1
|
Cancer associated mutations in Sec61γ alter the permeability of the ER translocase. PLoS Genet 2021; 17:e1009780. [PMID: 34460824 PMCID: PMC8439465 DOI: 10.1371/journal.pgen.1009780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/14/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the Sec61 complex, a heterotrimeric protein complex possessing two essential sub-units, Sec61p/Sec61α and Sss1p/Sec61γ and the non-essential Sbh1p/Sec61β subunit. In addition to forming a protein conducting channel, the Sec61 complex maintains the ER permeability barrier, preventing flow of molecules and ions. Loss of Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C-terminus is juxtaposed to the key gating module of Sec61p/Sec61α and is important for gating the translocon. Inspection of the cancer genome database identifies six mutations in highly conserved amino acids of Sec61γ/Sss1p. We identify that five out of the six mutations identified affect gating of the ER translocon, albeit with varying strength. Together, we find that mutations in Sec61γ that arise in malignant cells result in altered translocon gating dynamics, this offers the potential for the translocon to represent a target in co-therapy for cancer treatment.
Collapse
|
2
|
Dias T, Pimentel V, Cogo AJD, Costa R, Bertolazi AA, Miranda C, de Souza SB, Melo J, Carolino M, Varma A, Eutrópio F, Olivares FL, Ramos AC, Cruz C. The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe. Front Microbiol 2020; 11:562238. [PMID: 33072023 PMCID: PMC7536269 DOI: 10.3389/fmicb.2020.562238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
Serendipita indica (former Piriformospora indica) is a non-obligate endophytic fungus and generally a plant growth and defence promoter with high potential to be used in agriculture. However, S. indica may switch from biotrophy to saprotrophy losing its plant growth promoting traits. Our aim was to understand if the free-living stage growth conditions (namely C availability) regulate S. indica’s phenotype, and its potential as plant-growth-promoting-microbe (PGPM). We grew S. indica in its free-living stage under increasing C availabilities (2–20 g L–1 of glucose or sucrose). We first characterised the effect of C availability during free-living stage growth on fungal phenotype: colonies growth and physiology (plasma membrane proton pumps, stable isotopic signatures, and potential extracellular decomposing enzymes). The effect of the C availability during the free-living stage of the PGPM was evaluated on wheat. We observed that C availability during the free-living stage regulated S. indica’s growth, ultrastructure and physiology, resulting in two distinct colony phenotypes: compact and explorer. The compact phenotype developed at low C, used peptone as the major C and N source, and displayed higher decomposing potential for C providing substrates; while the explorer phenotype developed at high C, used glucose and sucrose as major C sources and casein and yeast extract as major N sources, and displayed higher decomposing potential for N and P providing substrates. The C availability, or the C/N ratio, during the free-living stage left a legacy to the symbiosis stage, regulating S. indica’s potential to promote plant growth: wheat growth promotion by the explorer phenotype was ± 40% higher than that by the compact phenotype. Our study highlights the importance of considering microbial ecology in designing PGPM/biofertilizers. Further studies are needed to test the phenotypes under more extreme conditions, and to understand if the in vitro acquired characteristics persist under field conditions.
Collapse
Affiliation(s)
- Teresa Dias
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Vívian Pimentel
- Laboratory of Physiology and Biochemistry of Microorganisms, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | | | - Raquel Costa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Amanda Azevedo Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Camila Miranda
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Sávio Bastos de Souza
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Carolino
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| | | | - Fábio Lopes Olivares
- Cell Tissue and Biology Lab, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of caspases and extracellular H + flux. Biosci Rep 2018; 38:BSR20180119. [PMID: 29599127 PMCID: PMC5920138 DOI: 10.1042/bsr20180119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
CaThi is a thionin-like peptide isolated from fruits of Capsicum annuum, which has strong antimicrobial activity against bacteria, yeasts and filamentous fungi, and induced reactive oxygen species (ROS) in fungi. ROS are molecules that appear in the early stages of programmed cell death or apoptosis in fungi. Due to this fact, in this work we analyzed some events that may be related to process of apoptosis on yeast induced by CaThi. To investigate this possibility, we evaluated phosphatidylserine (PS) externalization, presence of active caspases and the ability of CaThi to bind to DNA in Candida tropicalis cells. Additionally, we investigated mitochondrial membrane potential, cell surface pH, and extracellular H+ fluxes in C. tropicalis cells after treatment with CaThi. Our results showed that CaThi induced PS externalization in the outer leaflet of the cell membrane, activation of caspases, and it had the ability for DNA binding and to dissipate mitochondrial membrane potential. In addition, the cell surface pH increased significantly when the C. tropicalis cells were exposed to CaThi which corroborates with ~96% inhibition on extracellular H+ efflux. Taking together, these data suggest that this peptide is capable of promoting an imbalance in pH homeostasis during yeast cell death playing a modulatory role in the H+ transport systems. In conclusion, our results strongly indicated that CaThi triggers apoptosis in C. tropicalis cells, involving a pH signaling mechanism.
Collapse
|
4
|
Dorighetto Cogo AJ, Dutra Ferreira KDR, Okorokov LA, Ramos AC, Façanha AR, Okorokova-Façanha AL. Spermine modulates fungal morphogenesis and activates plasma membrane H +-ATPase during yeast to hyphae transition. Biol Open 2018; 7:bio.029660. [PMID: 29361612 PMCID: PMC5861359 DOI: 10.1242/bio.029660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyamines play a regulatory role in eukaryotic cell growth and morphogenesis. Despite many molecular advances, the underlying mechanism of action remains unclear. Here, we investigate a mechanism by which spermine affects the morphogenesis of a dimorphic fungal model of emerging relevance in plant interactions, Yarrowia lipolytica, through the recruitment of a phytohormone-like pathway involving activation of the plasma membrane P-type H+-ATPase. Morphological transition was followed microscopically, and the H+-ATPase activity was analyzed in isolated membrane vesicles. Proton flux and acidification were directly probed at living cell surfaces by a non-invasive selective ion electrode technique. Spermine and indol-3-acetic acid (IAA) induced the yeast-hypha transition, influencing the colony architecture. Spermine induced H+-ATPase activity and H+ efflux in living cells correlating with yeast-hypha dynamics. Pharmacological inhibition of spermine and IAA pathways prevented the physio-morphological responses, and indicated that spermine could act upstream of the IAA pathway. This study provides the first compelling evidence on the fungal morphogenesis and colony development as modulated by a spermine-induced acid growth mechanism analogous to that previously postulated for the multicellular growth regulation of plants. Summary: This study presents a new mechanistic model for the integrative role of the polyamine spermine and hormone auxin in the signaling of yeast-to-hypha transition, filling an important gap in fungal morphogenesis.
Collapse
Affiliation(s)
- Antônio Jesus Dorighetto Cogo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil.,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Keilla Dos Reis Dutra Ferreira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Lev A Okorokov
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Alessandro C Ramos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Arnoldo R Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Anna L Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| |
Collapse
|
5
|
Montes GC, Hammes N, da Rocha MD, Montagnoli TL, Fraga CAM, Barreiro EJ, Sudo RT, Zapata-Sudo G. Treatment with Adenosine Receptor Agonist Ameliorates Pain Induced by Acute and Chronic Inflammation. ACTA ACUST UNITED AC 2016; 358:315-23. [DOI: 10.1124/jpet.115.231241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/17/2016] [Indexed: 12/28/2022]
|
6
|
Martín JF. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb Cell Fact 2014; 13:117. [PMID: 25205075 PMCID: PMC4180148 DOI: 10.1186/s12934-014-0117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of some homologous proteins.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
7
|
Alencar AKN, Pereira SL, da Silva FE, Mendes LVP, Cunha VDMN, Lima LM, Montagnoli TL, Caruso-Neves C, Ferraz EB, Tesch R, Nascimento JHM, Sant'anna CMR, Fraga CAM, Barreiro EJ, Sudo RT, Zapata-Sudo G. N-acylhydrazone derivative ameliorates monocrotaline-induced pulmonary hypertension through the modulation of adenosine AA2R activity. Int J Cardiol 2014; 173:154-62. [PMID: 24630383 DOI: 10.1016/j.ijcard.2014.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a disease that results in right ventricular (RV) dysfunction. While pulmonary vascular disease is the primary pathological focus, RV hypertrophy and RV dysfunction are the major determinants of prognosis in PAH. The aim of this study was to investigate the effects of (E)-N'-(3,4-dimethoxybenzylidene)-4-methoxybenzohydrazide (LASSBio-1386), an N-acylhydrazone derivative, on the lung vasculature and RV dysfunction induced by experimental PAH. METHODS Male Wistar rats were injected with a single dose (60mg/kg, i.p.) of monocrotaline (MCT) and given LASSBio-1386 (50mg/kg, p.o.) or vehicle for 14 days. The hemodynamic, exercise capacity (EC), endothelial nitric oxide synthase (eNOS), adenosine A2A receptor (A2AR), sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a), phospholamban (PLB) expression, Ca(2+)-ATPase activity and vascular activity of LASSBio-1386 were evaluated. RESULTS AND CONCLUSIONS The RV systolic pressure was elevated in the PAH model and reduced from 49.6 ± 5.0 mm Hg (MCT group) to 27.2 ± 2.1 mm Hg (MCT+LASSBio-1386 group; P<0.05). MCT administration also impaired the EC, increased the RV and pulmonary arteriole size, and promoted endothelial dysfunction of the pulmonary artery rings. In the PAH group, the eNOS, A2AR, SERCA2a, and PLB levels were changed compared with the control; in addition, the Ca(2+)-ATPase activity was reduced. These alterations were related with MCT-injected rats, and LASSBio-1386 had favorable effects that prevented the development of PAH. LASSBio-1386 is effective at preventing endothelial and RV dysfunction in PAH, a finding that may have important implications for ongoing clinical evaluation of A2AR agonists for the treatment of PAH.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sharlene L Pereira
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia E da Silva
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiza V P Mendes
- Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Valéria do M N Cunha
- Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lidia M Lima
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu L Montagnoli
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle B Ferraz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roberta Tesch
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos M R Sant'anna
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Carlos A M Fraga
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eliezer J Barreiro
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roberto T Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gisele Zapata-Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Ribeiro CC, Monteiro RM, Freitas FP, Retamal C, Teixeira LRS, Palma LM, Silva FE, Façanha AR, Okorokova-Façanha AL, Okorokov LA. Extracellular glucose increases the coupling capacity of the yeast V H+-ATPase and the resistance of its H+ transport activity to nitrate inhibition. PLoS One 2012; 7:e49580. [PMID: 23189149 PMCID: PMC3506656 DOI: 10.1371/journal.pone.0049580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
V H(+)-ATPase has an important role in a variety of key physiological processes. This enzyme is reversibly activated/partly inactivated by the addition/exhaustion of extracellular glucose. The current model of its regulation assumes the reversible disassembly/reassembly of ∼60-70% of the V1 and V0 membrane complexes, which are responsible for ATP hydrolysis and H(+) conductance, respectively. The number of assembled complexes determines the pump activity because disassembled complexes are inactive. The model predicts the identical catalytic properties for the activated and semi-active enzymes molecules. To verify the model predictions we have isolated total membranes from yeast spheroplasts that were pre-incubated either with or without glucose. Nitrate treatment of membranes revealed the similar ATPase inhibition for two enzyme states, suggesting that they have identical structures that are essential for ATP hydrolysis. However, H(+) transport was inhibited more than the ATPase activities, indicating a nitrate uncoupling action, which was significantly higher for the nonactivated enzyme. This finding suggests that the structure of the non-activated enzyme, which is essential for H(+) transport, is less stable than that of the activated enzyme. Moreover, the glucose activation of the pump increases i) its coupling capacity; ii) its K(M) for ATP hydrolysis and ATP affinity for H(+) transport; iii) the Vmax for H(+) transport in comparison with the Vmax for ATP hydrolysis and iv) the immune reactivity of catalytic subunit A and regulatory subunit B by 9.3 and 2.4 times, respectively. The protein content of subunits A and B was not changed by extracellular glucose. We propose that instead of the dissociation/reassociation of complexes V1 and V0, changes in the extracellular glucose concentration cause reversible and asymmetrical modulations in the immune reactivity of subunits A and B by their putative biochemical modifications. This response asymmetrically modulates H(+)-transport and ATP hydrolysis, exhibiting distinct properties for the activated versus non-activated enzymes.
Collapse
Affiliation(s)
- Camila C. Ribeiro
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Renan M. Monteiro
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Flavia P. Freitas
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Claudio Retamal
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Layz R. S. Teixeira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Livia M. Palma
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Flavia E. Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Arnoldo R. Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Anna L. Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Lev A. Okorokov
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| |
Collapse
|
9
|
P(5A)-type ATPase Cta4p is essential for Ca2+ transport in the endoplasmic reticulum of Schizosaccharomyces pombe. PLoS One 2011; 6:e27843. [PMID: 22132152 PMCID: PMC3221671 DOI: 10.1371/journal.pone.0027843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
This study establishes the role of P5A-type Cta4 ATPase in Ca2+ sequestration in the endoplasmic reticulum by detecting an ATP-dependent, vanadate-sensitive and FCCP insensitive 45Ca2+-transport in fission yeast membranes isolated by cellular fractionation. Specifically, the Ca2+-ATPase transport activity was decreased in ER membranes isolated from cells lacking a cta4+ gene. Furthermore, a disruption of cta4+ resulted in 6-fold increase of intracellular Ca2+ levels, sensitivity towards accumulation of misfolded proteins in ER and ER stress, stimulation of the calcineurin phosphatase activity and vacuolar Ca2+ pumping. These data provide compelling biochemical evidence for a P5A-type Cta4 ATPase as an essential component of Ca2+ transport system and signaling network which regulate, in conjunction with calcineurin, the ER functionality in fission yeast.
Collapse
|
10
|
V H+-ATPase along the yeast secretory pathway: energization of the ER and Golgi membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:303-13. [PMID: 19059377 DOI: 10.1016/j.bbamem.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 02/06/2023]
Abstract
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50=38.4 nM) than Golgi and vacuole pumps (I50=0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.
Collapse
|
11
|
Csutora P, Strassz A, Boldizsár F, Németh P, Sipos K, Aiello DP, Bedwell DM, Miseta A. Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae. Am J Physiol Cell Physiol 2005; 289:C58-67. [PMID: 15703203 DOI: 10.1152/ajpcell.00464.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoglucomutase is a key enzyme of glucose metabolism that interconverts glucose-1-phosphate and glucose-6-phosphate. Loss of the major isoform of phosphoglucomutase in Saccharomyces cerevisiae results in a significant increase in the cellular glucose-1-phosphate-to-glucose-6-phosphate ratio when cells are grown in medium containing galactose as carbon source. This imbalance in glucose metabolites was recently shown to also cause a six- to ninefold increase in cellular Ca2+ accumulation. We found that Li+ inhibition of phosphoglucomutase causes a similar elevation of total cellular Ca2+ and an increase in 45Ca2+ uptake in a wild-type yeast strain grown in medium containing galactose, but not glucose, as sole carbon source. Li+ treatment also reduced the transient elevation of cytosolic Ca2+ response that is triggered by exposure to external CaCl2 or by the addition of galactose to yeast cells starved of a carbon source. Finally, we found that the Ca2+ over-accumulation induced by Li+ exposure was significantly reduced in a strain lacking the vacuolar Ca2+-ATPase Pmc1p. These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p.
Collapse
Affiliation(s)
- Péter Csutora
- Department of Laboratory Medicine, Faculty of Medicine, Pécs University, Ifjúság u. 13, 7624 Pécs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Soriani FM, Martins VP, Magnani T, Tudella VG, Curti C, Uyemura SA. A PMR1-like calcium ATPase ofAspergillus fumigatus: cloning, identification and functional expression inS. cerevisiae. Yeast 2005; 22:813-24. [PMID: 16088881 DOI: 10.1002/yea.1280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The understanding of the controlling factors of calcium homeostasis in Aspergillus fumigatus is very poor, although this ion is involved in several important events of these particular cells. We have cloned, identified and expressed for functional complementation a PMR1-like Ca(2+)-ATPase gene from A. fumigatus. The Afpmr1 gene encodes a protein of 1061 deduced amino acids, containing all the conserved subdomains found in other P-type ATPases: the phosphatase region, phosphorylation site, FITC labelling site, ATP binding domain; E(386), N871, D875 amino acid residues for calcium ion interaction and Q880, a residue that alters ion selectivity in PMR1. The expressed AfPMR1 in S. cerevisiae K616 strain functionally complemented the deficient growth in EGTA (5-20 mM)- and MnCl2 (4 mM)-containing medium. These results demonstrate the first evidence of a Ca(2+)-ATPase in A. fumigatus and strongly suggest a role for this enzyme in calcium and manganese homeostasis.
Collapse
Affiliation(s)
- F M Soriani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, São Paulo 14040-903, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Ramos-Castañeda J, Park YN, Liu M, Hauser K, Rudolph H, Shull GE, Jonkman MF, Mori K, Ikeda S, Ogawa H, Arvan P. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress. J Biol Chem 2004; 280:9467-73. [PMID: 15623514 PMCID: PMC2527542 DOI: 10.1074/jbc.m413243200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relatively few clues have been uncovered to elucidate the cell biological role(s) of mammalian ATP2C1 encoding an inwardly directed secretory pathway Ca2+/Mn2+ pump that is ubiquitously expressed. Deficiency of ATP2C1 results in a human disease (Hailey-Hailey), which primarily affects keratinocytes. ATP2C1-encoded protein is detected in the Golgi complex in a calcium-dependent manner. A small interfering RNA causes knockdown of ATP2C1 expression, resulting in defects in both post-translational processing of wild-type thyroglobulin (a secretory glycoprotein) as well as endoplasmic reticulum-associated protein degradation of mutant thyroglobulin, whereas degradation of a nonglycosylated misfolded secretory protein substrate appears unaffected. Knockdown of ATP2C1 is not associated with elevated steady state levels of ER chaperone proteins, nor does it block cellular activation of either the PERK, ATF6, or Ire1/XBP1 portions of the ER stress response. However, deficiency of ATP2C1 renders cells hypersensitive to ER stress. These data point to the important contributions of the Golgi-localized ATP2C1 protein in homeostatic maintenance throughout the secretory pathway.
Collapse
Affiliation(s)
- Jose Ramos-Castañeda
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor Michigan 48109
- Centro de Investigaciones sobre Enfermedades Infecciosas, Cuernavaca Morelos 62508, Mexico
| | - Young-nam Park
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor Michigan 48109
| | - Ming Liu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor Michigan 48109
| | - Karin Hauser
- Institute of Biochemistry, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Hans Rudolph
- Institute of Biochemistry, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcel F. Jonkman
- Department of Dermatology, Groningen University Hospital, 9700 RB Groningen, The Netherlands
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8304, Japan
| | - Shigaku Ikeda
- Department of Dermatology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Department of Dermatology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor Michigan 48109
- ¶¶ To whom correspondence should be addressed: Division of Metabolism, Endocrinology, and Diabetes, 5560 MSRB2, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI 48109. Tel.: 734-936-5505; Fax: 718-936-6684; E-mail:
| |
Collapse
|
14
|
Cortés JCG, Katoh-Fukui R, Moto K, Ribas JC, Ishiguro J. Schizosaccharomyces pombe Pmr1p is essential for cell wall integrity and is required for polarized cell growth and cytokinesis. EUKARYOTIC CELL 2004; 3:1124-35. [PMID: 15470240 PMCID: PMC522595 DOI: 10.1128/ec.3.5.1124-1135.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022]
Abstract
The cps5-138 fission yeast mutant shows an abnormal lemon-like morphology at 28 degrees C in minimal medium and a lethal thermosensitive phenotype at 37 degrees C. Cell growth is completely inhibited at 28 degrees C in a Ca2+-free medium, in which the wild type is capable of growing normally. Under these conditions, actin patches become randomly distributed throughout the cell, and defects in septum formation and subsequent cytokinesis appear. The mutant cell is hypersensitive to the cell wall-digesting enzymatic complex Novozym234 even under permissive conditions. The gene SPBC31E1.02c, which complements all the mutant phenotypes described above, was cloned and codes for the Ca2+-ATPase homologue Pmr1p. The gene is not essential under optimal growth conditions but is required under conditions of low Ca2+ (<0.1 mM) or high temperature (>35 degrees C). The green fluorescent protein-tagged Cps5 proteins, which are expressed under physiological conditions (an integrated single copy with its own promoter in the cps5Delta strain), display a localization pattern typical of endoplasmic reticulum proteins. Biochemical analyses show that 1,3-beta-D-glucan synthase activity in the mutant is decreased to nearly half that of the wild type and that the mutant cell wall contains no detectable galactomannan when the cells are exposed to a Ca2+-free medium. The mutant acid phosphatase has an increased electrophoretic mobility, suggesting that incomplete protein glycosylation takes place in the mutant cells. These results indicate that S. pombe Pmr1p is essential for the maintenance of cell wall integrity and cytokinesis, possibly by allowing protein glycosylation and the polarized actin distribution to take place normally. Disruption and complementation analyses suggest that Pmr1p shares its function with a vacuolar Ca2+-ATPase homologue, Pmc1p (SPAPB2B4.04c), to prevent lethal activation of calcineurin for cell growth.
Collapse
Affiliation(s)
- Juan Carlos G Cortés
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan.
| | | | | | | | | |
Collapse
|
15
|
Almeida JCA, Benchimol M, de Souza W, Okorokov LA. Ca(2+) sequestering in the early-branching amitochondriate protozoan Tritrichomonas foetus: an important role of the Golgi complex and its Ca(2+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:60-8. [PMID: 12948587 DOI: 10.1016/s0005-2736(03)00192-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Total membrane vesicles isolated from Tritrichomonas foetus showed an ATP-dependent Ca(2+) uptake, which was not sensitive to 10 microM protonophore FCCP but was blocked by orthovanadate, the inhibitor of P-type ATPases (I(50)=130 microM), and by the Ca(2+)/H(+) exchanger, A-23187. The Ca(2+) uptake was prevented also by thapsigargin, an inhibitor of the SERCA Ca(2+)-ATPases. The sensitivity of the Ca(2+) uptake by the protozoan membrane vesicles to thapsigargin was similar to that of Ca(2+)-ATPase from rabbit muscle sarcoplasmic reticulum. Fractionation of the total membrane vesicles in sucrose density gradient revealed a considerable peak of Ca(2+) transport activity that co-migrated with the Golgi marker guanosine diphosphatase (GDPase). Electron microscopy confirmed that membrane fractions of the peak were enriched with the Golgi membranes. The Golgi Ca(2+)-ATPase contributed to the Ca(2+) uptake by all membrane vesicles 80-85%. We conclude that: (i) the Golgi and/or Golgi-like vesicles form the main Ca(2+) store compartment in T. foetus; (ii) Ca(2+) ATPase is responsible for the Ca(2+) sequestering in this protozoan, while Ca(2+)/H(+) antiporter is not involved in the process; (iii) the Golgi pump of this ancient eukaryotic microorganism appears to be similar to the enzymes of the SERCA family by its sensitivity to thapsigargin.
Collapse
Affiliation(s)
- João C A Almeida
- Laboratório de Fisiologia e Bioqui;mica de Microorganismos, Centro de Biociencias e Biotechnol., Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-600, Brasil
| | | | | | | |
Collapse
|
16
|
Okorokova-Façanha AL, Okorokov LA, Ekwall K. An inventory of the P-type ATPases in the fission yeast Schizosaccharomyces pombe. Curr Genet 2003; 43:273-80. [PMID: 12707717 DOI: 10.1007/s00294-003-0395-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 03/14/2003] [Accepted: 03/15/2003] [Indexed: 10/26/2022]
Abstract
The analysis of the Schizosaccharomyces pombe genome revealed the presence of 14 putative P-type ATPases. The clustering of ATPases resembles that of Saccharomyces cerevisiae, indicating that the main classes of pumps were already present before the split of the Archiascomycetes from the other Ascomycota. The overall amino acid identity between fission and budding yeast P-type ATPases is generally low (30-50%). This is similar to the fungus-plant and fungus-animal comparisons, suggesting that fungal ATPases underwent an extensive process of diversification. Unlike Sac. cerevisiae, fission yeast lacks Na(+)-ATPases, has a single heavy-metal ATPase and three ATPases of unknown specificity. The observed divergence within these fungi might reflect physiological differences, including adaptation to environmental stresses.
Collapse
Affiliation(s)
- Anna L Okorokova-Façanha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California, RJ 28013-600, Campos dos Goytacazes, Brazil.
| | | | | |
Collapse
|
17
|
Suzuki T, Lennarz WJ. Glycopeptide export from the endoplasmic reticulum into cytosol is mediated by a mechanism distinct from that for export of misfolded glycoprotein. Glycobiology 2002; 12:803-11. [PMID: 12499402 DOI: 10.1093/glycob/cwf095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
When glycoproteins formed in the endoplasmic reticulum (ER) are misfolded, they are generally translocated into the cytosol for ubiquitination and are subsequently degraded by the proteasome. This system, the so-called ER-associated glycoprotein degradation, is important for eukaryotes to maintain the quality of glycoproteins generated in the ER. It has been established in yeast that several distinct proteins are involved in this translocation and degradation processes. Small glycopeptides formed in the ER are exported to the cytosol in a similar manner. This glycopeptide export system is conserved from yeast to mammalian cells, suggesting its basic biological significance for eukaryotic cells. These two export systems (for misfolded glycoproteins and glycopeptides) share some properties, such as a requirement for ATP and involvement of Sec61p, a central membrane protein presumably forming a dislocon channel for export of proteins. However, the machinery of glycopeptide export is poorly understood. In this study, various mutants known to have an effect on export/degradation of misfolded glycoproteins were examined for glycopeptide export activity with a newly established assay method. Surprisingly, most of the mutants were found not to exhibit a defect in glycopeptide export. The only gene that was found to be required on efficient export of both types of substrates was PMR1, the gene encoding the medial-Golgi Ca(2+)/Mn(2+)-ion pump. These results provide evidence that although the systems involved in export of misfolded glycoproteins and glycopeptides share some properties, they have exhibited distinct differences.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo and PRESTO, Japan Science and Technology Corporation (JST), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
18
|
Façanha ALO, Appelgren H, Tabish M, Okorokov L, Ekwall K. The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics. J Cell Biol 2002; 157:1029-39. [PMID: 12058018 PMCID: PMC2174038 DOI: 10.1083/jcb.200111012] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Here we describe the phenotypic characterization of the cta4+ gene, encoding a novel member of the P4 family of P-type ATPases of fission yeast. The cta4Delta mutant is temperature sensitive and cold sensitive lethal and displays several morphological defects in cell polarity and cytokinesis. Microtubules are generally destabilized in cells lacking Cta4p. The microtubule length is decreased, and the number of microtubules per cell is increased. This is concomitant with an increase in the number of microtubule catastrophe events in the midzone of the cell. These defects are likely due to a general imbalance in cation homeostasis. Immunofluorescence microscopy and membrane fractionation experiments revealed that green fluorescent protein-tagged Cta4 localizes to the ER. Fluorescence resonance energy transfer experiments in living cells using the yellow cameleon indicator for Ca2+ indicated that Cta4p regulates the cellular Ca2+ concentration. Thus, our results reveal a link between cation homeostasis and the control of cell shape, microtubule dynamics, and cytokinesis, and appoint Ca2+ as a key ion in controlling these processes.
Collapse
Affiliation(s)
- Anna L Okorokova Façanha
- Laboratório Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Horto, CEP 28015-620, Brazil
| | | | | | | | | |
Collapse
|
19
|
Tipper DJ, Harley CA. Yeast genes controlling responses to topogenic signals in a model transmembrane protein. Mol Biol Cell 2002; 13:1158-74. [PMID: 11950929 PMCID: PMC102259 DOI: 10.1091/mbc.01-10-0488] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2-3% by a strong charge difference signal. Identified pio mutants increased this to 9-12%. PIO1 is SPF1, encoding a P-type ATPase located in the endoplasmic reticulum (ER) or Golgi. spf1-null mutants are modestly sensitive to EGTA. Sensitivity is considerably greater in an spf1 pmr1 double mutant, although PIO is not further disturbed. Pmr1p is the Golgi Ca(2+) ATPase and Spf1p may be the equivalent ER pump. PIO2 is STE24, a metalloprotease anchored in the ER membrane. Like Spf1p, Ste24p is expressed in all yeast cell types and belongs to a highly conserved protein family. The effects of ste24- and spf1-null mutations on invertase secretion are additive, cell generation time is increased 60%, and cells become sensitive to cold and to heat shock. Ste24p and Rce1p cleave the C-AAX bond of farnesylated CAAX box proteins. The closest paralog of SPF1 is YOR291w. Neither rce1-null nor yor291w-null mutations affected PIO or the phenotype of spf1- or ste24-null mutants. Mutations in PIO3 (unidentified) cause a weaker Pio phenotype, enhanced by a null mutation in BMH1, one of two yeast 14-3-3 proteins.
Collapse
Affiliation(s)
- Donald J Tipper
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
20
|
Okorokov LA, Silva FE, Okorokova Façanha AL. Ca(2+) and H+ homeostasis in fission yeast: a role of Ca(2+)/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles. FEBS Lett 2001; 505:321-4. [PMID: 11566197 DOI: 10.1016/s0014-5793(01)02852-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.
Collapse
Affiliation(s)
- L A Okorokov
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes-RJ, CEP 28015-620, Brazil.
| | | | | |
Collapse
|
21
|
Da'dara A, Tsai MH, Tao LF, Marx KA, Shoemaker CB, Harn DA, Skelly PJ. Schistosoma mansoni: molecular characterization of a tegumental Ca-ATPase (SMA3). Exp Parasitol 2001; 98:215-22. [PMID: 11560414 DOI: 10.1006/expr.2001.4637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA encoding a Ca-ATPase homologue, designated SMA3, was isolated from an adult cDNA library of Schistosoma mansoni. The full-length cloned DNA contains a 3105-bp open reading frame that potentially encodes a 1035-amino-acid protein with a M(r) of 113,729 and a pl of 6.48. Homology searches for SMA3 reveal high sequence identity with a variety of Ca-ATPases from evolutionarily diverse organisms. SMA3 is predicted to contain 10 transmembrane regions typical of this protein family as well as other conserved domains, such as the phosphorylation site and FITC binding domain. The greatest sequence identity (40-50%) is found to those Ca-ATPases belonging to the secretory pathway subclass. Identification of the 5' end of the SMA3 cDNA by RACE analysis reveals the presence of a 36-base spliced leader RNA, suggesting that the SMA3 pre-mRNA is processed by trans-splicing. Northern analysis reveals a single dominant transcript of 5 kb in adult RNA preparations. Antibodies raised against an amino terminal peptide detect the protein in the adult tegument, suggesting that SMA3 functions to help control Ca homeostasis within the tegument and may play a role in signal transduction at the host parasite interface.
Collapse
Affiliation(s)
- A Da'dara
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, U.S.A
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang J, Kang HA, Ko SM, Chae SK, Ryu DD, Kim JY. Cloning of the Aspergillus niger pmrA gene, a homologue of yeast PMR1, and characterization of a pmrA null mutant. FEMS Microbiol Lett 2001; 199:97-102. [PMID: 11356574 DOI: 10.1111/j.1574-6968.2001.tb10657.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pmrA gene, a yeast PMR1 homologue, was isolated from Aspergillus niger. Sequence analysis of the pmrA cDNA and the genomic DNA revealed that two introns exist in the coding region, and that an open reading frame in the cDNA encodes a polypeptide of 1056 amino acids containing all the conserved regions present in P-type Ca2+-ATPases. The predicted pmrA protein exhibited a high degree of sequence similarity to the Pmr1 proteins from yeasts and mammalians (50-59% identity). The expression of the pmrA cDNA partially restored the growth defect of Yarrowia lipolytica pmr1 null mutant on EGTA-containing medium. This indicates that the A. niger pmrA gene encodes a functional homologue of the yeast P-type Ca2+-ATPase involved in the secretory pathway. An A. niger pmrA null mutant exhibited growth retardation on EGTA-containing medium and the growth defect was overcome by adding Ca2+ or Mn2+ into the medium. This suggests an involvement of the pmrA protein in Ca2+ and Mn2+ homeostasis in A. niger.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, Chungnam National University, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Reinhardt TA, Filoteo AG, Penniston JT, Horst RL. Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol 2000; 279:C1595-602. [PMID: 11029307 DOI: 10.1152/ajpcell.2000.279.5.c1595] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein expression of plasma membrane Ca(2+)-ATPases (PMCAs) and the putative Golgi secretory pathway Ca(2+)-ATPase (SPCA) was examined in rat mammary tissue. As lactation started, PMCA protein expression increased dramatically, and this increased expression paralleled milk production. Mammary PMCA was primarily PMCA2b but was approximately 4,000 daltons larger than expected. RT-PCR showed that the primary mammary PMCA2b transcript was alternatively spliced, at splice site A, to include an additional 135 bp, resulting in the insertion of 45 amino acids. This splice form is designated 2bw. PMCA2bw is secreted into milk, associated with the milk fat globule membrane. Therefore, PMCA2bw is located on the apical membrane of the secretory cell. Smaller amounts of PMCA1b and 4b protein were found in mammary tissue. PMCA4b was the major PMCA expressed in developing tissue, and its level declined as lactation started. PMCA1b expression increased moderately during lactation. SPCA protein expression increased 1 wk before parturition and increased further as lactation proceeded. The abundance and cell location of PMCA2b suggest that it is important for macro-Ca(2+) homeostasis in lactating tissue. The pattern of expression and abundance of SPCA suggest that it is a candidate for the Golgi Ca(2+)-ATPase.
Collapse
Affiliation(s)
- T A Reinhardt
- Periparturient Diseases of Cattle Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa 50010, USA.
| | | | | | | |
Collapse
|
24
|
Locke EG, Bonilla M, Liang L, Takita Y, Cunningham KW. A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol 2000; 20:6686-94. [PMID: 10958666 PMCID: PMC86178 DOI: 10.1128/mcb.20.18.6686-6694.2000] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.
Collapse
Affiliation(s)
- E G Locke
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
25
|
Ueoka-Nakanishi H, Tsuchiya T, Sasaki M, Nakanishi Y, Cunningham KW, Maeshima M. Functional expression of mung bean Ca2+/H+ antiporter in yeast and its intracellular localization in the hypocotyl and tobacco cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3090-8. [PMID: 10806410 DOI: 10.1046/j.1432-1033.2000.01343.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ca2+-transport activity and intracellular localization of the translation product of cDNA for mung bean Ca2+/H+ antiporter (VCAX1) were examined. When the cDNA was expressed in Saccharomyces cerevisiae that lacked its own genes for vacuolar Ca2+-ATPase and the antiporter, VCAX1 complemented the active Ca2+ transporters, and the microsomal membranes from the transformant showed high activity of the Ca2+/H+ antiporter. Treatment of the vacuolar membranes with a cross-linking reagent resulted in a clear band of the dimer detected with antibody specific for VCAX1p. The antibody was also used for immunolocalization of the antiporter in fractions obtained by sucrose-density-gradient centrifugation of the microsomal fraction from mung bean. The immunostained band was detected in the vacuolar membrane fraction and the slightly heavy fractions that exhibited activity of the Golgi marker enzyme. A fusion protein of VCAX1p and green fluorescent protein was expressed in tobacco cells. The green fluorescence was clearly observed on the vacuolar membrane and, in some cases, in the small vesicles. The subcellular fractionation of transformed tobacco cells confirmed the vacuolar membrane localization of the fusion protein. These results confirm that VCAX1p functions in the vacuolar membrane as a Ca2+/H+ antiporter and also suggest that VCAX1p may exist in the Golgi apparatus.
Collapse
Affiliation(s)
- H Ueoka-Nakanishi
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Reinhardt TA, Horst RL. Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C796-802. [PMID: 10199809 DOI: 10.1152/ajpcell.1999.276.4.c796] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcellular Ca2+ fluxes required for milk production must be rigorously regulated to maintain the low cytosolic Ca2+ concentrations critical to cell function. Ca2+-ATPases play a critical role in the maintenance of this cellular Ca2+ homeostasis. Using RT-PCR and sequencing, we identified six Ca2+ pumps in lactating mammary tissue. Three plasma membrane Ca2+-ATPases (PMCAs) were found (PMCA1b, PMCA2b, and PMCA4b). Two sarco (endo)plasmic reticulum Ca2+-ATPases (SERCAs) were identified (SERCA2 and SERCA3), and the rat homologue to the yeast Golgi Ca2+-ATPase RS-10 was also found. The pattern of mRNA expression of each of these pumps was examined in rat mammary tissue from the 7th day of pregnancy to the 21st day of lactation. Northern blots revealed increased mRNA expression for all Ca2+ pumps by the 14th day of lactation, and transcripts continued to increase through the 18th day of lactation. PMCA1b, PMCA4b, SERCA2, and SERCA3 showed the lowest levels of expression. RS-10 transcripts were more abundant than SERCA2, SERCA3, PMCA1b, and PMCA4b. RS-10 was the only pump to increase in expression before parturition. PMCA2b was the most abundant transcript found in lactating mammary tissue. At peak lactation, expression of PMCA2b approached that of actin. The high expression, high affinity for Ca2+, and high activity at low calmodulin concentrations exhibited by PMCA2b suggest that it is uniquely suited for maintenance of Ca2+ homeostasis in the lactating mammary gland. The pattern of expression and abundance of RS-10 suggest that it is a candidate for the Golgi Ca2+-ATPase shown to be important in maintaining the Golgi Ca2+ concentration required for casein synthesis and micelle formation.
Collapse
Affiliation(s)
- T A Reinhardt
- Metabolic Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa 50010, USA.
| | | |
Collapse
|