
Collapse
|
11
|
Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. MICROBIOME 2013; 1:25. [PMID: 24451062 PMCID: PMC3971625 DOI: 10.1186/2049-2618-1-25] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/17/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level. RESULTS Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories. CONCLUSIONS Our study demonstrates that we now have the capability to grow stable oral microbial in vitro biofilms containing more than one hundred operational taxonomic units (OTU) which represent 60-80% of the original inoculum OTU richness. Previously uncultivated Human Oral Taxa (HOT) were identified in the biofilms and contributed to approximately one-third of the totally captured 16S rRNA gene diversity. To our knowledge, this represents the highest oral bacterial diversity reported for an in vitro model system so far. This robust model will help investigate currently uncultivated species and the known virulence properties for many oral pathogens not solely restricted to pure culture systems, but within multi-species biofilms.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Youngik Yang
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Adam P Hall
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Lihong Guo
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Karen E Nelson
- Department of Human Genomic Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kenneth H Nealson
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- Department of Earth Sciences, USC, ZHS 117, Los Angeles, CA 90089, USA
| | - Shibu Yooseph
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| |
Collapse
|
12
|
Ibraheem O, Ndimba BK. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci 2013; 9:598-612. [PMID: 23847442 PMCID: PMC3708040 DOI: 10.7150/ijbs.6091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/26/2013] [Indexed: 11/12/2022] Open
Abstract
Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Research and Services Unit, Agricultural Research Council/Infruitech & The University of Western Cape, Biotechnology Department, Private Bag X17, Bellville, Cape Town, South Africa
| | | |
Collapse
|
13
|
Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 2012; 7:e47722. [PMID: 23091642 PMCID: PMC3472979 DOI: 10.1371/journal.pone.0047722] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have implications for bacterial community resilience and the restoration of oral health.
Collapse
|
14
|
Liu J, Xu Y, Nie Y, Zhao GA. Optimization production of acid urease by Enterobacter sp. in an approach to reduce urea in Chinese rice wine. Bioprocess Biosyst Eng 2011; 35:651-7. [DOI: 10.1007/s00449-011-0643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/01/2011] [Indexed: 12/20/2022]
|
15
|
Morou-Bermudez E, Elias-Boneta A, Billings RJ, Burne RA, Garcia-Rivas V, Brignoni-Nazario V, Suárez-Pérez E. Urease activity as a risk factor for caries development in children during a three-year study period: a survival analysis approach. Arch Oral Biol 2011; 56:1560-8. [PMID: 21784411 DOI: 10.1016/j.archoralbio.2011.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022]
Abstract
UNLABELLED Recent cross-sectional studies suggest that reduced ability to generate alkali via the urease pathway in dental plaque may be an important caries risk factor, but it has not been assessed prospectively. OBJECTIVE To evaluate the effect of plaque and saliva urease activity on the risk for developing new caries over a three-year period in children. METHODS A panel of 80 children, three to six years of age at recruitment, was followed prospectively for three years. Plaque urease activity, saliva urease activity and dental caries were measured every six months. Survival analysis methodology was used to evaluate the effect of urease on caries development during the study period adjusted for gender, age, baseline caries levels, sugar consumption, amount of plaque, and mutans streptococci levels. RESULTS The risk for developing new caries increased in a dose-responsive manner with increasing levels of urease activity in saliva (adjusted HR(Q4 vs. Q1): 4.98; 95% CI: 1.33, 18.69) and with decreasing urease activity in plaque (adjusted HR(Q4 vs. Q1): 0.29; 95% CI: 0.11, 0.76). Multiple measurements of urease activity were conducted to overcome the variability of urease activity in this study. Baseline caries and mutans streptococci in saliva were also important predictors of caries risk. CONCLUSIONS Increased urease activity in saliva can be an indicator of increased caries risk in children, whilst increased urease activity in plaque may be associated with reduced caries risk. The reproducibility of urease measurements must be improved before these findings can be further tested and clinically applied.
Collapse
Affiliation(s)
- E Morou-Bermudez
- University of Puerto Rico, School of Dental Medicine, San Juan, PR 00936-5067.
| | | | | | | | | | | | | |
Collapse
|
16
|
Morou-Bermudez E, Elias-Boneta A, Billings RJ, Burne RA, Garcia-Rivas V, Brignoni-Nazario V, Suarez-Perez E. Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Arch Oral Biol 2011; 56:1282-9. [PMID: 21616477 DOI: 10.1016/j.archoralbio.2011.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/19/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
Abstract
UNLABELLED Bacterial urease activity in dental plaque and in saliva generates ammonia, which can increase the plaque pH and can protect acid-sensitive oral bacteria. Recent cross-sectional studies suggest that reduced ability to generate ammonia from urea in dental plaque can be an important caries risk factor. In spite of this proposed important clinical role, there is currently no information available regarding important clinical aspects of oral ureolysis in children. OBJECTIVE The objective of this study was to evaluate the distribution and pattern of urease activity in the dental plaque and in the saliva of children during a three-year period, and to examine the relationship of urease with some important caries risk factors. METHODS A longitudinal study was conducted with repeated measures over a three-year period on a panel of 80 children, aged 3-6 years at recruitment. The dynamics of change in urease activity were described and associated with clinical, biological, and behavioural caries risk factors. RESULTS Urease activity in plaque showed a trend to remain stable during the study period and was negatively associated with sugar consumption (P<0.05). Urease activity in unstimulated saliva increased with age, and it was positively associated with the levels of mutans streptococci in saliva and with the educational level of the parents (P<0.05). CONCLUSIONS The results of this study reveal interesting and complex interactions between oral urease activity and some important caries risk factors. Urease activity in saliva could be an indicator of mutans infection in children.
Collapse
Affiliation(s)
- E Morou-Bermudez
- University of Puerto Rico, School of Dental Medicine, San Juan, Puerto Rico.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sheng J, Baldeck JD, Nguyen PTM, Quivey RG, Marquis RE. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Can J Microbiol 2010; 56:539-47. [PMID: 20651853 DOI: 10.1139/w10-039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.
Collapse
Affiliation(s)
- Jiangyun Sheng
- Department of Microbiology and Immunology, Center for Oral Biology, University of Rochester Medical Center, NY 14642-8672, USA
| | | | | | | | | |
Collapse
|
18
|
Toro E, Nascimento MM, Suarez-Perez E, Burne RA, Elias-Boneta A, Morou-Bermudez E. The effect of sucrose on plaque and saliva urease levels in vivo. Arch Oral Biol 2010; 55:249-54. [PMID: 20096398 PMCID: PMC2853032 DOI: 10.1016/j.archoralbio.2009.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 12/07/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Dietary sugar exposures induce an immediate drop of the plaque pH. Based on in vitro observations, it was hypothesized that oral bacteria may rapidly respond to this environmental change by increasing the activity or expression of alkali-generating pathways, such as the urease pathway. The objective of this exploratory in vivo study was to determine the short-term effect of a brief sucrose exposure on plaque and saliva urease activity and expression, and to relate this effect to caries experience. METHODS Urease activity levels were measured in plaque and saliva samples collected from 20 children during fasting conditions and 30 min after rinsing with a sucrose solution. Streptococcus salivarius ureC-specific mRNA in saliva was quantified using real-time RT-PCR. The impact of host-related factors, such as age, gender, sugar consumption, salivary mutans streptococci levels and caries status on urease activity was evaluated. RESULTS Plaque urease activity under fasting conditions was higher in subjects with low caries and mutans streptococci levels. This difference was not observed after the sucrose exposure. The response of urease to sucrose in vivo did not depend on caries experience or salivary mutans levels. Significant increase in urease activity of plaque and saliva after exposure to sucrose was observed only in the subjects who had low urease levels at baseline. CONCLUSIONS The findings of this exploratory study suggest that plaque urease activity may have an important long-term influence in caries development but not during a cariogenic challenge.
Collapse
Affiliation(s)
- E Toro
- University of Puerto Rico, School of Dental Medicine, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Zeng L, Burne RA. AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine. Appl Environ Microbiol 2009; 75:2629-37. [PMID: 19270124 PMCID: PMC2681689 DOI: 10.1128/aem.02145-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/22/2009] [Indexed: 11/20/2022] Open
Abstract
Acidic conditions and the presence of exogenous agmatine are required to achieve maximal expression of the agmatine deiminase system (AgDS) of Streptococcus mutans. Here we demonstrate that the transcriptional activator of the AgDS, AguR, is required for the responses to agmatine and to low pH. Linker scanning mutagenesis was used to create a panel of mutated aguR genes that were utilized to complement an aguR deletion mutant of S. mutans. The level of production of the mutant proteins was shown to be comparable to that of the wild-type AguR protein. Mutations in the predicted DNA binding domain of AguR eliminated activation of the agu operon. Insertions into the region connecting the DNA binding domain to the predicted extracellular and transmembrane domains were well tolerated. In contrast, a variety of mutants were isolated that had a diminished capacity to respond to low pH but retained the ability to activate AgDS gene expression in response to agmatine, and vice versa. Also, a number of mutants were unable to respond to either agmatine or low pH. AguD, which is a predicted agmatine-putrescine antiporter, was found to be a negative regulator of AgDS gene expression in the absence of exogenous agmatine but was not required for low-pH induction of the AgDS genes. This study reveals that the control of AgDS gene expression by both agmatine and low pH is coordinated through the AguR protein and begins to identify domains of the protein involved in sensing and signaling.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|
20
|
Liy Y, Yaling L, Dan J, Tao H, Xuedong Z. Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate. ACTA ACUST UNITED AC 2008; 23:315-9. [PMID: 18582331 DOI: 10.1111/j.1399-302x.2008.00430.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The hydrolysis of urea by the urease enzymes of oral bacteria is believed to have a major impact on oral microbial ecology and to be intimately involved in oral health and diseases. Actinomyces naeslundii is a ureolytic bacterium that is adapted to tolerate the rapid and dramatic fluctuations in nutrient availability, carbohydrate source, and pH in dental biofilms. Our research objectives were to better understand the regulation of the expression of urease under environmental conditions that closely mimic those in dental biofilms. METHODS A. naeslundii ATCC12104 were grown in a chemostat biofilm reactor with carbohydrate-limited medium for 3 days followed by a carbohydrate pulse, at pH 7.0 and at pH 5.5. Urease activities and ureC gene messenger RNA levels of cells in the biofilm were measured before and after the carbohydrate pulse. RESULTS We found that the neutral pH environments and excess carbohydrate availability could both result in enhancement of urease activity in biofilm cells. The ureC messenger RNA level of A. naeslundii biofilm cells cultivated at pH 7.0 was approximately 10-fold higher than that of cells grown at pH 5.5, but no changes in ureC gene expression were detected after the carbohydrate pulse. CONCLUSIONS Neutral pH environments and excess carbohydrate availability could promote urease expression of A. naeslundii in biofilms, but only neutral pH environments could up-regulate the ureC gene expression and the pH regulates ureC gene expression at a transcriptional level.
Collapse
Affiliation(s)
- Y Liy
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
21
|
Arioli S, Monnet C, Guglielmetti S, Parini C, De Noni I, Hogenboom J, Halami PM, Mora D. Aspartate biosynthesis is essential for the growth of Streptococcus thermophilus in milk, and aspartate availability modulates the level of urease activity. Appl Environ Microbiol 2007; 73:5789-96. [PMID: 17660309 PMCID: PMC2074928 DOI: 10.1128/aem.00533-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Deltappc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with L-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of L-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a p(ureI)-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Science and Microbiology, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Urease production by Streptococcus thermophilus. Food Microbiol 2007; 25:113-9. [PMID: 17993384 DOI: 10.1016/j.fm.2007.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/12/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022]
Abstract
In order to identify potential alternative sources of urease for the removal of urea from alcoholic beverages, 205 strains of lactic acid bacteria belonging to 27 different species were screened for urease production. Only Streptococcus thermophilus produced urease. Cell permeabilization with toluene allowed to increase activity significantly. Optimal pH for urease activity in whole and permeabilized cells and of cell free extracts differed slightly, but was in the range 6.0-7.0. Significant activity was retained at pH 3.0 and 8.0, and, for cell free extracts, at pH 4.0 in the presence of ethanol. Urease production was evaluated in fermentations with pH control (5.25-6.5) and without pH control. Very little urease was produced in absence of urea, which at 5g/l slowed growth significantly in fermentations without pH control, but prevented a decrease in pH below 5.1 and resulted in higher final biomass. Optimal pH for growth was between 6.0 and 6.5 but specific urease activity was higher for fermentations at low pH at the beginning of the exponential phase. However, a higher total urease activity was obtained at pH 6.0 and 6.5 because of higher biomass. Potential technological applications of urease production by S. thermophilus are discussed.
Collapse
|
23
|
Shu M, Morou-Bermudez E, Suárez-Pérez E, Rivera-Miranda C, Browngardt CM, Chen YYM, Magnusson I, Burne RA. The relationship between dental caries status and dental plaque urease activity. ACTA ACUST UNITED AC 2007; 22:61-6. [PMID: 17241172 DOI: 10.1111/j.1399-302x.2007.00325.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Ammonia production from the metabolism of urea by urease enzymes of oral bacteria moderates plaque acidification and may inhibit dental caries, as suggested by in vitro studies and indirect clinical observations. The objective of this study was to examine the relationship of urease activity with dental caries at the clinical level. METHODS Urease activity was measured in dental plaque and saliva samples from 25 caries-free subjects (CF) and in eight subjects with six or more open caries lesions (CA). Plaque and saliva collection was repeated for each subject 1 week later using identical procedures. RESULTS Urease-specific activity in the dental plaque of CF subjects was significantly higher compared to that in the subjects with caries. The association of low plaque urease levels with increased caries was further supported by odds ratio analysis using different plaque urease cut-off points. Using a receiver operating characteristic curve it was estimated that there was an approximately 85% probability of correctly classifying the subjects as CA or CF based on the relative ordering of their plaque urease activity levels. No statistically significant differences were observed in salivary urease activity. CONCLUSION This study suggests that loss of alkali-generating potential of tooth biofilms via the urease pathway has a positive relationship to dental caries.
Collapse
Affiliation(s)
- M Shu
- Department of Restorative Dentistry, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Y, Yaling L, Hu T, Tao H, Zhang J, Jingyi Z, Zhou X, Xuedong Z. Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis. Microbiol Res 2006; 161:304-10. [PMID: 16412620 DOI: 10.1016/j.micres.2005.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2005] [Indexed: 11/17/2022]
Abstract
Ammonia production from urea by ureolytic oral bacteria is believed to have a significant impact on oral health and ecological balance of oral microbial populations. Actinomyces naeslundii is an important ureolytic organism in the oral cavity. In this study, we aimed to investigate the substrate affinity and pH optimum for ureolysis of A. naeslundii (ATCC12104), and expression of urease under different environmental factors. In addition, in vitro acid killing and pH drop experiments were used to detect the role of ureolysis in bacterial aciduricity and capacity to modulate pH homeostasis. We observed the K(s) value of the ureolytic activity was 7.5mM and a pH optimum near 6.5. Urease expression by A. naeslundii (ATCC12104) was affected by multiple factors, including environmental pH, glucose and nitrogen availability. The cells could be protected against acid killing through hydrolysis of physiologically relevant concentrations of urea. A. naeslundii (ATCC12104) demonstrated a significant capacity to temper glycolytic acidification in vitro at urea concentrations normally found in the oral cavity.
Collapse
Affiliation(s)
- Yaling Liu
- Key Laboratory for Oral Biomedical Engineering Ministry of Education, Chengdu City, PR China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Griswold AR, Jameson-Lee M, Burne RA. Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 2006; 188:834-41. [PMID: 16428386 PMCID: PMC1347362 DOI: 10.1128/jb.188.3.834-841.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 11/16/2005] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that Streptococcus mutans expresses a functional agmatine deiminase system (AgDS) encoded by the agmatine-inducible aguBDAC operon (A. R. Griswold, Y. Y. Chen, and R. A. Burne, J. Bacteriol. 186:1902-1904, 2004). The AgDS yields ammonia, CO2, and ATP while converting agmatine to putrescine and is proposed to augment the acid resistance properties and pathogenic potential of S. mutans. To initiate a study of agu gene regulation, the aguB transcription initiation site was identified by primer extension and a putative sigma70-like promoter was mapped 5' to aguB. Analysis of the genome database revealed an open reading frame (SMU.261c) encoding a putative transcriptional regulator located 239 bases upstream of aguB. Inactivation of SMU.261c decreased AgD activity by sevenfold and eliminated agmatine induction. AgD was also found to be induced by certain environmental stresses, including low pH and heat, implying that the AgDS may also be a part of a general stress response pathway of this organism. Interestingly, an AgDS-deficient strain was unable to grow in the presence of 20 mM agmatine, suggesting that the AgDS converts a growth-inhibitory substance into products that can enhance acid tolerance and contribute to the competitive fitness of the organism at low pH. The capacity to detoxify and catabolize agmatine is likely to have major ramifications on oral biofilm ecology.
Collapse
Affiliation(s)
- Ann R Griswold
- Department of Oral Biology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|
26
|
Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL. Urease biogenesis in Streptococcus thermophilus. Res Microbiol 2005; 156:897-903. [PMID: 16024230 DOI: 10.1016/j.resmic.2005.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/26/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022]
Abstract
Urease biogenesis was monitored in the lactic acid bacterium Streptococcus thermophilus during the growth cycle using in-gel detection and a phenol-hypochloride assay. Zymogram analysis, performed in a non-denaturing polyacrylamide gel, enabled visualization of a complex profile of bands whose number and intensity were dependent on the growth phase and culture conditions. The monitoring of urease biogenesis in batch fermentations revealed the onset of enzyme synthesis starting from the mid-exponential growth phase, with a maximum reached during the late exponential phase. Urease activity strongly increased at acidic pH but to a lesser extent when urea and nickel ions were added to the culture medium. When S. thermophilus cells were cultured with pH maintained at a neutral value, urease activity was detectable only in gel with extremely low signals. Evaluation of beta-glucuronidase activity in strain DSM 20617(T) harboring a transcriptional fusion between a DNA fragment containing the putative urease promoter and the gusA reporter evidenced significant expression at neutral pH that strongly increased in an acidic environment. Further experiments carried out on p(ureI)-gusA recombinant strain revealed that expression of ure genes was not affected by carbohydrates, nickel or urea availability. The presence of consistent expression of ure genes at neutral pH and the absence of induction of expression by carbohydrate availability demonstrated that the transcription of ure genes in S. thermophilus is regulated differently compared with that of the closely related S. salivarius. These differences are discussed taking into consideration the different habitats colonized by the two bacterial species.
Collapse
Affiliation(s)
- Diego Mora
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fozo EM, Kajfasz JK, Quivey RG. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09769.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Griswold A, Chen YYM, Snyder JA, Burne RA. Characterization of the arginine deiminase operon of Streptococcus rattus FA-1. Appl Environ Microbiol 2004; 70:1321-7. [PMID: 15006749 PMCID: PMC368411 DOI: 10.1128/aem.70.3.1321-1327.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arginine deiminase system (ADS) is of critical importance in oral biofilm pH homeostasis and microbial ecology. The ADS consists of three enzymes. Arginine is hydrolyzed by AD (ArcA) to generate citrulline and ammonia. Citrulline is then converted to ornithine and carbamoylphosphate via ornithine carbamoyltransferase (ArcB). Finally, carbamate kinase (ArcC) transfers a phosphate from carbamoylphosphate to ADP, yielding ATP. Ammonia production from this pathway protects bacteria from lethal acidification, and ATP production provides a source of energy for the cells. The purpose of this study was to initiate a characterization of the arc operon of Streptococcus rattus, the least cariogenic and sole ADS-positive member of the mutans streptococci. Using an arcB gene fragment obtained by degenerate PCRs, the FA-1 arc operon was identified in subgenomic DNA libraries and sequence analysis was performed. Results showed that the genes encoding the AD pathway in S. rattus FA-1 are organized as an arcABCDT-adiR operon gene cluster, including the enzymes of the pathway, an arginine-ornithine antiporter (ArcD) and a putative regulatory protein (AdiR). The arcA transcriptional start site was identified by primer extension, and a sigma(70)-like promoter was mapped 5' to arcA. Reverse transcriptase PCR was used to establish that arcABCDT could be cotranscribed. Reporter gene fusions and AD assays demonstrated that the operon is regulated by substrate induction and catabolite repression, the latter apparently through a CcpA-dependent pathway.
Collapse
Affiliation(s)
- Ann Griswold
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
29
|
Griswold AR, Chen YYM, Burne RA. Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol 2004; 186:1902-4. [PMID: 14996823 PMCID: PMC355968 DOI: 10.1128/jb.186.6.1902-1904.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 12/03/2003] [Indexed: 11/20/2022] Open
Abstract
An operon encoding enzymes of the agmatine deiminase system (AgDS) has been identified in the cariogenic bacterium Streptococcus mutans UA159. The AgDS is regulated by agmatine induction and carbohydrate catabolite repression. Ammonia is produced from agmatine at low pH, suggesting that the AgDS could augment acid tolerance.
Collapse
Affiliation(s)
- Ann R Griswold
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
30
|
Chen YYM, Burne RA. Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.I. J Bacteriol 2004; 185:6773-9. [PMID: 14617641 PMCID: PMC262724 DOI: 10.1128/jb.185.23.6773-6779.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ureases are multisubunit enzymes requiring Ni(2+) for activity. The low pH-inducible urease gene cluster in Streptococcus salivarius 57.I is organized as an operon, beginning with ureI, followed by ureABC (structural genes), and ureEFGD (accessory genes). Urease biogenesis also requires a high-affinity Ni(2+) uptake system. By searching the partial genome sequence of a closely related organism, Streptococcus thermophilus LMG18311, three open reading frame (ORFs) homologous to those encoding proteins involved in cobalamin biosynthesis and cobalt transport (cbiMQO) were identified immediately 3' to the ure operon. To determine whether these genes were involved in urease biogenesis by catalyzing Ni(2+) uptake in S. salivarius, regions 3' to ureD were amplified by PCRs from S. salivarius by using primers identical to the S. thermophilus sequences. Sequence analysis of the products revealed three ORFs. Reverse transcriptase PCR was used to demonstrate that the ORFs are transcribed as part of the ure operon. Insertional inactivation of ORF1 with a polar kanamycin marker completely abolished urease activity and the ability to accumulate (63)Ni(2+) during growth. Supplementation of the growth medium with NiCl(2) at concentrations as low as 2.5 micro M partially restored urease activity in the mutant. Both wild-type and mutant strains showed enhanced urease activity when exogenous Ni(2+) was provided at neutral pH. Enhancement of urease activity by adding nickel was regulated at the posttranslational level. Thus, ORF1, ORF2, and ORF3 are part of the ure operon, and these genes, designated ureM, ureQ, and ureO, respectively, likely encode a Ni(2+)-specific ATP-binding cassette transporter.
Collapse
Affiliation(s)
- Yi-Ywan M Chen
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
31
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 772] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
32
|
Dong Y, Chen YYM, Snyder JA, Burne RA. Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DL1. Appl Environ Microbiol 2002; 68:5549-53. [PMID: 12406748 PMCID: PMC129940 DOI: 10.1128/aem.68.11.5549-5553.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arginine deiminase (AD) system (ADS) is one of two major ammonia-generating pathways in the oral cavity that play important roles in oral biofilm pH homeostasis and oral biofilm ecology. To initiate a study of the Streptococcus gordonii ADS, the ADS gene cluster was isolated from subgenomic DNA libraries of S. gordonii DL1 by using an arcB-specific probe. Nucleotide sequence analysis revealed six open reading frames (ORFs) that were arranged contiguously; the first five ORFs were transcribed in the same direction, as an apparent operon, and the sixth was transcribed in the opposite direction. The ORFs were found to share significant homologies and to correspond closely in molecular mass to previously characterized arc genes; thus, they were designated arcA (AD), arcB (ornithine carbamyltransferase), arcC (carbamate kinase), arcD (arginine-ornithine antiporter), arcT (dipeptidase), and arcR (regulator). A putative sigma(70) promoter (ParcA [TTGTGT-N(19)-TAGAAT]) was mapped 5' to arcA by primer extension, and the expression of ParcA was shown to be inducible by arginine and repressible by glucose, in agreement with AD specific activities measured in the wild-type strain. To investigate the function of ArcR in the differential expression of the arc operon, arcR was insertionally inactivated by a KM resistance marker flanked by T4 transcription/translation termination signals, and the expression of ParcA was monitored by primer extension in the wild-type and ArcR-deficient strains. Lower levels of arcA expression, as well as lower levels of AD activity, were consistently observed in the ArcR-deficient strain compared to wild-type cells, regardless of the growth conditions. Thus, ArcR is a transcriptional activator that is required for induction and optimal expression of the S. gordonii ADS gene cluster.
Collapse
Affiliation(s)
- Yiqian Dong
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
33
|
Chen YYM, Betzenhauser MJ, Burne RA. cis-Acting elements that regulate the low-pH-inducible urease operon of Streptococcus salivarius. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3599-3608. [PMID: 12427950 DOI: 10.1099/00221287-148-11-3599] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Differential expression of the Streptococcus salivarius 57.I urease operon in response to pH is effected by repression of transcription from a proximal promoter, PUREI: To localize the cis-acting elements involved in the regulation of the urease operon, the intact promoter region and its derivatives were generated and fused to a promoterless chloramphenicol acetyltransferase (cat) gene. The promoter-cat fusions were established in the lacZ gene of S. salivarius by using a newly constructed integration vector. CAT-specific activities were examined in batch-grown cells at pH 7.5 and 5.5. The results indicated that a 21 bp region immediately 5' to the -35 element was required for efficient repression of PureI at neutral pH and that the 39 bp (-57 to -95) 5' to this region contained sequences required for optimal expression of PUREI: A potential secondary repressor-binding site was tentatively identified further upstream of the -35 element (-96 to -115). To further analyse the cis-acting elements, base changes were introduced into two AT-rich repeats within the primary repressor-binding site. One such derivative, S. salivarius M1, with five base substitutions immediately 5' to the -35 element, expressed 20-fold more CAT-specific activity at neutral pH than the strain carrying wild-type PureI-cat. Also, the pH sensitivity of strain M1 was greatly reduced, suggesting that this AT-rich region is crucial for repression of the urease operon. Deletion of three consecutive 15- or 16-base segments from -52 to -96 in the S. salivarius M1 background resulted in lower activities compared to strain M1, confirming the presence of sequences required for optimal expression of the operon. All of the PureI-cat fusions were also integrated into the gtfG gene of Streptococcus gordonii DL1, a non-ureolytic oral Streptococcus sp. Repression of PureI was observed at neutral pH in S. gordonii and the effects of the various mutations of the repressor-binding site largely paralleled those seen in S. salivarius, suggesting that the cis-elements may be a target for a global regulatory circuit that controls gene expression in streptococci in response to pH.
Collapse
Affiliation(s)
- Yi-Ywan M Chen
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA1
| | - Matthew J Betzenhauser
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA2
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA1
| |
Collapse
|
34
|
Quivey RG, Kuhnert WL, Hahn K. Genetics of acid adaptation in oral streptococci. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:301-14. [PMID: 11603503 DOI: 10.1177/10454411010120040201] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A growing body of information has provided insights into the mechanisms by which the oral streptococci maintain their niches in the human mouth. In at least one case, Streptococcus mutans, the organism apparently uses a panel of proteins to survive in acidic conditions while it promotes the formation of dental caries. Oral streptococci, which are not as inherently resistant to acidification, use protective schemes to ameliorate acidic plaque pH values. Existing information clearly shows that while the streptococci are highly related, very different strategies have evolved for them to take advantage of their particular location in the oral cavity. The picture that emerges is that the acid-adaptive regulatory mechanisms of the oral streptococci differ markedly from those used by Gram-negative bacteria. What future research must determine is the extent and complexity of the acid-adaptive systems in these organisms and how they permit the organisms to maintain themselves in the face of a low-pH environment and the microbial competition present in their respective niches.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, NY 14642, USA.
| | | | | |
Collapse
|
35
|
Abstract
Environmental pH is one the major factors affecting the composition, biological activities, and pathogenic potential of the biofilms colonizing supragingival surfaces. In periodontal diseases, small changes in pH from the metabolism of amino acids and urea may influence the activity of proteolytic enzymes of host and bacterial origin. Still, there is a significant void in the understanding of pH-dependent gene expression in bacteria, in general, and this is of course a more acute problem when one considers there is virtually no information about gene expression in response to pH in biofilms. The development of new methods and applications of some of the techniques detailed above should help to ameliorate this situation and to generate much-needed data about the role of pH in biofilm composition, stability, and activity.
Collapse
Affiliation(s)
- R A Burne
- Department of Microbiology and Immunology, and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
36
|
Abstract
The strategies employed by oral streptococci to resist the inimical influences of acidification reflect the diverse and dynamic niches of the human mouth. All of the oral streptococci are capable of rapid degradation of sugar to acidic end-products. As a result, the pH value of their immediate environment can plummet to levels where glycolysis and growth cease. At this point, the approaches for survival in acid separate the organisms. Streptococcus mutans, for example, relies on its F-ATPase, to protect itself from acidification by pumping protons out of the cells. S. salivarius responds by degrading urea to ammonia and S. sanguis produces ammonia by arginolysis. The mechanisms by which these organisms regulate their particular escape route are now being explored experimentally. The picture that emerges is that the acid-adaptive regulatory mechanisms of the oral streptococci differ markedly from those employed by Gram-negative bacteria. What remains to be elucidated are the breadth of the acid-response systems in these organisms and how they permit the microbes to sustain themselves in the face of low pH and the bacterial competition present in their respective niches. In this article, we summarize reports concerning the means by which oral streptococci either utilize acidification to subdue their competitors or protect themselves until pH values return to a more favorable level.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
37
|
Morou-Bermudez E, Burne RA. Analysis of urease expression in Actinomyces naeslundii WVU45. Infect Immun 2000; 68:6670-6. [PMID: 11083780 PMCID: PMC97765 DOI: 10.1128/iai.68.12.6670-6676.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2000] [Accepted: 09/13/2000] [Indexed: 11/20/2022] Open
Abstract
The hydrolysis of urea by ureases of oral bacteria in dental plaque can cause a considerable increase in plaque pH, which can inhibit the development of dental caries. There is also indirect evidence that urea metabolism may promote the formation of calculus and that ammonia release from urea could exacerbate periodontal diseases. Actinomyces naeslundii, an early colonizer of the oral cavity and a numerically significant plaque constituent, demonstrates comparatively low levels of urease activity on isolation, so this organism has not been considered a major contributor to total oral urease activity. In this study it was observed that urease activity and urease-specific mRNA levels in A. naeslundii WVU45 can increase up to 50-fold during growth under nitrogen-limiting conditions. Using primer extension analysis, a putative, proximal, nitrogen-regulated promoter of the A. naeslundii urease gene cluster was identified. The functionality and nitrogen responsiveness of this promoter were confirmed using reporter gene fusions and 5' deletion analysis. The data indicated that regulation of urease expression by nitrogen availability in A. naeslundii may require a positive transcriptional activator. Plaque bacteria may experience nitrogen limitation when carbohydrates are present in excess. Therefore, based on the results of this study and in contrast to previous beliefs, strains of A. naeslundii may have the potential to be significant contributors to total plaque ureolysis, particularly during periods when there is an increased risk for caries development.
Collapse
Affiliation(s)
- E Morou-Bermudez
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
38
|
Abstract
pH is a key environmental factor affecting the physiology, ecology and pathogenicity of the oral biofilms colonizing the hard tissues of the human mouth. Much attention has been focused on the production of organic acids through the metabolism of carbohydrates by pathogenic oral bacteria. Now, evidence is emerging that alkali generation, particularly through ammonia production from arginine and urea, plays major roles in pH homeostasis in oral biofilms and may moderate initiation and progression of dental caries. This short review highlights recent progress on understanding molecular genetic and physiologic aspects of ammonia generation by prominent oral bacteria.
Collapse
Affiliation(s)
- R A Burne
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Box 611, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | | |
Collapse
|
39
|
Abstract
A urease-deficient derivative of Streptococcus salivarius 57.I was constructed by allelic exchange at the ureC locus. The wild-type strain was protected against acid killing through hydrolysis of physiologically relevant concentrations of urea, whereas the mutant was not. Also, S. salivarius could use urea as a source of nitrogen for growth exclusively through a urease-dependent pathway.
Collapse
Affiliation(s)
- Y Y Chen
- Center for Oral Biology and Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
40
|
Weaver CA, Chen YYM, Burne RA. Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1179-1185. [PMID: 10832646 DOI: 10.1099/00221287-146-5-1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The urease genes of Streptococcus salivarius 57.1 are tightly repressed in cells growing at neutral pH. When cells are cultivated at acidic pH values, the urease genes become derepressed and transcription is enhanced when cells are growing under carbohydrate-excess conditions. Previously, the authors proposed that the bacterial sugar:phosphotransferase system (PTS) modulated the DNA-binding activity by phosphorylation of the urease repressor when carbohydrate was limiting. The purpose of this study was to assess whether enzyme I (EI) of the PTS could be involved in modulating urease expression in response to carbohydrate availability. An EI-deficient strain (ptsI18-3) of S. salivarius 57.1 was constructed by insertional inactivation of the ptsI gene. The mutant had no measurable PTS activity and lacked EI, as assessed by Western analysis. The mutant grew as well as the wild-type strain on the non-PTS sugar lactose, and grew better than the parent when another non-PTS sugar, galactose, was the sole carbohydrate. The mutant was able to grow with glucose as the sole carbohydrate, but displayed a 24 h lag time and had a generation time some threefold longer than strain 57.1. The mean OD600 attained after 48 h by ptsI18-3 supplied with fructose was 0.16, with no additional growth observed even after 3 d. Urease expression in the wild-type and mutant strains was assessed in continuous chemostat culture. Repression of urease at neutral pH was seen in both strains under all conditions tested. Growth of wild-type cells on limiting concentrations of lactose resulted in very low levels of urease expression compared with growth on PTS sugars. In contrast, under similar conditions, urease expression in ptsI18-3 was restored to levels seen in the parent growing on PTS sugars. Growth under conditions of lactose excess resulted in further derepression of urease, but ptsI18-3 expressed about threefold higher urease activity than 57.1. The results support a role for EI in urease regulation, but also indicate that additional factors may be important in regulating urease gene expression.
Collapse
Affiliation(s)
- Cheryl A Weaver
- Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA1
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA1
| | - Robert A Burne
- Department of Microbiology and Immunology and Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA1
| |
Collapse
|
41
|
Abstract
Ureases are multi-subunit, nickel-containing enzymes that catalyze the hydrolysis of urea to carbon dioxide and ammonia. This brief review discusses the biochemistry and genetics of bacterial ureases and outlines the roles of urea metabolism in microbial ecology and pathogenesis of some of the principle ureolytic species affecting human health.
Collapse
Affiliation(s)
- R A Burne
- Department of Microbiology and Immunology, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, USA
| | | |
Collapse
|
42
|
Burne RA, Wen ZT, Chen YY, Penders JE. Regulation of expression of the fructan hydrolase gene of Streptococcus mutans GS-5 by induction and carbon catabolite repression. J Bacteriol 1999; 181:2863-71. [PMID: 10217779 PMCID: PMC93730 DOI: 10.1128/jb.181.9.2863-2871.1999] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polymers of fructose, levan and inulin, as well as sucrose and raffinose, are substrates for the product of the fruA gene of Streptococcus mutans GS-5. The purpose of this study was to characterize the DNA immediately flanking fruA, to explore the regulation of expression of fruA by the carbohydrate source, and to begin to elucidate the molecular basis for differential expression of the gene. Located 3' to fruA was an open reading frame (ORF) with similarity to beta-fructosidases which was cotranscribed with fruA. A transcriptional initiation site, located an appropriate distance from an extended -10-like promoter, was mapped at 165 bp 5' to the fruA structural gene. By the use of computer algorithms, two overlapping, stable stem-loop sequences with the potential to function as rho-independent terminators were found in the 5' untranslated region. Catabolite response elements (CREs), which have been shown to govern carbon catabolite repression (CCR) by functioning as negative cis elements in gram-positive bacteria, were located close to the promoter. The levels of production of fruA mRNA and FruA were elevated in cells growing on levan, inulin, or sucrose as the sole carbohydrate source, and repression was observed when cells were grown on readily metabolizable hexoses. Deletion derivatives containing fusions of fruA promoter regions, lacking sequences 5' or 3' to the promoter, and a promoterless chloramphenicol acetyltransferase gene were used (i) to demonstrate the functionality of the promoter mapped by primer extension, (ii) to demonstrate that CCR of the fru operon requires the CRE that is located 3' to the promoter region, and (iii) to provide preliminary evidence that supports the involvement of an antitermination mechanism in fruA induction.
Collapse
Affiliation(s)
- R A Burne
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
43
|
Chen YY, Weaver CA, Mendelsohn DR, Burne RA. Transcriptional regulation of the Streptococcus salivarius 57.I urease operon. J Bacteriol 1998; 180:5769-75. [PMID: 9791132 PMCID: PMC107641 DOI: 10.1128/jb.180.21.5769-5775.1998] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 08/26/1998] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus salivarius 57.I ure cluster was organized as an operon, beginning with ureI, followed by ureABC (structural genes) and ureEFGD (accessory genes). Northern analyses revealed transcripts encompassing structural genes and transcripts containing the entire operon. A sigma70-like promoter could be mapped 5' to ureI (PureI) by primer extension analysis. The intensity of the signal increased when cells were grown at an acidic pH and was further enhanced by excess carbohydrate. To determine the function(s) of two inverted repeats located 5' to PureI, transcriptional fusions of the full-length promoter region (PureI), or a deletion derivative (PureIDelta100), and a promoterless chloramphenicol acetyltransferase (CAT) gene were constructed and integrated into the chromosome to generate strains PureICAT and PureIDelta100CAT, respectively. CAT specific activities of PureICAT were repressed at pH 7.0 and induced at pH 5.5 and by excess carbohydrate. In PureIDelta100CAT, CAT activity was 60-fold higher than in PureICAT at pH 7.0 and pH induction was nearly eliminated, indicating that expression was negatively regulated. Thus, it was concluded that PureI was the predominant, regulated promoter and that regulation was governed by a mechanism differing markedly from other known mechanisms for bacterial urease expression.
Collapse
Affiliation(s)
- Y Y Chen
- Center for Oral Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
44
|
Chen YY, Hall TH, Burne RA. Streptococcus salivarius urease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiol Lett 1998; 165:117-22. [PMID: 9711847 DOI: 10.1111/j.1574-6968.1998.tb13135.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Urease expression in Streptococcus salivarius 57.1 is induced by acidic pH, and further enhanced at high growth rate and with excess carbohydrate. Notably, the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS) activity is repressed in oral streptococci under the same conditions. To test the hypothesis that the PTS may be involved in urease regulation, spontaneous mutants (PTS-1 and PTS-4) that were resistant to 2-deoxyglucose were isolated. When compared to wild-type, PTS-1 was devoid of enzyme IIAManH (EIIAManII) and synthesized low amounts of EIIAManL, and PTS-4 was devoid of EIIAManL, but produced wild-type levels of EIIAManH. Urease expression was examined in continuous chemostat cultures at steady state. Induction by acidic pH was still observed in both mutants, but at lower levels compared to wild-type, under carbohydrate limiting conditions. Conversely, the lower level of expression in PTS-4 could be overcome in excess carbohydrate. The data indicated evidence of a molecular link between the PTS, sugar metabolism, and regulation of urease expression.
Collapse
Affiliation(s)
- Y Y Chen
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
45
|
Abstract
Microbial biofilms form on oral surfaces. These biofilms usually exist in dynamic equilibria with host defenses and are compatible with maintenance of the integrity of the target tissues. Disease occurs when the composition and the metabolic activities of complex communities in biofilms are perturbed. These ecologically driven changes in oral biofilms result in increases in the proportions of pathogenic micro-organisms, which possess enzymatic and structural determinants that may render them more virulent than organisms associated with oral health. This brief review focuses on key environmental influences, and genetic and physiologic aspects of bacteria associated with the formation of dental caries, and attempts to identify some areas of oral microbiology in which interdisciplinary efforts will be essential for dissection of the molecular events controlling the development and persistence of pathogenic plaques. The focus is on strategies to enhance fundamental knowledge of oral biofilm composition, structure, and activities, with the rationale that broadly effective therapeutic strategies targeted at plaque physiology, or at biofilm development and persistence, can arise from such knowledge.
Collapse
Affiliation(s)
- R A Burne
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| |
Collapse
|
46
|
Clancy A, Burne RA. Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity. FEMS Microbiol Lett 1997; 151:205-11. [PMID: 9228755 DOI: 10.1111/j.1574-6968.1997.tb12571.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To begin to understand the contribution of oral microbial ureolysis to the inhibition of dental caries, we sought to construct a recombinant, ureolytic mutans streptococcus and correlate the ureolytic capacity of plaque bacteria with pH moderating ability. Streptococcus mutans GS-5 was transformed with a plasmid containing the urease genes from Streptococcus salivarius 57.I. The recombinant strain, S. mutans AC04, stably maintained the urease genes. High levels of urease activity were detected, with a maximum specific activity of 0.9 mumol of urea hydrolyzed/min/mg cell dry weight when the growth medium was supplemented with 50 microM exogenous NiCl2. Harboring the recombinant plasmid, or growth in NiCl2, did not markedly affect the glycolytic capacity of S. mutans. In vitro pH drop analysis of S. mutans AC04, metabolizing glucose and physiologically relevant concentrations of urea simultaneously, demonstrated that increasing the urease activity of plaque bacteria resulted in a corresponding reduction in the depth and the duration of the glycolytic pH fall. The results demonstrate the feasibility of engineering urease producing S. mutans and suggest that enhancing the ureolytic capacity of dental plaque, particularly cariogenic plaque, may help to offset the progression of the caries process.
Collapse
Affiliation(s)
- A Clancy
- Department of Dental Research, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | |
Collapse
|