1
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
2
|
Garajová M, Mrva M, Vaškovicová N, Martinka M, Melicherová J, Valigurová A. Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Sci Rep 2019; 9:4466. [PMID: 30872791 PMCID: PMC6418277 DOI: 10.1038/s41598-019-41084-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/01/2019] [Indexed: 01/26/2023] Open
Abstract
Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements - microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils - the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- Mária Garajová
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovak Republic.
| | - Martin Mrva
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovak Republic
| | - Naděžda Vaškovicová
- Institute of Scientific Instruments, Czech Academy of Sciences, 612 64, Brno, Czech Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovak Republic
| | - Janka Melicherová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| |
Collapse
|
3
|
Fenchel T. Anaerobic Eukaryotes. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
|
5
|
Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ. Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol 2005; 3:251-61. [PMID: 15738951 DOI: 10.1038/nrmicro1097] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent work has shown that acidocalcisomes, which are electron-dense acidic organelles rich in calcium and polyphosphate, are the only organelles that have been conserved during evolution from prokaryotes to eukaryotes. Acidocalcisomes were first described in trypanosomatids and have been characterized in most detail in these species. Acidocalcisomes have been linked with several functions, including storage of cations and phosphorus, polyphosphate metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis and osmoregulation. Here, we review acidocalcisome ultrastructure, composition and function in different trypanosomatids and other organisms.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | |
Collapse
|
6
|
van der Giezen M, Tovar J, Clark CG. Mitochondrion‐Derived Organelles in Protists and Fungi. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:175-225. [PMID: 16157181 DOI: 10.1016/s0074-7696(05)44005-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The mitochondrion is generally considered to be a defining feature of eukaryotic cells, yet most anaerobic eukaryotes lack this organelle. Many of these were previously thought to derive from eukaryotes that diverged prior to acquisition of the organelle through endosymbiosis. It is now known that all extant eukaryotes are descended from an ancestor that had a mitochondrion and that in anaerobic eukaryotes the organelle has been modified into either hydrogenosomes, which continue to generate energy for the host cell, or mitosomes, which do not. These organelles have each arisen independently several times. Recent evidence suggests a shared derived characteristic that may be responsible for the retention of the organelles in the absence of the better-known mitochondrial functions--iron-sulfur cluster assembly. This review explores the events leading to this new understanding of mitochondrion-derived organelles in amitochondriate eukaryotes, the current state of our knowledge, and future areas for investigation.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | |
Collapse
|
7
|
Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ. An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 2002; 296:45-52. [PMID: 12383502 DOI: 10.1016/s0378-1119(02)00873-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogenases, oxygen-sensitive enzymes that can make hydrogen gas, are key to the function of hydrogen-producing organelles (hydrogenosomes), which occur in anaerobic eukaryotes scattered throughout the eukaryotic tree. All of the eukaryotic enzymes characterized so far are iron-only [Fe] hydrogenases. In contrast, it has previously been suggested that hydrogenosomes of the best-studied anaerobic fungus Neocallimastix frontalis L2 contain an unrelated iron-nickel-selenium [NiFeSe] hydrogenase. We have isolated a gene from strain L2 that encodes a putative protein containing all of the characteristic features of an iron-only [Fe] hydrogenase, including the cysteine residues required for the co-ordination of the unique 'hydrogen cluster'. As is the case for experimentally verified hydrogenosomal matrix enzymes from N. frontalis, the [Fe] hydrogenase encodes a plausible amino terminal extension that resembles mitochondrial targeting signals. Phylogenetic analyses of an expanded [Fe] hydrogenase dataset reveal a complicated picture that is difficult to interpret in the light of current ideas of species relationships. Nevertheless, our analyses cannot reject the hypothesis that the novel [Fe] hydrogenase gene of Neocallimastix is specifically related to other eukaryote [Fe] hydrogenases, and thus ultimately might be traced to the same ancestral source.
Collapse
|
8
|
Haferkamp I, Hackstein JHP, Voncken FGJ, Schmit G, Tjaden J. Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3172-81. [PMID: 12084057 DOI: 10.1046/j.1432-1033.2002.02991.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of mitochondrial and hydrogenosomal ADP/ATP carriers (AACs) from plants, rat and the anaerobic chytridiomycete fungus Neocallimastix spec. L2 in Escherichia coli allows a functional integration of the recombinant proteins into the bacterial cytoplasmic membrane. For AAC1 and AAC2 from rat, apparent Km values of about 40 microm for ADP, and 105 microm or 140 microm, respectively, for ATP have been determined, similar to the data reported for isolated rat mitochondria. The apparent Km for ATP decreased up to 10-fold in the presence of the protonophore m-chlorocarbonylcyanide phenylhydrazone (CCCP). The hydrogenosomal AAC isolated from the chytrid fungus Neocallimastix spec. L2 exhibited the same characteristics, but the affinities for ADP (165 microm) and ATP (2.33 mm) were significantly lower. Notably, AAC1-3 from Arabidopsis thaliana and AAC1 from Solanum tuberosum (potato) showed significantly higher external affinities for both nucleotides (10-22 microm); they were only slightly influenced by CCCP. Studies on intact plant mitochondria confirmed these observations. Back exchange experiments with preloaded E. coli cells expressing AACs indicate a preferential export of ATP for all AACs tested. This is the first report of a functional integration of proteins belonging to the mitochondrial carrier family (MCF) into a bacterial cytoplasmic membrane. The technique described here provides a relatively simple and highly reproducible method for functional studies of individual mitochondrial-type carrier proteins from organisms that do not allow the application of sophisticated genetic techniques.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Pflanzenphysiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
9
|
Lloyd D, Harris JC, Maroulis S, Wadley R, Ralphs JR, Hann AC, Turner MP, Edwards MR. The "primitive" microaerophile Giardia intestinalis (syn. lamblia, duodenalis) has specialized membranes with electron transport and membrane-potential-generating functions. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1349-1354. [PMID: 11988508 DOI: 10.1099/00221287-148-5-1349] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here it is shown that the flagellated protozoon Giardia intestinalis, commonly regarded as an early branching eukaryote because of its lack of mitochondria, has membraneous structures that partition the cationic, membrane-potential-sensitive fluorophore rhodamine 123. This organism also reduces a tetrazolium fluorogen at discrete plasma-membrane-associated sites. That these functions occur in distinctive specialized membrane systems supports the growing evidence that G. intestinalis may not be primitive, but is derived from an aerobic, mitochondria-containing flagellate.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences (Microbiology), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Janine C Harris
- School of Biosciences (Microbiology), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Sarah Maroulis
- Department of Biochemistry and Molecular Genetics2 and Cellular Analysis Facility, Department of Microbiology and Immunology3, University of New South Wales, Sydney 2052, Australia
| | - Ron Wadley
- Department of Biochemistry and Molecular Genetics2 and Cellular Analysis Facility, Department of Microbiology and Immunology3, University of New South Wales, Sydney 2052, Australia
| | - James R Ralphs
- School of Biosciences (Microbiology), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Ao C Hann
- School of Biosciences (Microbiology), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Michael P Turner
- School of Biosciences (Microbiology), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Michael R Edwards
- Department of Biochemistry and Molecular Genetics2 and Cellular Analysis Facility, Department of Microbiology and Immunology3, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
10
|
Lloyd D, Ralphs JR, Harris JC. Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. MICROBIOLOGY (READING, ENGLAND) 2002; 148:727-733. [PMID: 11882707 DOI: 10.1099/00221287-148-3-727] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The microaerophilic flagellated protist Giardia intestinalis, the commonest protozoal agent of intestinal infections worldwide, is of uncertain phylogeny, but is usually regarded as the earliest branching of the eukaryotic clades. Under strictly anaerobic conditions, a mass spectrometric investigation of gas production indicated a low level of generation of dihydrogen (2 nmol x min(-1) per 10(7) organisms), about 10-fold lower than that in Trichomonas vaginalis under similar conditions. Hydrogen evolution was O2 sensitive, and inhibited by 100 microM metronidazole. Fluorescent labelling of G. intestinalis cells using monoclonal antibodies to typical hydrogenosomal enzymes from T. vaginalis (malate enzyme, and succinyl-CoA synthetase alpha and beta subunits), and to the large-granule fraction (hydrogenosome-enriched, also from T. vaginalis) gave no discrete localization of epitopes. Cell-free extracts prepared under anaerobic conditions showed the presence of a CO-sensitive hydrogenase activity. This first report of hydrogen production in a eukaryote with no recognizable hydrogenosomes raises further questions about the early branching status of G. intestinalis; the physiological characterization of its hydrogenase, and its recently elucidated gene sequence, will aid further phylogenetic investigations.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology (BIOSI 1, Main Building), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - James R Ralphs
- Microbiology (BIOSI 1, Main Building), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Janine C Harris
- Microbiology (BIOSI 1, Main Building), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| |
Collapse
|
11
|
Abstract
Complete genome sequences for many oxygen-respiring mitochondria, as well as for some bacteria, leave no doubt that mitochondria are descendants of alpha-proteobacteria, a finding for which the endosymbiont hypothesis can easily account. Yet a wealth of data indicate that mitochondria and hydrogenosomes - the ATP-producing organelles of many anaerobic protists - share a common ancestry, a finding that traditional formulations of the endosymbiont hypothesis less readily accommodates. Available evidence suggests that a more in-depth understanding of the origins of eukaryotes and their organelles will hinge upon data from the genomes of protists that synthesize ATP without the need for oxygen.
Collapse
Affiliation(s)
- C Rotte
- Institute of Botany, University of Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
12
|
Hackstein JH, Akhmanova A, Boxma B, Harhangi HR, Voncken FG. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 1999; 7:441-7. [PMID: 10542423 DOI: 10.1016/s0966-842x(99)01613-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Like mitochondria, hydrogenosomes compartmentalize crucial steps of eukaryotic energy metabolism; however, this compartmentalization differs substantially between mitochondriate aerobes and hydrogenosome-containing anaerobes. Because hydrogenosomes have arisen independently in different lineages of eukaryotic microorganisms, comparative analysis of the various types of hydrogenosomes can provide insights into the functional and evolutionary aspects of compartmentalized energy metabolism in unicellular eukaryotes.
Collapse
Affiliation(s)
- J H Hackstein
- Dept. of Microbiology and Evolutionary Biology, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Confocal laser scanning microscopy of trichomonads: Hydrogenosomes store calcium and show a membrane potential. Eur J Protistol 1998. [DOI: 10.1016/s0932-4739(98)80003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Scott DA, Docampo R, Benchimol M. Analysis of the uptake of the fluorescent marker 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) by hydrogenosomes in Trichomonas vaginalis. Eur J Cell Biol 1998; 76:139-45. [PMID: 9696354 DOI: 10.1016/s0171-9335(98)80027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fluorescent dye 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) has been widely used as an indicator of cytosolic pH. Here we report that BCECF localizes to hydrogenosomes (hydrogen-generating organelles found in several phylogenetically separate groups of anaerobic protists) in Trichomonas vaginalis, where it was observable by fluorescence microscopy. Its cellular location was confirmed by treatment of BCECF-loaded cells with diaminobenzidine and hydrogen peroxide together with UV illumination. This produced an osmiophilic precipitate in the matrix of hydrogenosomes, observable by electron microscopy. Use of a short (7.5 min) loading period, loading on ice, use of concentrations of BCECF (acetoxymethyl ester) down to 10 nM, and inclusion of the anion channel blockers probenicid or sulfinpyrazone, or the K+/H+ ionophore nigericin in the loading buffer all failed to prevent hydrogenosomal accumulation of BCECF. This uptake was best observed when intact cells were loaded with the ester form of BCECF, but could also be seen using free BCECF following either incubation with ruptured cells or electroporation of intact cells. Hydrogenosomal BCECF loading was also obtained with washed cell lysates, without cytoplasm or metabolic substrates. We tested a range of other fluorogenic dyes designed for cytosolic labeling, and found that the calcium indicator fura-2 (acetoxymethyl ester) and the cell viability marker fluorescein diacetate also labeled hydrogenosomes. The results illustrate a novel use for BCECF as a fluorescent marker for hydrogenosomes (the first such marker), but present a warning against the indiscriminate use of fluorogenic ester dyes to measure properties of the cytosol in hydrogenosome-containing organisms - the dyes may also be indicating the properties of the hydrogenosome.
Collapse
Affiliation(s)
- D A Scott
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana 61802, USA
| | | | | |
Collapse
|
15
|
Embley T, Horner D, Hirt R. Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 1997; 12:437-41. [DOI: 10.1016/s0169-5347(97)01208-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|