1
|
Zwirzitz B, Pinior B, Metzler-Zebeli B, Handler M, Gense K, Knecht C, Ladinig A, Dzieciol M, Wetzels SU, Wagner M, Schmitz-Esser S, Mann E. Microbiota of the Gut-Lymph Node Axis: Depletion of Mucosa-Associated Segmented Filamentous Bacteria and Enrichment of Methanobrevibacter by Colistin Sulfate and Linco-Spectin in Pigs. Front Microbiol 2019; 10:599. [PMID: 31031713 PMCID: PMC6470194 DOI: 10.3389/fmicb.2019.00599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Microorganisms are translocated from the gut to lymphatic tissues via immune cells, thereby challenging and training the mammalian immune system. Antibiotics alter the gut microbiome and consecutively might also affect the corresponding translocation processes, resulting in an imbalanced state between the intestinal microbiota and the host. Hence, understanding the variant effects of antibiotics on the microbiome of gut-associated tissues is of vital importance for maintaining metabolic homeostasis and animal health. In the present study, we analyzed the microbiome of (i) pig feces, ileum, and ileocecal lymph nodes under the influence of antibiotics (Linco-Spectin and Colistin sulfate) using 16S rRNA gene sequencing for high-resolution community profiling and (ii) ileocecal lymph nodes in more detail with two additional methodological approaches, i.e., cultivation of ileocecal lymph node samples and (iii) metatranscriptome sequencing of a single lymph node sample. Supplementation of medicated feed showed a local effect on feces and ileal mucosa-associated microbiomes. Pigs that received antibiotics harbored significantly reduced amounts of segmented filamentous bacteria (SFB) along the ileal mucosa (p = 0.048; 199.17-fold change) and increased amounts of Methanobrevibacter, a methanogenic Euryarchaeote in fecal samples (p = 0.005; 20.17-fold change) compared to the control group. Analysis of the porcine ileocecal lymph node microbiome exposed large differences between the viable and the dead fraction of microorganisms and the microbiome was altered to a lesser extent by antibiotics compared with feces and ileum. The core microbiome of lymph nodes was constituted mainly of Proteobacteria. RNA-sequencing of a single lymph node sample unveiled transcripts responsible for amino acid and carbohydrate metabolism as well as protein turnover, DNA replication and signal transduction. The study presented here is the first comparative study of microbial communities in feces, ileum, and its associated ileocecal lymph nodes. In each analyzed site, we identified specific phylotypes susceptible to antibiotic treatment that can have profound impacts on the host physiological and immunological state, or even on global biogeochemical cycles. Our results indicate that pathogenic bacteria, e.g., enteropathogenic Escherichia coli, could escape antibiotic treatment by translocating to lymph nodes. In general ileocecal lymph nodes harbor a more diverse and active community of microorganisms than previously assumed.
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Metzler-Zebeli
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Monika Handler
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Gense
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Monika Dzieciol
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Stefanie U Wetzels
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | | | - Evelyne Mann
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| |
Collapse
|
2
|
Mann E, Dzieciol M, Pinior B, Neubauer V, Metzler-Zebeli BU, Wagner M, Schmitz-Esser S. High diversity of viable bacteria isolated from lymph nodes of slaughter pigs and its possible impacts for food safety. J Appl Microbiol 2015; 119:1420-32. [PMID: 26283649 DOI: 10.1111/jam.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/17/2015] [Accepted: 08/02/2015] [Indexed: 12/15/2022]
Abstract
AIMS Ileocaecal lymph nodes (ICLNs) of pigs, the key immune inductive site for bacterial systemic invasion, were examined in this study with emphasis on viable and cultivable bacteria. METHODS AND RESULTS Asymptomatic and pathologically altered ICLNs of slaughter pigs (n = 16) with hyperplasia, purulence or granulomatous formations were aerobically and anaerobically cultivated. In total, 209 isolates were collected and the near full-length 16S rRNA gene from each isolate was sequenced. Taxonomic classification revealed that 68% of the isolates belonged to Proteobacteria, 27% to Firmicutes and 5% to Actinobacteria. Purulent and granulomatous ICLNs generally tended to contain more Proteobacteria than asymptomatic and enlarged ICLNs (P = 0·061). The isolates could be assigned to 25 species belonging to 17 genera including Escherichia, Carnobacterium, Lactobacillus, Staphylococcus and Acinetobacter. Furthermore, pathogens such as Streptococcus suis and Salmonella enterica were detected. The most abundant isolate (57%) was most similar (>99%) to Escherichia coli. Random amplified polymorphic DNA (RAPD) profiling revealed a high genetic diversity among E. coli isolates and 24% of these isolates were positive for at least one gene associated with enterohemorrhagic disease (eae, fliC, stx1 or hlyA). Compared with a recently published DNA-based high-throughput sequencing data set including the same ICLNs, 4% of species detected were cultivable. CONCLUSIONS The presence of viable, commensal and pathogenic bacterial phylotypes could be proven in ICLNs with Proteobacteria being dominant. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that broadly characterizes viable bacteria from ICLNs of pigs. The presence of bacteria in lymph nodes of farm animals has practical relevance for host colonization and possible chronic infection. It is also of great interest for basic research investigating translocation of bacteria from the gastrointestinal tract to ICLNs.
Collapse
Affiliation(s)
- E Mann
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department for Farm Animals and Veterinary Public Health, Research Cluster 'Animal Gut Health', University of Veterinary Medicine, Vienna, Austria
| | - M Dzieciol
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - B Pinior
- Department for Farm Animals and Veterinary Public Health, Institute for Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - V Neubauer
- Department for Farm Animals and Veterinary Public Health, Research Cluster 'Animal Gut Health', University of Veterinary Medicine, Vienna, Austria.,Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - B U Metzler-Zebeli
- Department for Farm Animals and Veterinary Public Health, Research Cluster 'Animal Gut Health', University of Veterinary Medicine, Vienna, Austria.,University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - M Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department for Farm Animals and Veterinary Public Health, Research Cluster 'Animal Gut Health', University of Veterinary Medicine, Vienna, Austria
| | - S Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department for Farm Animals and Veterinary Public Health, Research Cluster 'Animal Gut Health', University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Keller R, Hilton TD, Rios H, Boedeker EC, Kaper JB. Development of a live oral attaching and effacing Escherichia coli vaccine candidate using Vibrio cholerae CVD 103-HgR as antigen vector. Microb Pathog 2009; 48:1-8. [PMID: 19878715 DOI: 10.1016/j.micpath.2009.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 12/29/2022]
Abstract
Attaching and effacing Escherichia coli (AEEC) share the ability to induce pedestal formation and intimate adherence of the bacteria to the intestinal epithelial cell and effacement of microvilli of epithelial tissue. The Locus of Enterocyte Effacement (LEE) pathogenicity island encodes the ability to induce attaching and effacing (A/E) lesions and contains the gene eae, which encodes intimin, an outer membrane protein that is an adhesin for A/E lesion formation. Here we show the utility of using intimin as a vaccine to protect rabbits from challenge with rabbit Enteropathogenic E. coli (REPEC), a member of the AEEC family. The C-terminal portion of intimin was delivered by the attenuated Vibrio cholerae vaccine strain CVD 103-HgR. To export intimin, a fusion was engineered with ClyA, a secreted protein from Salmonella enterica serovar Typhi. After immunization, antibodies specific to intimin from serum and bile samples were detected and moderate protection against challenge with a virulent REPEC strain was observed. Compared to animals immunized with vector alone, intimin-immunized rabbits exhibited reduced fecal bacterial shedding, milder diarrheal symptoms, lower weight loss, and reduced colonization of REPEC in the cecum. V. cholerae CVD 103-HgR shows promise as a vector to deliver antigens and confer protection against AEEC pathogens.
Collapse
Affiliation(s)
- Rogeria Keller
- Center for Vaccine Development and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
4
|
Morato EP, Leomil L, Beutin L, Krause G, Moura RA, Pestana de Castro AF. Domestic cats constitute a natural reservoir of human enteropathogenic Escherichia coli types. Zoonoses Public Health 2009; 56:229-37. [PMID: 19068073 DOI: 10.1111/j.1863-2378.2008.01190.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Feces of 70 diarrhoeic and 230 non-diarrhoeic domestic cats from Sao Paulo, Brazil were investigated for enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and enterotoxigenic (ETEC) Escherichia coli types. While ETEC and EHEC strains were not found, 15 EPEC strains were isolated from 14 cats, of which 13 were non-diarrhoeic, and one diarrhoeic. None of 15 EPEC strains carried the bfpA gene or the EPEC adherence factor plasmid, indicating atypical EPEC types. The EPEC strains were heterogeneous with regard to intimin types, such as eae-theta (three strains), eae-kappa (n = 3), eae-alpha1 (n = 2), eae-iota (n = 2), one eae-alpha2, eae-beta1 and eae-eta each, and two were not typeable. The majority of the EPEC isolates adhered to HEp-2 cells in a localized adherence-like pattern and were positive for fluorescence actin staining. The EPEC strains belonged to 12 different serotypes, including O111:H25 and O125:H6, which are known to be pathogens in humans. Multi locus sequence typing revealed a close genetic similarity between the O111:H25 and O125:H6 strains from cats, dogs and humans. Our results show that domestic cats are colonized by EPEC, including serotypes previously described as human pathogens. As these EPEC strains are also isolated from humans, a cycle of mutual infection by EPEC between cats and its households cannot be ruled out, though the transmission dynamics among the reservoirs are not yet understood clearly.
Collapse
Affiliation(s)
- E P Morato
- Departamento de Microbiologia, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Girard F, Batisson I, Frankel GM, Harel J, Fairbrother JM. Interaction of enteropathogenic and Shiga toxin-producing Escherichia coli and porcine intestinal mucosa: role of intimin and Tir in adherence. Infect Immun 2005; 73:6005-16. [PMID: 16113321 PMCID: PMC1231093 DOI: 10.1128/iai.73.9.6005-6016.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ileal in vitro organ culture (IVOC) model using tissues originating from colostrum-deprived newborn piglets has proven to be an effective way to study the attaching and effacing (A/E) phenotype of porcine enteropathogenic Escherichia coli (EPEC) ex vivo. The aim of this study was to investigate the role of intimin subtype and Tir in the adherence of EPEC and Shiga-toxin-producing E. coli (STEC), isolated from different animal species, to porcine intestinal IVOC. Moreover, the role of intimin in Tir-independent adherence of the human EPEC strain E2348/69 was investigated using intimin and Tir-deficient derivatives. Our results demonstrated that A/E E. coli strains (AEEC) from various animal species and humans induce the A/E phenotype in porcine ileal IVOC and that intimin subtype influences intestinal adherence and tropism of AEEC strains. We also showed that a tir mutant of EPEC strain E2348/69 demonstrates close adherence to the epithelial cells of porcine ileal IVOC segments, with microvillous effacement but with no evidence of actin polymerization or pedestal formation, and that intimin seems to be involved in this phenotype. Overall, this study provides further evidence for the existence of one or more host-cell-encoded intimin receptor(s) in the pig gut.
Collapse
Affiliation(s)
- Francis Girard
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | | | | | | | | |
Collapse
|
6
|
Zhu C, Feng S, Thate TE, Kaper JB, Boedeker EC. Towards a vaccine for attaching/effacing Escherichia coli: a LEE encoded regulator (ler) mutant of rabbit enteropathogenic Escherichia coli is attenuated, immunogenic, and protects rabbits from lethal challenge with the wild-type virulent strain. Vaccine 2005; 24:3845-55. [PMID: 16112258 DOI: 10.1016/j.vaccine.2005.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ler (LEE encoded regulator) gene product is a central regulator for the genes encoded on the locus of enterocyte effacement (LEE) pathogenicity island of attaching/effacing (A/E) pathogens, including human enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) as well as animal isolates. Although an in vivo role for Ler in bacterial virulence has not been documented, we hypothesized that a Ler deletion mutant should be attenuated for virulence but might retain immunogenicity. The goals of this study were to genetically characterize ler of a rabbit EPEC (rEPEC) strain (O103:H2), to examine the effect of ler on in vivo virulence, and to determine if intragastric inoculation of an attenuated rEPEC ler mutant was immunogenic and could protect rabbits against subsequent challenge with the wild-type virulent parent strain. The predicted ler gene product of rEPEC strain O103:H2 shares high homology (over 95% amino acid identity) with the Lers of another rEPEC strain RDEC-1 (O15:H-) and human EPEC and EHEC. A defined internal ler deletion mutant of rEPEC O103:H2 showed reduced production of secreted proteins. Although orogastric inoculation of rabbits with the virulent parent O103:H2 strain induced severe diarrhea, significant weight loss and early mortality with adherent mucosal bacteria found at sacrifice, the isogeneic ler mutant strain was well tolerated. Animals gained weight and showed no clinical signs of disease. Examination of histological sections of intestinal segments revealed the absence of mucosal bacterial adherence. This result demonstrates an essential role for Ler in in vivo pathogenicity of A/E E. coli. Single dose orogastric immunization with the rEPEC ler mutant induced serum IgG antibody to whole bacteria (but not to intimin). Immunized animals were protected against enteric infection with the WT virulent parent strain exhibiting normal weight gain, absence of diarrhea and absence of mucosally adherent bacteria at sacrifice. Such attenuated ler mutant strains may have potential for use as oral vaccines, or as vaccine vectors for delivery of foreign antigens. It remains to be determined whether such regulatory mutants can protect against infection with A/E bacteria of differing serotypes affecting different hosts.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Bacterial Adhesion
- Bacterial Proteins/metabolism
- Body Weight
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Diarrhea
- Disease Models, Animal
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/pathogenicity
- Escherichia coli Infections/pathology
- Escherichia coli Infections/prevention & control
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/physiology
- Escherichia coli Vaccines/administration & dosage
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Gene Deletion
- Immunoglobulin G/blood
- Intestinal Mucosa/microbiology
- Molecular Sequence Data
- Rabbits
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trans-Activators/genetics
- Trans-Activators/physiology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Chengru Zhu
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
7
|
Bertin Y, Boukhors K, Livrelli V, Martin C. Localization of the insertion site and pathotype determination of the locus of enterocyte effacement of shiga toxin-producing Escherichia coli strains. Appl Environ Microbiol 2004; 70:61-8. [PMID: 14711626 PMCID: PMC321293 DOI: 10.1128/aem.70.1.61-68.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of 220 Shiga toxin-producing Escherichia coli (STEC) strains collected in central France from healthy cattle, food samples, and asymptomatic children, 12 possessed the eae gene included in the locus of enterocyte effacement (LEE) pathogenicity island. Based on gene typing, we observed 7 different eae espA espB tir pathotypes among the 12 STEC strains and described the new espAbetav variant. As previously observed, the O157 serogroup is associated with eaegamma, O26 is associated with eaebeta, and O103 is associated with eaeepsilon. However, the unexpected eaezeta allele was detected in 5 of the 12 isolates. PCR amplification and pulsed-field gel electrophoresis using the I-CeuI endonuclease followed by Southern hybridization indicated that the LEE was inserted in the vicinity of the selC (three isolates), pheU (two isolates), or pheV (six isolates) tRNA gene. Six isolates harbored two or three of these tRNA loci altered by the insertion of integrase genes (CP4-int and/or int-phe), suggesting the insertion of additional foreign DNA fragments at these sites. In spite of great genetic diversity of LEE pathotypes and LEE insertion sites, bovine strains harbor alleles of LEE genes that are frequently found in clinical STEC strains isolated from outbreaks and sporadic cases around the world, underscoring the potential risk of the bovine strains on human health.
Collapse
Affiliation(s)
- Yolande Bertin
- Laboratoire de Microbiologie, Centre de Recherche INRA de Clermont-Ferrand-Theix, 63122 St-Genès Chapanelle, France
| | | | | | | |
Collapse
|
8
|
Simmons CP, Clare S, Ghaem-Maghami M, Uren TK, Rankin J, Huett A, Goldin R, Lewis DJ, MacDonald TT, Strugnell RA, Frankel G, Dougan G. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 2003; 71:5077-86. [PMID: 12933850 PMCID: PMC187366 DOI: 10.1128/iai.71.9.5077-5086.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Citrobacter rodentium, an attaching-effacing bacterial pathogen, establishes an acute infection of the murine colonic epithelium and induces a mild colitis in immunocompetent mice. This study describes the role of T-cell subsets and B lymphocytes in immunity to C. rodentium. C57Bl/6 mice orally infected with C. rodentium resolved infection within 3 to 4 weeks. Conversely, systemic and colonic tissues of RAG1(-/-) mice orally infected with C. rodentium contained high and sustained pathogen loads, and in the colon this resulted in a severe colitis. C57Bl/6 mice depleted of CD4(+) T cells, but not CD8(+) T cells, were highly susceptible to infection and also developed severe colitis. Mice depleted of CD4(+) T cells also had diminished immunoglobulin G (IgG) and IgA antibody responses to two C. rodentium virulence-associated determinants, i.e., EspA and intimin, despite having a massively increased pathogen burden. Mice with an intact T-cell compartment, but lacking B cells ( micro MT mice), were highly susceptible to C. rodentium infection. Systemic immunity, but not mucosal immunity, could be restored by adoptive transfer of convalescent immune sera to infected micro MT mice. Adoptive transfer of immune B cells, but not naïve B cells, provided highly variable immunity to recipient micro MT mice. The results suggest that B-cell-mediated immune responses are central to resolution of a C. rodentium infection but that the mechanism through which this occurs requires further investigation. These data are relevant to understanding immunity to enteric attaching and effacing bacterial pathogens of humans.
Collapse
Affiliation(s)
- Cameron P Simmons
- Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, South Kensington, London SW6 1SJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jenkins C, Lawson AJ, Cheasty T, Willshaw GA, Wright P, Dougan G, Frankel G, Smith HR. Subtyping intimin genes from enteropathogenic Escherichia coli associated with outbreaks and sporadic cases in the United Kingdom and Eire. Mol Cell Probes 2003; 17:149-56. [PMID: 12944116 DOI: 10.1016/s0890-8508(03)00046-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PCR-RFLP methods for subtyping the intimin gene from strains of typical and atypical enteropathogenic Escherichia coli (EPEC) and Verocytotoxin-producing E. coli (VTEC) were compared. A novel HhaI PCR-RFLP method was developed that was rapid, easy to use and amplified an 1852 bp fragment of the intimin gene from all isolates examined. This method was used to investigate the intimin sub-types of EPEC strains associated with 14 outbreaks of diarrhoeal disease between 1967 and 2001, and 20 sporadic cases between January and December 2000, in the UK and Eire. In this study, genes encoding alpha, beta, gamma, delta and zeta-intimin were detected in the EPEC strains associated with outbreaks and beta, gamma, epsilon, theta and zeta-intimin genes were identified in isolates from sporadic cases. The beta-intimin gene was the most frequently detected sub-type in both the outbreak and sporadic strains.
Collapse
Affiliation(s)
- C Jenkins
- Laboratory of Enteric Pathogens, Central Public Health Laboratory, Specialist and Reference Microbiology Division, Health Protection Agency, 61 Colindale Avenue, NW9 5HT, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu H, Radhakrishnan P, Magoun L, Prabu M, Campellone KG, Savage P, He F, Schiffer CA, Leong JM. Point mutants of EHEC intimin that diminish Tir recognition and actin pedestal formation highlight a putative Tir binding pocket. Mol Microbiol 2002; 45:1557-73. [PMID: 12354225 DOI: 10.1046/j.1365-2958.2002.03137.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two-hybrid assay for intimin-Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between recognition of recombinant Tir and the ability to trigger AE lesions. Many of the mutations fell within a 50-residue region near the C-terminus of intimin. Alanine-scanning mutagenesis of this region revealed four residues (Ser890, Thr909, Asn916 and Asn927) that are critical for Tir recognition. Mapping the sequences of EHEC intimin and Tir onto the crystal structure of the intimin-Tir complex of enteropathogenic E. coli predicts that each of these four intimin residues lies at the intimin-Tir interface and contributes to a pocket that interacts with Ile298 of EHEC Tir. Thus, this genetic approach to intimin function both identified residues critical for Tir binding and demonstrated a correlation between the ability to bind Tir and the ability to trigger actin focusing.
Collapse
Affiliation(s)
- Hui Liu
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worchester, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Starcic M, Johnson JR, Stell AL, van der Goot J, Hendriks HGCJM, van Vorstenbosch C, van Dijk L, Gaastra W. Haemolytic Escherichia coli isolated from dogs with diarrhea have characteristics of both uropathogenic and necrotoxigenic strains. Vet Microbiol 2002; 85:361-77. [PMID: 11856586 DOI: 10.1016/s0378-1135(02)00003-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Twenty-four haemolytic Escherichia coli strains were isolated from dogs with diarrhea. The strains were serotyped and analysed by polymerase chain reaction (PCR) for genes encoding virulence factors associated with E. coli that cause diarrhea in animals. Adhesion antigen production was deduced from haemagglutination experiments. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of heat extracts was also used as an indication for the production of adhesive structures. The majority of the strains was shown to produce this type of virulence factor. Adhesion and invasion tests of the strains and Caco-2 cells showed that all strains adhered and that two were invasive. The two invasive strains were positive in the intimin PCR and one of them also contained genes encoding CS31A. The PCR for heat stable toxin (ST) was positive in only four strains, as was the presence of F17 fimbrial genes. Surprisingly, 19 strains had intact P fimbrial operons, coding for an adhesin involved in urinary tract infection (UTI). The cytotoxic necrotising factor 1 (CNF1) gene, also mainly found in UTI was likewise detected in these 19 strains. Cytolethal distending toxin (Cdt) genes were found in five strains. The high number of strains positive for CNF1 and P fimbriae prompted us to test the strains in a multiplex PCR used to test E. coli isolated from UTI in various species for 30 virulence associated genes. The data showed that the majority of the diarrhea isolates have virulence factor profiles highly similar to UTI E. coli isolates from dogs. This raises the question whether these isolates are real intestinal pathogens or "innocent bystanders". However, since CNF1 producing necrotoxic E. coli (NTEC) strains isolated from humans, pigs and calves with diarrhea appear to be highly related to our strains, it might be that in dogs this type of isolate is capable of causing not only UTI, but also diarrhea. If this is the case and this type of isolate is "bifunctional", domestic animals likely constitute a reservoir of NTEC strains which can be also pathogenic for humans.
Collapse
Affiliation(s)
- Marjanca Starcic
- Department of Infectious Diseases and Immunology, Division of Bacteriology, Veterinary Faculty, University of Utrecht, P.O. Box 80.165, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Simmons CP, Goncalves NS, Ghaem-Maghami M, Bajaj-Elliott M, Clare S, Neves B, Frankel G, Dougan G, MacDonald TT. Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1804-12. [PMID: 11823513 DOI: 10.4049/jimmunol.168.4.1804] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mice infected with Citrobacter rodentium represent an excellent model in which to examine immune defenses against an attaching-effacing enteric bacterial pathogen. Colonic tissue from mice infected with C. rodentium harbors increased transcripts for IL-12 and IFN-gamma and displays mucosal pathology compared with uninfected controls. In this study, the role of IL-12 and IFN-gamma in host defense and mucosal injury during C. rodentium infection was examined using gene knockout mice. IL-12p40(-/-) and IFN-gamma(-/-) mice were significantly more susceptible to mucosal and gut-derived systemic C. rodentium infection. In particular, a proportion of IL-12p40(-/-) mice died during infection. Analysis of the gut mucosa of IL-12p40(-/-) mice revealed an influx of CD4(+) T cells and a local IFN-gamma response. Infected IL-12p40(-/-) and IFN-gamma(-/-) mice also mounted anti-Citrobacter serum and gut-associated IgA responses and strongly expressed inducible NO synthase (iNOS) in mucosal tissue, despite diminished serum nitrite/nitrate levels. However, iNOS does not detectably contribute to host defense against C. rodentium, as iNOS(-/-) mice were not more susceptible to infection. However, C57BL/6 mice infected with C. rodentium up-regulated expression of the mouse beta-defensin (mBD)-1 and mBD-3 in colonic tissue. In contrast, expression of mBD-3, but not mBD-1, was significantly attenuated during infection of IL-12- and IFN-gamma-deficient mice, suggesting mBD-3 may contribute to host defense. These studies are among the first to examine mechanisms of host resistance to an attaching-effacing pathogen and show an important role for IL-12 and IFN-gamma in limiting bacterial infection of the colonic epithelium.
Collapse
Affiliation(s)
- Cameron P Simmons
- Department of Biochemistry, Center for Molecular Microbiology and Infection, Imperial College, South Kensington, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cid D, Ruiz-Santa-Quiteria JA, Marı N I, Sanz R, Orden JA, Amils R, de la Fuente R. Association between intimin (eae) and EspB gene subtypes in attaching and effacing Escherichia coli strains isolated from diarrhoeic lambs and goat kids. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2341-2353. [PMID: 11496011 DOI: 10.1099/00221287-147-8-2341] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attaching and effacing Escherichia coli (AEEC) strains isolated from diarrhoeic lambs and goat kids were characterized for intimin (eae) and EspB (espB) gene subtypes by PCR and sequencing, and for genetic relatedness by PFGE. Fifty (23 ovine and 27 caprine) AEEC strains of 398 (246 ovine and 152 caprine) analysed were detected by colony blot hybridization. These strains were epidemiologically unrelated since they were isolated from different outbreaks of neonatal diarrhoea over a long period. Ovine AEEC strains belonged to serogroups O2, O4, O26, O80, O91 or were untypable, and caprine strains belonged to serogroups O3, O153 and O163. Two intimin subtypes were detected among the ovine and caprine strains studied. Most of the strains (43/50) had the beta type intimin gene, but seven ovine strains possessed a variant gamma type intimin gene (gamma(V)). Analysis of deduced amino acid sequences of the eae gene revealed that the sequences of beta intimin of ovine and caprine strains were virtually identical to those of beta intimin of rabbit EPEC, human EPEC clone 2 and swine AEEC, whereas the gamma(V) intimin present in seven ovine strains had 75-76% identity with gamma intimin of human EHEC clone 1 strains, and 96% of identity with intimin of the human EHEC strain 95NR1 of serotype O111:H-. A PCR test was developed to identify the three different espB gene subtypes, espB of human EPEC clone 1 (espBalpha), espB of human EHEC clone 1 (espBgamma) and espB of rabbit EPEC and human EPEC clone 2 (espBbeta). There was close correlation between the intimin beta type and the espBbeta gene subtype in the ovine and caprine AEEC strains. The seven ovine strains possessing the gamma(V) intimin gene possessed the espBalpha gene subtype. None of the strains studied possessed the espBgamma gene found in human O157:H7 EHEC strains. PFGE analysis of genomic DNA of selected strains showed a great diversity among strains. Cluster analysis of PFGE patterns showed greater divergence between strains with the gamma(V) intimin gene than between strains with the beta intimin gene. This study showed that most of the AEEC strains isolated from diarrhoeic lambs and goat kids possessed beta intimin and espB genes identical to those of rabbit EPEC, and they may be associated with enteric disease in small ruminants.
Collapse
Affiliation(s)
- D Cid
- Departamento Patologı́a Animal I, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain1
| | - J A Ruiz-Santa-Quiteria
- Departamento Patologı́a Animal I, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain1
| | - I Marı N
- Centro de Biologı́a Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain2
| | - R Sanz
- Departamento Patologı́a Animal I, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain1
| | - J A Orden
- Departamento Patologı́a Animal I, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain1
| | - R Amils
- Centro de Biologı́a Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain2
| | - R de la Fuente
- Departamento Patologı́a Animal I, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain1
| |
Collapse
|
14
|
Reece S, Simmons CP, Fitzhenry RJ, Matthews S, Phillips AD, Dougan G, Frankel G. Site-directed mutagenesis of intimin alpha modulates intimin-mediated tissue tropism and host specificity. Mol Microbiol 2001; 40:86-98. [PMID: 11298278 DOI: 10.1046/j.1365-2958.2001.02371.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hallmark of enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherchia coli adhesion to host cells is intimate attachment leading to the formation of distinctive 'attaching and effacing' lesions. This event is mediated, in part, by binding of the bacterial adhesion molecule intimin to a second bacterial protein, Tir, delivered by a type III secretion system into the host cell plasma membrane. The receptor-binding activity of intimin is localized to the C-terminal 280 amino acids (Int280) and at least five distinct intimin types (alpha, beta, gamma, delta and epsilon) have been identified thus far. In addition to binding to Tir, intimin can also bind to a component encoded by the host. The consequence of latter intimin-binding activity may determine tissue tropism and host specificity. In this study we selected three amino acids in intimin, which are implicated in Tir binding, for site-directed mutagenesis. We used the yeast two-hybrid system and gel overlays to study intimin-Tir protein interaction. In addition, the biological consequences of the mutagenesis was tested using a number of infection models (cultured epithelial cells, human intestinal explants and a mouse model). We report that while an I237/897A substitution (positions numbered according to Int280alpha/whole intimin alpha) in intimin alpha did not have any affect on its biological activity, a T255/914A substitution attenuated intimin activity in vivo. In contrast, the mutation V252/911A affected tissue targeting in the human intestinal explant model and attenuated the biological activity of intimin in the mouse model. This study provides the first clues of the molecular basis of how intimin mediates tissue tropism and host specificity.
Collapse
Affiliation(s)
- S Reece
- Centre for Molecular Microbiology and Infection, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhu C, Agin TS, Elliott SJ, Johnson LA, Thate TE, Kaper JB, Boedeker EC. Complete nucleotide sequence and analysis of the locus of enterocyte Effacement from rabbit diarrheagenic Escherichia coli RDEC-1. Infect Immun 2001; 69:2107-15. [PMID: 11254564 PMCID: PMC98136 DOI: 10.1128/iai.69.4.2107-2115.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Accepted: 12/01/2000] [Indexed: 12/23/2022] Open
Abstract
The pathogenicity island termed the locus of enterocyte effacement (LEE) is found in diverse attaching and effacing pathogens associated with diarrhea in humans and other animal species. To explore the relation of variation in LEE sequences to host specificity and genetic lineage, we determined the nucleotide sequence of the LEE region from a rabbit diarrheagenic Escherichia coli strain RDEC-1 (O15:H-) and compared it with those from human enteropathogenic E. coli (EPEC, O127:H6) and enterohemorrhagic E. coli (EHEC, O157:H7) strains. Differing from EPEC and EHEC LEEs, the RDEC-1 LEE is not inserted at selC and is flanked by an IS2 element and the lifA toxin gene. The RDEC-1 LEE contains a core region of 40 open reading frames, all of which are shared with the LEE of EPEC and EHEC. orf3 and the ERIC (enteric repetitive intergenic consensus) sequence present in the LEEs of EHEC and EPEC are absent from the RDEC-1 LEE. The predicted promoters of LEE1, LEE2, LEE3, tir, and LEE4 operons are highly conserved among the LEEs, although the upstream regions varied considerably for tir and the crucial LEE1 promoter, suggesting differences in regulation. Among the shared genes, high homology (>95% identity) between the RDEC-1 and the EPEC and EHEC LEEs at the predicted amino acid level was observed for the components of the type III secretion apparatus, the Ces chaperones, and the Ler regulator. In contrast, more divergence (66 to 88% identity) was observed in genes encoding proteins involved in host interaction, such as intimin (Eae) and the secreted proteins (Tir and Esps). A comparison of the highly variable genes from RDEC-1 with those from a number of attaching and effacing pathogens infecting different species and of different evolutionary lineages was performed. Although RDEC-1 diverges from some human-infecting EPEC and EHEC, most of the variation observed appeared to be due to evolutionary lineage rather than host specificity. Therefore, much of the observed hypervariability in genes involved in pathogenesis may not represent specific adaptation to different host species.
Collapse
Affiliation(s)
- C Zhu
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Goffaux F, China B, Janssen L, Mainil J. Genotypic characterization of enteropathogenic Escherichia coli (EPEC) isolated in Belgium from dogs and cats. Res Microbiol 2000; 151:865-71. [PMID: 11191812 DOI: 10.1016/s0923-2508(00)01153-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) are isolated from man and farm animals but also from dogs and cats. They produce typical histological lesions called 'attaching and effacing' lesions. Both plasmid and chromosomal elements are involved in the pathogenesis of EPEC infection. The presence of these genetic elements was investigated in 14 dog and three cat EPEC isolates. A bfpA-related gene was detected in five of the 17 isolates in association with high molecular weight plasmids, and a locus of enterocyte effacement (LEE) was present in all isolates. The LEE was inserted in the selC region in only 12% of the isolates. The eae, tir, espA and espB genes were analyzed by multiplex PCR. The results indicated the presence of those genes in the tested isolates with heterogeneity in the gene subtypes present: eae gamma-tir alpha-espA alpha-espB alpha (65%), eae beta-tir beta-espA beta-espB beta (29%), eae alpha-tir alpha-espA alpha-espB alpha (6%). Moreover, the espD gene was also present in dog and cat EPEC. The DEPEC and CEPEC form a heterogeneous group and five of them are closely related to human EPEC.
Collapse
Affiliation(s)
- F Goffaux
- Laboratory of Bacteriology, Faculty of Veterinary Medicine, University of Liège, Belgium.
| | | | | | | |
Collapse
|
17
|
Hartland EL, Huter V, Higgins LM, Goncalves NS, Dougan G, Phillips AD, MacDonald TT, Frankel G. Expression of intimin gamma from enterohemorrhagic Escherichia coli in Citrobacter rodentium. Infect Immun 2000; 68:4637-46. [PMID: 10899867 PMCID: PMC98397 DOI: 10.1128/iai.68.8.4637-4646.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxy-terminal 280 amino acids (Int280) of the bacterial adhesion molecule intimin include the receptor-binding domain. At least five different types of Int280, designated alpha, beta, gamma, delta, and epsilon, have been described based on sequence variation in this region. Importantly, the intimin types are associated with different evolutionary branches and contribute to distinct tissue tropism of intimin-positive bacterial pathogens. In this study we engineered a strain of Citrobacter rodentium, which normally displays intimin beta, to express intimin gamma from enterohemorrhagic Escherichia coli. We show that intimin gamma binds to the translocated intimin receptor (Tir) from C. rodentium and has the ability to produce attaching and effacing lesions on HEp-2 cells. However, C. rodentium expressing intimin gamma could not colonize orally infected mice or induce mouse colonic hyperplasia. These results suggest that intimin may contribute to host specificity, possibly through its interaction with a receptor on the host cell surface.
Collapse
Affiliation(s)
- E L Hartland
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
An H, Fairbrother JM, Désautels C, Mabrouk T, Dugourd D, Dezfulian H, Harel J. Presence of the LEE (locus of enterocyte effacement) in pig attaching and effacing Escherichia coli and characterization of eae, espA, espB and espD genes of PEPEC (pig EPEC) strain 1390. Microb Pathog 2000; 28:291-300. [PMID: 10799279 DOI: 10.1006/mpat.1999.0346] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present study, attaching and effacing Escherichia coli (AEEC) O45 isolates from post-weaning pigs with diarrhoea were examined for the presence of the LEE (locus of enterocyte effacement) using various DNA probes derived from the LEE of human enteropathogenic E. coli (EPEC) strain E2348/69. The LEE fragment was conserved among the eae -positive pig isolates. The attaching and effacing activity of PEPEC (pig EPEC) O45 isolates is highly correlated with the presence of the LEE. Nevertheless, for some PEPEC isolates, the insertion site of the LEE is different or has diverged during evolution. The presence of the LEE fragment in PEPEC isolates provides further evidence that the LEE region is conserved among AEEC of different animal origins. In addition, the nucleotide sequence of the region containing the eae gene and esp genes of a pig AEEC isolate, strain 1390, was determined. Among examined Eae proteins, Eae of strain 1390 showed the highest similarity with Eae belonging to the beta intimin group such as the Eae of rabbit AEEC. Moreover, all pig strains that produced attaching and effacing lesions in piglets and pig ileal explants belonged to the beta intimin group. The deduced amino acid sequences of the EspA, EspB and EspD proteins of strain 1390 showed particularly strong homology to those of AEEC strains presenting a beta intimin allele. Thus, pig AEEC possess the LEE sequences, and for the strain 1390, sequences of the eae and esp regions are related to those of other AEEC, in particular, strains presenting a beta intimin allele, such as the rabbit AEEC.
Collapse
Affiliation(s)
- H An
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec, J2S 7C6, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Goffaux F, China B, Janssen L, Pirson V, Mainil J. The locus for enterocyte effacement (LEE) of enteropathogenic Escherichia coli (EPEC) from dogs and cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 473:129-36. [PMID: 10659350 DOI: 10.1007/978-1-4615-4143-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) produce attaching and effacing lesions. The genes responsible for this lesion are clustered on the chromosome forming a 35.5 kilobase pathogenesis island called LEE. The LEE was identified, characterized and completely sequenced from the human EPEC strain E2348/69. The LEE carries genes coding for: a type III secretion system (genes esc and sep), the translocated intimin receptor (gene tir), the outer membrane protein intimin (gene eae) and the E. coli secreted proteins EspA, EspB, and EspD (genes esp). In addition to man and farm animals, EPEC are also isolated from dogs and cats. We studied structurally and functionally the LEE of dog and cat EPEC. First, we used four probes scattered along the LEE to identify the presence of a LEE in canine and feline EPEC isolates. Second, by PCR, we checked the presence of genes homologous to eae, sep, esp, and tir genes in these strains. Third, since the four types of eae and tir genes were described, we developed a multiplex PCR in order to determine the type of eae and tir genes present in each strain. Fourth, we determined by PCR the site of the LEE insertion on the chromosome. Fifth, we tested several of the canine EPEC in their capacity to induce attaching and effacing lesions in the rabbit intestinal loop assay. We can conclude from this study: first, that the a LEE-like structure is present in all tested strains and that it contains genes homologous to esp, sep, tir, and eae genes; second, that there is some preferential associations between the type of eae gene and the type of tir gene present in a strain; third, that the majority of the tested strains contained a LEE located elsewhere on the chromosome in comparison to the human EPEC strain E2348/69; and fourth that dog EPEC were able to induce attaching and effacing lesions in rabbit ileal loop assay.
Collapse
Affiliation(s)
- F Goffaux
- Laboratory of Bacteriology, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
20
|
Marchès O, Nougayrède JP, Boullier S, Mainil J, Charlier G, Raymond I, Pohl P, Boury M, De Rycke J, Milon A, Oswald E. Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect Immun 2000; 68:2171-82. [PMID: 10722617 PMCID: PMC97401 DOI: 10.1128/iai.68.4.2171-2182.2000] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity.
Collapse
Affiliation(s)
- O Marchès
- Unité Mixte de Microbiologie Moléculaire, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, 31076 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oswald E, Schmidt H, Morabito S, Karch H, Marchès O, Caprioli A. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 2000; 68:64-71. [PMID: 10603369 PMCID: PMC97102 DOI: 10.1128/iai.68.1.64-71.2000] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) produce the characteristic "attaching and effacing" (A/E) lesion of the brush border. Intimin, an outer membrane protein encoded by eae, is responsible for the tight association of both pathogens with the host cell. Several eae have been cloned from different EPEC and EHEC strains isolated from humans and animals. These sequences are conserved in the N-terminal region but highly variable in the last C-terminal 280 amino acids (aa), where the cell binding activity is localized. Based on these considerations, we developed a panel of specific primers to investigate the eae heterogeneity of the variable 3' region by using PCR amplification. We then investigated the distribution of the known intimin types in a large collection of EPEC and EHEC strains isolated from humans and different animal species. The existence of a yet-unknown family of intimin was suspected because several EHEC strains, isolated from human and cattle, did not react with any of the specific primer pairs, although these strains were eae positive when primers amplifying the conserved 5' end were used. We then cloned and sequenced the eae present in one of these strains (EHEC of serotype O103:H2) and subsequently designed a PCR primer that recognizes in a specific manner the variable 3' region of this new intimin type. This intimin, referred to as "epsilon," was present in human and bovine EHEC strains of serogroups O8, O11, O45, O103, O121, and O165. Intimin epsilon is the largest intimin cloned to date (948 aa) and shares the greatest overall sequence identity with intimin beta, although analysis of the last C-terminal 280 aa suggests a greater similarity with intimins alpha and gamma.
Collapse
Affiliation(s)
- E Oswald
- Unité INRA-ENVT de Microbiologie Moléculaire, Ecole Vétérinaire de Toulouse, 31076 Toulouse Cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Abe A, de Grado M, Pfuetzner RA, Sánchez-Sanmartín C, Devinney R, Puente JL, Strynadka NC, Finlay BB. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol Microbiol 1999; 33:1162-75. [PMID: 10510231 DOI: 10.1046/j.1365-2958.1999.01558.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) secretes several Esps (E. coli-secreted proteins) that are required for full virulence. Insertion of the bacterial protein Tir into the host epithelial cell membrane is facilitated by a type III secretion apparatus, and at least EspA and EspB are required for Tir translocation. An EPEC outer membrane protein, intimin, interacts with Tir on the host membrane to establish intimate attachment and formation of a pedestal-like structure. In this study, we identified a Tir chaperone, CesT, whose gene is located between tir and eae (which encodes intimin). A mutation in cesT abolished Tir secretion into culture supernatants and significantly decreased the amount of Tir in the bacterial cytoplasm. In contrast, this mutation did not affect the secretion of the Esp proteins. The level of tir mRNA was not affected by the cesT mutation, indicating that CesT acts at the post-transcriptional level. The cesT mutant could not induce host cytoskeletal rearrangements, and displayed the same phenotype as the tir mutant. Gel overlay and GST pulldown assays demonstrated that CesT specifically interacts with Tir, but not with other Esp proteins. Furthermore, by using a series of Tir deletion derivatives, we determined that the CesT binding domain is located within the first 100 amino-terminal residues of Tir, and that the pool of Tir in the bacterial cytoplasm was greatly reduced when this domain was disrupted. Interestingly, this domain was not sufficient for Tir secretion, and at least the first 200 residues of Tir were required for efficient secretion. Gel filtration studies showed that Tir-CesT forms a large multimeric complex. Collectively, these results indicate that CesT is a Tir chaperone that may act as an anti-degradation factor by specifically binding to its amino-terminus, forming a multimeric stabilized complex.
Collapse
Affiliation(s)
- A Abe
- Biotechnology Laboratory, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
23
|
China B, Goffaux F, Pirson V, Mainil J. Comparison of eae, tir, espA and espB genes of bovine and human attaching and effacing Escherichia coli by multiplex polymerase chain reaction. FEMS Microbiol Lett 1999; 178:177-82. [PMID: 10483737 DOI: 10.1111/j.1574-6968.1999.tb13775.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Attaching and effacing Escherichia coli (AEEC) virulence genes include the eae, the tir, the espA and the espB genes. These genes have been sequenced from several AEEC strains. The sequences alignments revealed the presence of constant and variable regions. Multiplex polymerase chain reactions were developed, in order to determine the subtype of each gene present in a particular isolate. AEEC strains isolated from calves dead of diarrhea, from healthy calves and from infected humans were compared. The same pathotypes were found in sick and healthy calves but in inverted proportion. These pathotypes were also found in human AEEC. Although, the human EHEC strains from serotype O157 possessed their own pathotype.
Collapse
Affiliation(s)
- B China
- Laboratory of Bacteriology, Faculty of Veterinary Medicine, University of Liège, Belgium.
| | | | | | | |
Collapse
|
24
|
China B, Jacquemin E, Devrin AC, Pirson V, Mainil J. Heterogeneity of the eae genes in attaching/effacing Escherichia coli from cattle: comparison with human strains. Res Microbiol 1999; 150:323-32. [PMID: 10422693 DOI: 10.1016/s0923-2508(99)80058-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherichia coli isolated from cattle were studied by DNA colony hybridization to subtype their intimin-encoding (eae) gene with probes derived from the variable parts of the eae alpha gene of the human EPEC strain E2348/69, the eae gamma gene of the human O157:H7 EHEC strain ATCC43888, and the eae beta gene of the bovine O26:H- EHEC strain 193, whose eae gene was first cloned and sequenced during this work. The EPEC and EHEC had been isolated from diarrhoeic calves (143 EPEC and 48 EHEC) and from healthy animals at the slaughterhouse (10 EPEC and 34 EHEC). The 191 bovine EPEC and EHEC isolated from diseased calves were positive with the Eae beta probe (55 and 27% respectively) and with the Eae gamma probe (9 and 73% respectively), whereas 52 EPEC (36%) were negative with the Eae alpha, Eae beta, and Eae gamma probes. The results were different for the 44 bovine EPEC and EHEC isolated from healthy cattle at slaughterhouses: most tested positive with the Eae gamma probe (80 and 82% respectively) and the remaining (20 and 18% respectively) with the Eae beta probe. Nine O26 human EHEC tested positive with the Eae beta probe and seven O111 with the Eae gamma probe. The bovine and human EPEC and EHEC belonging to these two serogroups gave identical results: the 18 bovine and human O26 isolates tested positive with the Eae beta probe, whereas the 13 O111 isolates were positive with the Eae gamma probe. In contrast, the isolates belonging to other serogroups (O5, O15, O18, O20, and O118) gave more variable results. The eae beta and eae gamma, but not the eae alpha, variants were thus distributed amongst bovine EPEC and EHEC. The eae beta variant seemed to be more frequently associated with the presence of clinical signs in calves, but one third of EPEC from diarrhoeic calves carried an eae gene variant other than the alpha, beta, or gamma variants. In addition, the use of these gene probes did not enable differentiation between bovine and human EHEC belonging to the same O serogroup.
Collapse
Affiliation(s)
- B China
- Chaire de bactériologie et de pathologie bactérienne, Faculté de médecine vétérinaire, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
25
|
An H, Fairbrother JM, Dubreuil JD, Harel J. Cloning and characterization of the esp region from a dog attaching and effacing Escherichia coli strain 4221 and detection of EspB protein-binding to HEp-2 cells. FEMS Microbiol Lett 1999; 174:215-23. [PMID: 10339811 DOI: 10.1111/j.1574-6968.1999.tb13571.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The espA, espB and espD genes from enteropathogenic Escherichia coli were previously shown to be essential for triggering the signal transduction in infected host cells. We have cloned and determined the nucleotide sequences of the espA, espB and espD homologues from an E. coli strain (4221) isolated from a dog which manifested the attaching and effacing lesions in the small intestine. This strain is designated as a dog enteropathogenic E. coli. When comparing predicted amino acid sequences to those of the corresponding proteins from enteropathogenic E. coli O127, enterohemorrhagic E. coli serotype O26, enterohemorrhagic E. coli O157 and rabbit enteropathogenic E. coli, the EspADEPEC protein showed the same level of similarity (75% identity) with EspA of enteropathogenic E. coli O127 and rabbit enteropathogenic E. coli. The EspBDEPEC protein showed the highest similarity with the EspB of enteropathogenic E. coli O127 (99% identity). The EspDDEPEC protein showed 88% identity with the EspDEPEC. We constructed and purified a maltose-binding fusion protein containing the product of the entire espBDEPEC gene of the dog enteropathogenic E. coli strain 4221. Purified maltose-binding protein-EspBDEPEC fusion protein was shown to bind efficiently to HEp-2 cells in a localized fashion as shown by immunofluorescence microscopy. In addition, when the dog enteropathogenic E. coli strain 4221 was grown in tissue culture medium (DMEM) supplemented with serum, a secreted 36-kDa protein was identified by immunoblot analysis using a polyclonal antiserum against the maltose-binding protein-EspBDEPEC fusion protein.
Collapse
Affiliation(s)
- H An
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Que., Canada
| | | | | | | |
Collapse
|
26
|
Liu H, Magoun L, Leong JM. beta1-chain integrins are not essential for intimin-mediated host cell attachment and enteropathogenic Escherichia coli-induced actin condensation. Infect Immun 1999; 67:2045-9. [PMID: 10085058 PMCID: PMC96568 DOI: 10.1128/iai.67.4.2045-2049.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intimin is a bacterial outer membrane protein required for intimate attachment of enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) to mammalian cells. beta1-chain integrins have been proposed as candidate receptors for intimin. We found that binding of mammalian cells to immobilized intimin was not detectable unless mammalian cells were preinfected with EPEC or EHEC. beta1-chain integrin antagonists or inactivation of the gene encoding the beta1-chain did not affect binding of preinfected mammalian cells to intimin or the actin condensation associated with the attachment of EPEC. The results indicate that beta1-chain integrins are not essential for intimin-mediated cell attachment or EPEC-mediated actin polymerization.
Collapse
Affiliation(s)
- H Liu
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|