1
|
Abdelmoneim D, Coates D, Porter G, Schmidlin P, Li KC, Botter S, Lim K, Duncan W. In vitro and in vivo investigation of antibacterial silver nanoparticles functionalized bone grafting substitutes. J Biomed Mater Res A 2024; 112:2042-2054. [PMID: 38864151 DOI: 10.1002/jbm.a.37757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Infection is a major concern in surgery involving grafting and should be considered thoroughly when designing biomaterials. There is considerable renewed interest in silver nanoparticles (AgNPs) owing to their ability to potentiate antibacterial properties against multiple bacterial strains. This study aimed to develop two antibacterial bone regenerative scaffolds by integrating AgNPs in bovine bone particles (BBX) (Product 1), and a light cross-linked hydrogel GelMA (Product 2). The constructs were characterized using scanning electron microscopy. Metabolic activity of osteoblasts and osteoclasts on the constructs was investigated using PrestoBlue™. Disk diffusion assay was conducted to test the antibacterial properties. The regenerative capacity of the optimized AgNP functionalized BBX and GelMA were tested in a rabbit cranial 6 mm defect model. The presence of AgNPs appears to enhance proliferation of osteoblasts compared to AgNP free controls in vitro. We established that AgNPs can be used at a 100 μg dose that inhibits bacteria, with minimal adverse effects on the bone cells. Our rabbit model revealed that both the BBX and GelMA hydrogels loaded AgNPs were biocompatible with no signs of necrosis or inflammatory response. Grafts functionalized with AgNPs can provide antibacterial protection and simultaneously act as a scaffold for attachment of bone cells.
Collapse
Affiliation(s)
- Dina Abdelmoneim
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Gemma Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Patrick Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Kai Chun Li
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Sander Botter
- Swiss Center for Musculoskeletal Biobanking, Balgrist Campus AG, Zurich, Switzerland
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Warwick Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Zhang T, Zhou W, Yang W, Bi J, Li H, Gao X, Zhang B, Shi G, Li K, Wei Z, Pan X, Feng S. Vancomycin-encapsulated hydrogel loaded microarc-oxidized 3D-printed porous Ti6Al4V implant for infected bone defects: Reconstruction, anti-infection, and osseointegration. Bioact Mater 2024; 42:18-31. [PMID: 39262845 PMCID: PMC11388676 DOI: 10.1016/j.bioactmat.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Infected bone defect is a formidable clinical challenge. Conventional approaches to prevention and treatment for infected bone defects are unsatisfactory. The key elements of the treatment are bone defect reconstruction, anti-infection, and osteogenesis. Conventional treatment methods remain unsatisfactory owing to the absence of composite integrating materials with anti-infective, and osteogenic activities as well as proper mechanical strength at the same time. In this study, we fabricated a vancomycin-encapsulated hydrogel with bacteria-responsive release properties combined with a shaved porous (submicron-micron) three-dimensional-printed Ti6Al4V implant. The implant surface, modified with submicron-sized pores through microarc oxidation (MAO), showed enhanced osteogenic activity and integrated well with the hydrogel drug release system, enabling sustained vancomycin release. In vitro experiments underscored the commendable antibacterial ability, biosafety, and osteoinductive potential. Effective antibacterial and osteogenic abilities of the implant were further demonstrated in vivo in infected rabbit bone defects. These results showed that the vancomycin-encapsulated hydrogel-loaded microarc-oxidized 3D-printed porous Ti6Al4V can repair the infected bone defects with satisfactory anti-infection and osseointegration effects.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China
| | - Wanliang Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jingwei Bi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xianlei Gao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Baoliang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guidong Shi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhijian Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
- International Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Pan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| |
Collapse
|
3
|
Swain S, Lenka R, Rautray T. Synthetic strategy for the production of electrically polarized polyvinylidene fluoride-trifluoroethylene-co-polymer osseo-functionalized with hydroxyapatite scaffold. J Biomed Mater Res A 2024; 112:1675-1687. [PMID: 38600693 DOI: 10.1002/jbm.a.37720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The physiological mechanism of bone tissue regeneration is intricately organized and involves several cell types, intracellular, and extracellular molecular signaling networks. To overcome the drawbacks of autografts and allografts, a number of synthetically produced scaffolds have been manufactured by integrating ceramics, polymers, and their hybrid-composites. Considering the fact that natural bone is composed primarily of collagen and hydroxyapatite, ceramic-polymer composite materials seem to be the most viable alternative to bone implants. Here, in this experimental study, copolymer PVDF-TrFE has been amalgamated with HA ceramics to produce composite scaffolds as bone implants. In order to fabricate PVDF-TrFE-HA (polyvinylidene fluoride-trifluoroethylene-hydroxyapatite) composite scaffolds, solvent casting-particulate leaching technique was devised. Two scaffold specimens were produced, with different PVDF-TrFE and HA molar ratios (70:30 and 50:50), and then electrically polarized to observe the subsequent polarization impact on the tissue growth and the suppression of bacterial cell proliferation. Both the specimens underwent characterization to analyze their biocompatibility and bactericidal activities. The bacterial culture of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria on the composites was studied to understand the antibacterial characteristics. Moreover, MG63 cells cultured on these as-formed composites provided information about osteogenesis. Improved osteogenesis and antibacterial efficacy were observed on both the composites. However, the composite with 70 wt% PVDF-TrFE and 30 wt% HA showed a higher bactericidal effect as well as osteogenesis. It was found that PVDF-TrFE-HA-based biomaterials have the potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Subhasmita Swain
- Biomaterials and Tissue Regeneration Lab., Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rojaleen Lenka
- Biomaterials and Tissue Regeneration Lab., Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tapash Rautray
- Biomaterials and Tissue Regeneration Lab., Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Sekar A, Gil D, Tierney P, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. J Transl Med 2024; 22:102. [PMID: 38273276 PMCID: PMC10809490 DOI: 10.1186/s12967-024-04871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. METHODS Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of Staphylococcus aureus and Staphylococcus epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6 h) and established (24 h) biofilms were grown on 316L stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, minimum biofilm eradication concentration (MBEC) measurement for GS, visualization by live/dead imaging, scanning electron microscopy, gene expression of biofilm-associated genes, and bacterial membrane fluidity assessment. RESULTS Gentamicin-ketorolac (GS-KT) combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. CONCLUSION The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Peyton Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | | | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA.
| |
Collapse
|
5
|
Pérez-Davila S, Potel-Alvarellos C, Carballo R, González-Rodríguez L, López-Álvarez M, Serra J, Díaz-Rodríguez P, Landín M, González P. Vancomycin-Loaded 3D-Printed Polylactic Acid-Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2023; 15:4250. [PMID: 37959930 PMCID: PMC10648244 DOI: 10.3390/polym15214250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The regeneration of bone remains one of the main challenges in the biomedical field, with the need to provide more personalized and multifunctional solutions. The other persistent challenge is related to the local prevention of infections after implantation surgery. To fulfill the first one and provide customized scaffolds with complex geometries, 3D printing is being investigated, with polylactic acid (PLA) as the biomaterial mostly used, given its thermoplastic properties. The 3D printing of PLA in combination with hydroxyapatite (HA) is also under research, to mimic the native mechanical and biological properties, providing more functional scaffolds. Finally, to fulfill the second one, antibacterial drugs locally incorporated into biodegradable scaffolds are also under investigation. This work aims to develop vancomycin-loaded 3D-printed PLA-HA scaffolds offering a dual functionality: local prevention of infections and personalized biodegradable scaffolds with osseointegrative properties. For this, the antibacterial drug vancomycin was incorporated into 3D-printed PLA-HA scaffolds using three loading methodologies: (1) dip coating, (2) drop coating, and (3) direct incorporation in the 3D printing with PLA and HA. A systematic characterization was performed, including release kinetics, Staphylococcus aureus antibacterial/antibiofilm activities and cytocompatibility. The results demonstrated the feasibility of the vancomycin-loaded 3D-printed PLA-HA scaffolds as drug-releasing vehicles with significant antibacterial effects for the three methodologies. In relation to the drug release kinetics, the (1) dip- and (2) drop-coating methodologies achieved burst release (first 60 min) of around 80-90% of the loaded vancomycin, followed by a slower release of the remaining drug for up to 48 h, while the (3) 3D printing presented an extended release beyond 7 days as the polymer degraded. The cytocompatibility of the vancomycin-loaded scaffolds was also confirmed.
Collapse
Affiliation(s)
- Sara Pérez-Davila
- CINTECX, Universidade de Vigo, Grupo Novos Materiais, 36310 Vigo, Spain (M.L.-Á.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
| | - Carmen Potel-Alvarellos
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
- Laboratorio de Microbiología, Complejo Hospitalario Universitario de Vigo, 36312 Vigo, Spain
| | - Raquel Carballo
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
- Laboratorio de Microbiología, Complejo Hospitalario Universitario de Vigo, 36312 Vigo, Spain
| | - Laura González-Rodríguez
- CINTECX, Universidade de Vigo, Grupo Novos Materiais, 36310 Vigo, Spain (M.L.-Á.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
| | - Miriam López-Álvarez
- CINTECX, Universidade de Vigo, Grupo Novos Materiais, 36310 Vigo, Spain (M.L.-Á.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
| | - Julia Serra
- CINTECX, Universidade de Vigo, Grupo Novos Materiais, 36310 Vigo, Spain (M.L.-Á.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
| | - Patricia Díaz-Rodríguez
- Pharmacology, Pharmacy, and Pharmaceutical Technology Department, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials, iMATUS and Health Research Institute of Santiago de Compositela (IDIS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (P.D.-R.); (M.L.)
| | - Mariana Landín
- Pharmacology, Pharmacy, and Pharmaceutical Technology Department, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials, iMATUS and Health Research Institute of Santiago de Compositela (IDIS), University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (P.D.-R.); (M.L.)
| | - Pío González
- CINTECX, Universidade de Vigo, Grupo Novos Materiais, 36310 Vigo, Spain (M.L.-Á.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.P.-A.)
| |
Collapse
|
6
|
Mayorga-Martinez CC, Zelenka J, Klima K, Kubanova M, Ruml T, Pumera M. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300191. [PMID: 36995927 DOI: 10.1002/adma.202300191] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/12/2023] [Indexed: 06/09/2023]
Abstract
Modern micro/nanorobots can perform multiple tasks for biomedical and environmental applications. Particularly, magnetic microrobots can be completely controlled by a rotating magnetic field and their motion powered and controlled without the use of toxic fuels, which makes them most promising for biomedical application. Moreover, they are able to form swarms, allowing them to perform specific tasks at a larger scale than a single microrobot. In this work, they developed magnetic microrobots composed of halloysite nanotubes as backbone and iron oxide (Fe3 O4 ) nanoparticles as magnetic material allowing magnetic propulsion and covered these with polyethylenimine to load ampicillin and prevent the microrobots from disassembling. These microrobots exhibit multimodal motion as single robots as well as in swarms. In addition, they can transform from tumbling to spinning motion and vice-versa, and when in swarm mode they can change their motion from vortex to ribbon and back again. Finally, the vortex motion mode is used to penetrate and disrupt the extracellular matrix of Staphylococcus aureus biofilm colonized on titanium mesh used for bone restoration, which improves the effect of the antibiotic's activity. Such magnetic microrobots for biofilm removal from medical implants could reduce implant rejection and improve patients' well-being.
Collapse
Affiliation(s)
- Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Karel Klima
- Department of Stomatology - Maxillofacial Surgery, General Teaching Hospital and First Faculty of Medicine, Charles University, Prague, 12808, Czech Republic
| | - Michaela Kubanova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic
- Faculty of Electrical Engineering and, Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
7
|
Shaygani H, Seifi S, Shamloo A, Golizadeh M, Rahnamaee SY, Alishiri M, Ebrahimi S. Novel bilayer coating on gentamicin-loaded titanium nanotube for orthopedic implants applications. Int J Pharm 2023; 636:122764. [PMID: 36889413 DOI: 10.1016/j.ijpharm.2023.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Fabricating a multifunctional orthopedic implant which prevents post-surgery infection is highly desirable in advanced materials applications. However, designing an antimicrobial implant, which simultaneously promotes a sustained drug release and satisfactory cell proliferation, remains a challenge. The current study presents a drug-loaded surface-modified titanium nanotube (TNT) implant with different surface chemistry which was developed to investigate the effect of surface coating on drug release, antimicrobial activity, and cell proliferation. Accordingly, sodium alginate and chitosan were coated on the surface of TNT implants with different coating orders through layer-by-layer assembly. The coatings' swelling ratio and degradation rate were around 613% and 75%, respectively. The drug release results showed that surface-coatings prolonged the releasing profile for about 4 weeks. Chitosan coated TNTs demonstrated greater inhibition zone at 16.33mm compared with the other samples where no inhibition zone was observed. However, chitosan and alginate coated TNTs exhibited smaller inhibition zones at 48.56mm and 43.28mm, respectively, compared to bare TNT, which can be attributed to the coatings preventing the antibiotic burst release. Higher viability of cultured osteoblast cells was observed for chitosan-coated TNT as the top layer compared to the bare TNT at 12.18%, indicating improved bioactivity of TNT implants when the chitosan has the most contact with cells. Coupled with the cell viability assay, molecular dynamics (MD) simulations were carried out by placing collagen and fibronectin near the considered substrates. In agreement with cell viability results, MD simulations also indicated that chitosan had the highest adsorption energy approximately 60Kcal/mol. In summary, the proposed bilayer chitosan-coated drug-loaded TNT implant with chitosan and sodium alginate coating as the top and the bottom layers, respectively, can be a potential candidate for orthopedic applications in the light of its bacterial biofilm prevention, better osteoconductivity, and providing an adequate drug release profile.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Mortaza Golizadeh
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Yahya Rahnamaee
- Polymeric Materials Research Group (PMRG), School of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Mojgan Alishiri
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Kaur K, Sharma S, Abhishek S, Kaur P, Saini UC, Dhillon MS, Karakousis PC, Verma I. Metabolic switching and cell wall remodelling of Mycobacterium tuberculosis during bone tuberculosis. J Infect 2023; 86:134-146. [PMID: 36549425 DOI: 10.1016/j.jinf.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Bone tuberculosis (TB) is the third most common types of extrapulmonary tuberculosis. It is critical to understand mycobacterial adaptive strategies within bone lesions to identify mycobacterial factors that may have role in disease pathogenesis. METHODS Whole genome microarray was used to characterize the in-vivo transcriptome of Mycobacterium tuberculosis (M.tb) within bone TB specimens. Mycobacterial virulent proteins were identified by bioinformatic software. An in vitro osteoblast cell line model was used to study the role of these proteins in bone TB pathogenesis. RESULTS 914 mycobacterial genes were significantly overexpressed and 1688 were repressed in bone TB specimens. Pathway analysis of differentially expressed genes demonstrated a non-replicative and hypometabolic state of M.tb, reinforcement of the mycobacterial cell wall and induction of DNA damage repair responses, suggesting possible survival strategies of M.tb within bone. Bioinformatics mining of microarray data led to identification of five virulence proteins. The genes encoding these proteins were also upregulated in the in vitro MC3T3 osteoblast cell line model of bone TB. Further, exposure of osteoblast cells to two of these virulence proteins (Rv1046c and Rv3663c) significantly inhibited osteoblast differentiation. CONCLUSION M.tb alters its transcriptome to establish infection in bone by upregulating certain virulence genes which play a key role in disturbing bone homeostasis.
Collapse
Affiliation(s)
- Khushpreet Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumedha Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudhanshu Abhishek
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Prabhdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uttam Chand Saini
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Petros C Karakousis
- Centers for Tuberculosis Research and Systems Approaches for Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
Feibel D, Kwiatkowski A, Opländer C, Grieb G, Windolf J, Suschek CV. Enrichment of Bone Tissue with Antibacterially Effective Amounts of Nitric Oxide Derivatives by Treatment with Dielectric Barrier Discharge Plasmas Optimized for Nitrogen Oxide Chemistry. Biomedicines 2023; 11:biomedicines11020244. [PMID: 36830781 PMCID: PMC9953554 DOI: 10.3390/biomedicines11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Cold atmospheric plasmas (CAPs) generated by dielectric barrier discharge (DBD), particularly those containing higher amounts of nitric oxide (NO) or NO derivates (NOD), are attracting increasing interest in medical fields. In the present study, we, for the first time, evaluated DBD-CAP-induced NOD accumulation and therapeutically relevant NO release in calcified bone tissue. This knowledge is of great importance for the development of new therapies against bacterial-infectious complications during bone healing, such as osteitis or osteomyelitis. We found that by modulating the power dissipation in the discharge, it is possible (1) to significantly increase the uptake of NODs in bone tissue, even into deeper regions, (2) to significantly decrease the pH in CAP-exposed bone tissue, (3) to induce a long-lasting and modulable NO production in the bone samples as well as (4) to significantly protect the treated bone tissue against bacterial contaminations, and to induce a strong bactericidal effect in bacterially infected bone samples. Our results strongly suggest that the current DBD technology opens up effective NO-based therapy options in the treatment of local bacterial infections of the bone tissue through the possibility of a targeted modulation of the NOD content in the generated CAPs.
Collapse
Affiliation(s)
- Dennis Feibel
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Alexander Kwiatkowski
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, University Witten/Herdecke, 58455 Witten-Herdecke, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Centre, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
10
|
Schweizer TA, Andreoni F, Acevedo C, Scheier TC, Heggli I, Maggio EM, Eberhard N, Brugger SD, Dudli S, Zinkernagel AS. Intervertebral disc cell chondroptosis elicits neutrophil response in Staphylococcus aureus spondylodiscitis. Front Immunol 2022; 13:908211. [PMID: 35967370 PMCID: PMC9366608 DOI: 10.3389/fimmu.2022.908211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the pathophysiology of spondylodiscitis due to Staphylococcus aureus, an emerging infectious disease of the intervertebral disc (IVD) and vertebral body with a high complication rate, we combined clinical insights and experimental approaches. Clinical data and histological material of nine patients suffering from S. aureus spondylodiscitis were retrospectively collected at a single center. To mirror the clinical findings experimentally, we developed a novel porcine ex vivo model mimicking acute S. aureus spondylodiscitis and assessed the interaction between S. aureus and IVD cells within their native environment. In addition, the inflammatory features underlying this interaction were assessed in primary human IVD cells. Finally, mirroring the clinical findings, we assessed primary human neutrophils for their ability to respond to secreted inflammatory modulators of IVD cells upon the S. aureus challenge. Acute S. aureus spondylodiscitis in patients was characterized by tissue necrosis and neutrophil infiltration. Additionally, the presence of empty IVD cells’ lacunae was observed. This was mirrored in the ex vivo porcine model, where S. aureus induced extensive IVD cell death, leading to empty lacunae. Concomitant engagement of the apoptotic and pyroptotic cell death pathways was observed in primary human IVD cells, resulting in cytokine release. Among the released cytokines, functionally intact neutrophil-priming as well as broad pro- and anti-inflammatory cytokines which are known for their involvement in IVD degeneration were found. In patients as well as ex vivo in a novel porcine model, S. aureus IVD infection caused IVD cell death, resulting in empty lacunae, which was accompanied by the release of inflammatory markers and recruitment of neutrophils. These findings offer valuable insights into the important role of inflammatory IVD cell death during spondylodiscitis and potential future therapeutic approaches.
Collapse
Affiliation(s)
- Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Claudio Acevedo
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C. Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Irina Heggli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadia Eberhard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- *Correspondence: Annelies S. Zinkernagel,
| |
Collapse
|
11
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Le Masters T, Johnson S, Jeraldo PR, Greenwood-Quaintance KE, Cunningham SA, Abdel MP, Chia N, Patel R. Comparative Transcriptomic Analysis of Staphylococcus aureus Associated with Periprosthetic Joint Infection under in Vivo and in Vitro Conditions. J Mol Diagn 2021; 23:986-999. [PMID: 34098085 PMCID: PMC8351120 DOI: 10.1016/j.jmoldx.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Transcriptomic analysis can provide insight as to how Staphylococcus aureus adapts to the environmental niche of periprosthetic joint infection (PJI), a challenging clinical infection. Here, in vivo RNA expression of eight S. aureus PJIs was compared with expression of the corresponding isolates in planktonic culture using a total RNA-sequencing approach. Expression varied among isolates, with a common trend showing increased expression of several ica-independent biofilm formation genes, including sdr, fnb, ebpS, and aaa; genes encoding enzymes and toxins, including coa, nuc, hlb, and hlgA/B/C; and genes facilitating acquisition of iron via the iron-binding molecule siderophore B (snb) and heme consumption protein (isd) pathways in PJI. Several antimicrobial resistance determinants were detected; although their presence correlated with phenotypic susceptibility of the associated isolates, no difference in expression between in vivo and in vitro conditions was identified.
Collapse
Affiliation(s)
- Thao Le Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stephen Johnson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Kerryl E Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
13
|
田 永, 刘 继, 胡 攸, 刘 立, 李 勇, 李 朝, 王 新, 刘 玉, 冯 峰, 郭 建. [Clinical study of calcium phosphate cement loaded with recombinant human bone morphogenetic protein 2 combined with calcium phosphate cement loaded with antibiotic for chronic osteomyelitis with bone defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:573-578. [PMID: 33998210 PMCID: PMC8175205 DOI: 10.7507/1002-1892.202011106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To compare the effectiveness of calcium phosphate cement (CPC) loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) combined with CPC loaded with antibiotic versus CPC loaded with antibiotic alone in one stage for chronic osteomyelitis with bone defect. METHODS A single-blind prospective randomized controlled clinical trial was conducted. Between April 2018 and April 2019, 80 patients of chronic osteomyelitis with bone defect in accordance with the random number table were randomly divided into two groups, 40 in the trial group (CPC loaded with rhBMP-2 combined with CPC loaded with antibiotic) and 40 in the control group (CPC loaded with antibiotic). There was no significant difference in gender, age, disease duration, lesion, and preoperative white blood cells (WBC) count, platelet count, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) between the two groups ( P>0.05). All patients were implanted the corresponding CPC and external fixator after lesion clearance in the two groups. The postoperative WBC count, platelet count, ESR, CRP, hospital stay, cure rate of osteomyelitis, repaired bone defect volume, the time of external fixator removal, and the time of full weight-bearing of the affected limb were compared between the two groups. RESULTS All patients were followed up 12-24 months, with an average of 18.4 months. There was no significant difference in WBC count, platelet count, ESR, and CRP between the two groups at 4 weeks after operation ( P>0.05). There were significant differences in WBC count, platelet count, and CRP in the two groups between 1 week before operation and 4 weeks after operation ( P<0.05). And the ESR showed no significant difference between pre- and post-operation in the two groups ( P>0.05). In the trial group, the anaphylactic exudate occurred in 1 patient with tibial osteomyelitis and the incision healed after oral administration of loratadine. The incisions of other patients healed by first intention in the two groups. One case of distal tibial osteomyelitis recurred in each group, and 1 case of humeral osteomyelitis recurred in the control group. The cure rates of osteomyelitis were 97.5% (39/40) in the trial group and 95% (38/40) in the control group, showing no significant difference between the two groups ( χ 2 =0.000, P=1.000). There was no significant difference in the repaired bone defect volume and hospital stay between the two groups ( P>0.05). X-ray film and CT showed that the bone defects were repaired in the two groups. The time of external fixator removal and the time of full weight-bearing of the affected limb were significantly shorter in the trial group than in the control group ( P<0.05). CONCLUSION Application of CPC loaded with rhBMP-2 and antibiotic in one stage is effective for the chronic osteomyelitis with bone defect, which can accelerate the bone regeneration in situ to repair bone defect, reduce the trauma, shorten the course of treatment, and obtain good function of the affected limb.
Collapse
Affiliation(s)
- 永福 田
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 继权 刘
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 攸水 胡
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 立云 刘
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 勇军 李
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 朝晖 李
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 新卫 王
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 玉珂 刘
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 峰 冯
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| | - 建刚 郭
- 河南省洛阳正骨医院(河南省骨科医院)骨髓炎科(郑州 450000)Department of Osteomyelitis, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou Henan, 450000, P.R.China
| |
Collapse
|
14
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
15
|
van Hengel IAJ, Tierolf MWAM, Fratila-Apachitei LE, Apachitei I, Zadpoor AA. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int J Mol Sci 2021; 22:3800. [PMID: 33917615 PMCID: PMC8038786 DOI: 10.3390/ijms22073800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.
Collapse
Affiliation(s)
- Ingmar A. J. van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands; (M.W.A.M.T.); (L.E.F.-A.); (I.A.); (A.A.Z.)
| | | | | | | | | |
Collapse
|
16
|
Roux KM, Cobb LH, Seitz MA, Priddy LB. Innovations in osteomyelitis research: A review of animal models. Animal Model Exp Med 2021; 4:59-70. [PMID: 33738438 PMCID: PMC7954837 DOI: 10.1002/ame2.12149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Infection of bone tissue, or osteomyelitis, has become a growing concern in modern healthcare due in no small part to a rise in antibiotic resistance among bacteria, notably Staphylococcus aureus. The current standard of care involves aggressive, prolonged antibiotic therapy combined with surgical debridement of infected tissues. While this treatment may be sufficient for resolving a portion of cases, recurrences of the infection and associated risks including toxicity with long-term antibiotic usage have been reported. Therefore, there exists a need to produce safer, more efficacious options of treatment for osteomyelitis. In order to test treatment regimens, animal models that closely mimic the clinical condition and allow for accurate evaluation of therapeutics are necessary. Establishing a model that replicates features of osteomyelitis in humans continues to be a challenge to scientists, as there are many variables involved, including choosing an appropriate species and method to establish infection. This review addresses the refinement of animal models of osteomyelitis to reflect the clinical disease and test prospective therapeutics. The aim of this review is to explore studies regarding the use of animals for osteomyelitis therapeutics research and encourage further development of such animal models for the translation of results from the animal experiment to human medicine.
Collapse
Affiliation(s)
- Kylie M. Roux
- College of Veterinary MedicineMississippi State UniversityMississippi StateMSUSA
| | - Leah H. Cobb
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
| | - Marc A. Seitz
- College of Veterinary MedicineMississippi State UniversityMississippi StateMSUSA
| | - Lauren B. Priddy
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
17
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
18
|
Gimza BD, Cassat JE. Mechanisms of Antibiotic Failure During Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:638085. [PMID: 33643322 PMCID: PMC7907425 DOI: 10.3389/fimmu.2021.638085] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a highly successful Gram-positive pathogen capable of causing both superficial and invasive, life-threatening diseases. Of the invasive disease manifestations, osteomyelitis or infection of bone, is one of the most prevalent, with S. aureus serving as the most common etiologic agent. Treatment of osteomyelitis is arduous, and is made more difficult by the widespread emergence of antimicrobial resistant strains, the capacity of staphylococci to exhibit tolerance to antibiotics despite originating from a genetically susceptible background, and the significant bone remodeling and destruction that accompanies infection. As a result, there is a need for a better understanding of the factors that lead to antibiotic failure in invasive staphylococcal infections such as osteomyelitis. In this review article, we discuss the different non-resistance mechanisms of antibiotic failure in S. aureus. We focus on how bacterial niche and destructive tissue remodeling impact antibiotic efficacy, the significance of biofilm formation in promoting antibiotic tolerance and persister cell formation, metabolically quiescent small colony variants (SCVs), and potential antibiotic-protected reservoirs within the substructure of bone.
Collapse
Affiliation(s)
- Brittney D Gimza
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
19
|
Escobar A, Muzzio N, Moya SE. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020; 13:E16. [PMID: 33374184 PMCID: PMC7824561 DOI: 10.3390/pharmaceutics13010016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
The widespread occurrence of nosocomial infections and the emergence of new bacterial strands calls for the development of antibacterial coatings with localized antibacterial action that are capable of facing the challenges posed by increasing bacterial resistance to antibiotics. The Layer-by-Layer (LbL) technique, based on the alternating assembly of oppositely charged polyelectrolytes, can be applied for the non-covalent modification of multiple substrates, including medical implants. Polyelectrolyte multilayers fabricated by the LbL technique have been extensively researched for the development of antibacterial coatings as they can be loaded with antibiotics, antibacterial peptides, nanoparticles with bactericide action, in addition to being capable of restricting adhesion of bacteria to surfaces. In this review, the different approaches that apply LbL for antibacterial coatings, emphasizing those that can be applied for implant modification are presented.
Collapse
Affiliation(s)
- Ane Escobar
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Sergio Enrique Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| |
Collapse
|
20
|
Three-Dimensional In Vitro Staphylococcus aureus Abscess Communities Display Antibiotic Tolerance and Protection from Neutrophil Clearance. Infect Immun 2020; 88:IAI.00293-20. [PMID: 32817328 DOI: 10.1128/iai.00293-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a prominent human pathogen in bone and soft-tissue infections. Pathophysiology involves abscess formation, which consists of central staphylococcal abscess communities (SACs), surrounded by a fibrin pseudocapsule and infiltrating immune cells. Protection against the ingress of immune cells such as neutrophils, or tolerance to antibiotics, remains largely unknown for SACs and is limited by the lack of availability of in vitro models. We describe a three-dimensional in vitro model of SACs grown in a human plasma-supplemented collagen gel. The in vitro SACs reached their maximum size by 24 h and elaborated a fibrin pseudocapsule, as confirmed by electron and immunofluorescence microscopy. The in vitro SACs tolerated 100× the MIC of gentamicin alone and in combination with rifampin, while planktonic controls and mechanically dispersed SACs were efficiently killed. To simulate a host response, SACs were exposed to differentiated PLB-985 neutrophil-like (dPLB) cells and to primary human neutrophils at an early stage of SAC formation or after maturation at 24 h. Both cell types were unable to clear mature in vitro SACs, but dPLB cells prevented SAC growth upon early exposure before pseudocapsule maturation. Neutrophil exposure after plasmin pretreatment of the SACs resulted in a significant decrease in the number of bacteria within the SACs. The in vitro SAC model mimics key in vivo features, offers a new tool to study host-pathogen interactions and drug efficacy assessment, and has revealed the functionality of the S. aureus pseudocapsule in protecting the bacteria from host phagocytic responses and antibiotics.
Collapse
|
21
|
Effendy L, Octora M, Kusumaningrum D. A case of deep vein thrombosis associated with methicillin sensitive Staphylococcal aureus genu septic arthritis. Infect Dis Rep 2020; 12:8725. [PMID: 32874457 PMCID: PMC7447931 DOI: 10.4081/idr.2020.8725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Septic arthritis caused by bacteria Gram positive Staphylococcus aureus (S. aureus) infection has been widely reported from Europe and the United States. This case presentation reported the first Staphylococcal septic arthritis, preceded by systemic erythroderma skin lesions from aregional hospital in Surabaya, Indonesia. Radiology imaging was used for confirming the defect. Joint fluid aspirate from the affected knee joint lesion was sent for joint fluid analysis and microbiology culture. The analysis showed infiltration of neutrophil inflammatory cells. S. aureus was isolated on culture and demonstrated catalase positive and coagulase positive reactions. Antimicrobial susceptibility testing was performed to determine the appropriate selection of antibiotics. Clindamycin was used for treatment and the complicated occurrence of deep vein thrombosis was treated with anticoagulant. Awareness of this disease and its progression to its complication deep vein thrombosis is required to understand the burden of this disease.
Collapse
Affiliation(s)
- Lyndia Effendy
- Department of Clinical Microbiology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| | - Metta Octora
- Department of Clinical Microbiology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| | - Deby Kusumaningrum
- Department of Clinical Microbiology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo Hospital Surabaya, Indonesia
| |
Collapse
|
22
|
van Hengel I, Putra N, Tierolf M, Minneboo M, Fluit A, Fratila-Apachitei L, Apachitei I, Zadpoor A. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomater 2020; 107:325-337. [PMID: 32145392 DOI: 10.1016/j.actbio.2020.02.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Antibiotic-resistant bacteria are frequently involved in implant-associated infections (IAIs), making the treatment of these infections even more challenging. Therefore, multifunctional implant surfaces that simultaneously possess antibacterial activity and induce osseointegration are highly desired in order to prevent IAIs. The incorporation of multiple inorganic antibacterial agents onto the implant surface may aid in generating synergistic antibacterial behavior against a wide microbial spectrum while reducing the occurrence of bacterial resistance. In this study, porous titanium implants synthesized by selective laser melting (SLM) were biofunctionalized with plasma electrolytic oxidation (PEO) using electrolytes based on Ca/P species as well as silver and zinc nanoparticles in ratios from 0 to 100% that were tightly embedded into the growing titanium oxide layer. After the surface bio-functionalization process, silver and zinc ions were released from the implant surfaces for at least 28 days resulting in antibacterial leaching activity against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, the biofunctionalized implants generated reactive oxygen species, thereby contributing to antibacterial contact-killing. While implant surfaces containing up to 75% silver and 25% zinc nanoparticles fully eradicated both adherent and planktonic bacteria in vitro as well as in an ex vivo experiment performed using murine femora, solely zinc-bearing surfaces did not. The minimum inhibitory and bactericidal concentrations determined for different combinations of both types of ions confirmed the presence of a strong synergistic antibacterial behavior, which could be exploited to reduce the amount of required silver ions by two orders of magnitude (i.e., 120 folds). At the same time, the zinc bearing surfaces enhanced the metabolic activity of pre-osteoblasts after 3, 7, and 11 days. Altogether, implant biofunctionalization by PEO with silver and zinc nanoparticles is a fruitful strategy for the synthesis of multifunctional surfaces on orthopedic implants and the prevention of IAIs caused by antibiotic-resistant bacteria. STATEMENT OF SIGNIFICANCE: Implant-associated infections are becoming increasingly challenging to treat due to growing antibiotic resistance against antibiotics. Here, we propose an alternative approach where silver and zinc nanoparticles are simultaneously used for the biofunctionalization of rationally designed additively manufactured porous titanium. This combination of porous design and tailored surface treatment allows us to reduce the amount of required silver nanoparticles by two orders of magnitude, fully eradicate antibiotic-resistant bacteria, and enhance the osteogenic behavior of pre-osteoblasts. We demonstrate that the resulting implants display antibacterial activity in vitro and ex vivo against methicillin-resistant Staphylococcus aureus.
Collapse
|
23
|
Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1151-1163. [PMID: 32194053 DOI: 10.1016/j.ajpath.2020.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023]
Abstract
Osteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis. Advanced in vitro cell culture models, such as ex vivo culture models or organoids, have also been developed over the past decade, and have become widespread in many fields, including infectious diseases. These models better mimic the in vivo environment, allow the use of human cells, and can reduce our reliance on animals in osteomyelitis research. In this review, we provide an overview of the main pathologic concepts in osteomyelitis, with a focus on the new discoveries in recent years. Furthermore, we outline the value of modern in vitro cell culture techniques, with a focus on their current application to infectious diseases and osteomyelitis in particular.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, Davos, Switzerland; Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Mario Morgenstern
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | | | | | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
24
|
Poli E, Ouk TS, Barrière G, Lévèque G, Sol V, Denes E. Does low hydroxyl group surface density explain less bacterial adhesion on porous alumina? Orthop Traumatol Surg Res 2019; 105:473-477. [PMID: 30612953 DOI: 10.1016/j.otsr.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Bacterial adhesion depends on surface materials. Recently it was suggested that ceramic-on-ceramic bearings could be less prone to infection than other bearings. We examined the possibility that porous alumina ceramic could be less susceptible to bacterial adhesion. HYPOTHESIS As hydroxyl groups (OH) on material surface are a major factor governing the surface properties (for example: adsorption, first non-specific step of bacterial adhesion), we hypothesized that alumina had lower OH group density than other material. Thus, we asked (i) if bacterial adhesion was lower on alumina than on titanium alloy, stainless steel and polyethylene and (ii) if OH group density was also lower on alumina. MATERIAL AND METHODS We performed (i) in vitro bacterial cultures on porous alumina, titanium, stainless steel and polyethylene using Staphylococcus aureus and Pseudomonas aeruginosa, known to adhere to surfaces. Bacterial cultures were done 3 times in duplicate for each material and each strain. Colony Forming Units (CFU) per cm2 were measured; (ii) Neutral red reagent helped obtaining OH density estimates using spacer arms. UV-visible spectrophotometry method with Neutral red test, reproduced twice for each surface, provided μg/cm2 measurements of OH density. RESULTS There was significantly less P. aeruginosa adherent on porous alumina (2.25×104 CFU/cm2) than on titanium (4.27×105 CFU/cm2, p=0.01), on stainless steel (2.44×105 CFU/cm2, p=0.02) and on polyethylene (7.29×105 CFU/cm2, p<0.001). S. aureus was significantly less adherent on porous alumina (3.22×105 CFU/cm2) than on polyethylene (5.23×106 CFU/cm2, p=0.01), but there was no difference with titanium (1.64×106 CFU/cm2, p=0.08) and stainless steel (1.79×106 CFU/cm2, p=0.1). There was significantly lower Neutral red grafted on porous alumina (0.09μg/cm2) than on titanium (8.88μg/cm2, p<0.0001), on stainless steel (39.8μg/cm2, p=0.002) and on polyethylene (4.5μg/cm2, p<0.01). However, no correlation was found between bacterial adherence and OH group density. DISCUSSION Bacterial adherence on porous alumina was lower than on other bearings. Although there were less surface OH groups on porous alumina, we failed establishing a statistical correlation between bacterial adherence and OH group density. LEVEL OF EVIDENCE IV, in vitro study.
Collapse
Affiliation(s)
- Evelyne Poli
- R&D Department, I.Ceram, 1 rue Columbia, 87068 Limoges, France
| | - Tan-Sothea Ouk
- Laboratoire PEIRENE, EA 7500, Limoges University, 87000 Limoges, France
| | | | | | - Vincent Sol
- Laboratoire PEIRENE, EA 7500, Limoges University, 87000 Limoges, France
| | - Eric Denes
- R&D Department, I.Ceram, 1 rue Columbia, 87068 Limoges, France.
| |
Collapse
|
25
|
Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:529-538. [DOI: 10.1016/j.msec.2018.12.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 12/18/2018] [Indexed: 01/16/2023]
|
26
|
Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018; 9:2041731418789838. [PMID: 30083308 PMCID: PMC6071164 DOI: 10.1177/2041731418789838] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.
Collapse
Affiliation(s)
- Wich Orapiriyakul
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Laila Damiati
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Etxabide A, Ribeiro RDC, Guerrero P, Ferreira AM, Stafford GP, Dalgarno K, de la Caba K, Gentile P. Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. Int J Biol Macromol 2018; 117:199-208. [PMID: 29800660 DOI: 10.1016/j.ijbiomac.2018.05.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Tetrahydrocurcumin (THC) is one of the major colourless metabolites of curcumin and shows even greater pharmacological and physiological benefits. The aim of this work was the manufacturing of porous scaffolds as a carrier of THC under physiological conditions. Fish-derived gelatin scaffolds were prepared by freeze-drying by two solutions concentrations (2.5% and 4% w/v), cross-linked via addition of lactose and heat-treated at 105 °C. This cross-linking reaction resulted in more water resistant scaffolds with a water uptake capacity higher than 800%. Along with the cross-linking reaction, the gelatin concentration affected the scaffold morphology, as observed by scanning electron microscopy images, by obtaining a reduced porosity but larger pores sizes when the initial gelatin concentration was increased. These morphological changes led to a scaffold's strength enhancement from 0.92 ± 0.22 MPa to 2.04 ± 0.18 MPa when gelatin concentration was increased. THC release slowed down when gelatin concentration increased from 2.5 to 4% w/v, showing a controlled profile within 96 h. Preliminary in vitro test with chondrocytes on scaffolds with 4% w/v gelatin offered higher metabolic activities and cell survival up to 14 days of incubation. Finally the addition of THC did not influence significantly the cytocompatibility and potential antibacterial properties were demonstrated successfully against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Etxabide
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - R D C Ribeiro
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - P Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - A M Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - G P Stafford
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom
| | - K Dalgarno
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - K de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - P Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
28
|
Das B, Moumita S, Ghosh S, Khan MI, Indira D, Jayabalan R, Tripathy SK, Mishra A, Balasubramanian P. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:436-444. [PMID: 30033274 DOI: 10.1016/j.msec.2018.05.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/22/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023]
Abstract
Nanobiotechnology has become a newly evolving field of interest in biomedical applications due to its biocompatibility and non-toxic nature towards the environment. Metal and metal oxide nanoparticles have been widely used as an antibacterial agent due to the emergence of antibiotic resistant pathogens, which leads to the outbreak of infectious diseases. In the present paper, biogenic synthesis of magnesium oxide (MgO) nanoflakes is reported by using Bauhinia purpurea leaf extract through alkaline precipitation method along with its detailed characterization. The average size of synthesized nanoflakes was found to be around 11 nm. Electron microscopy was used to investigate the morphology of the MgO nanoflakes. Additionally, the presence of antioxidants, phenolics and flavonoids in B. purpurea leaf extract has been studied by using different assays, which suggested the efficacy of leaf extract as a potential reducing agent for MgO nanoflakes synthesis. Antibacterial activity of synthesized MgO nanoflakes was investigated against Staphylococcus aureus, a gram positive bacteria known to cause various infections in humans. Results suggested the high efficacy of MgO nanoflakes as a potential antibacterial agent against S. aureus at meager dose size (250 μg/ml) and possible mode of action was investigated through surface morphology analysis of bacterial cells by field emission scanning electron microscopy.
Collapse
Affiliation(s)
- Bhaskar Das
- Bioenergy and Environmental Laboratory, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sahoo Moumita
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumen Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Md Imran Khan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Dash Indira
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - R Jayabalan
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Suraj K Tripathy
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Amrita Mishra
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - P Balasubramanian
- Bioenergy and Environmental Laboratory, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
29
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Arciola CR, An YH, Campoccia D, Donati ME, Montanaro L. Etiology of Implant Orthopedic Infections: A Survey on 1027 Clinical Isolates. Int J Artif Organs 2018; 28:1091-100. [PMID: 16353115 DOI: 10.1177/039139880502801106] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In spite of the recent achievements derived from modern protocols of prophylaxis, orthopedic surgical infections still remain unacceptably frequent, especially in light of the often devastating outcomes of septic complications. The spectrum and the prevalence of the bacteria most frequently involved in orthopedic infections are here explored, with particular reference to those infections associated to implant biomaterials, which were grouped based on device typology. During a 30 months period (from September 2000 to April 2003), 1027 microbial strains were consecutively isolated from 699 patients undergoing revision surgery at the Rizzoli Orthopedic Institute. 775 (75.5%) of all these microorganisms were identified as belonging to the Staphylococcus genus, 82 (8%) to the Enterobacteriaceae family, 75 (7.3%) to the Pseudomonas genus, 54 (5.3%) to the Enterococcus genus and 20 (1.9%) to the Streptococcus genus. While confirming the importance of staphylococci as the most diffuse cause of infection, our data indicate an unexpectedly high prevalence of S. epidermidis on infected hip and knee arthroprostheses, respectively of 42% and 44%. The spectrum of bacteria infecting either internal or external fracture fixation devices appears to differ from that of hip and knee arthroprostheses and more closely resembles that of infections non-associated to medical devices, being characterized by a relatively higher prevalence of Staphylococcus aureus (over 40%) and Pseudomonas aeruginosa. Enterobacteriaceae and members of the Streptococcus and Corynebacterium genera are frequently associated with implants in which surgical incisions were made near the perineum, determining a completely altered spectrum.
Collapse
Affiliation(s)
- C R Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna, Italy.
| | | | | | | | | |
Collapse
|
31
|
Charmi far B, Mahdavi S. Frequency of Adherence Genes cna, fnbA and fnbB in Staphylococcus aureus Isolates from Traditional Cheese. MEDICAL LABORATORY JOURNAL 2017. [DOI: 10.29252/mlj.11.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
32
|
|
33
|
Tumminello A, Dominguez D, Lebowitz D, Bartolone P, Betz M, Hannouche D, Uçkay I. Staphylococcus aureus versus streptococci in orthopaedic infections. Infect Dis (Lond) 2017; 49:716-718. [DOI: 10.1080/23744235.2017.1318219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Antonio Tumminello
- Orthopedic Surgery Service, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dennis Dominguez
- Orthopedic Surgery Service, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dan Lebowitz
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Placido Bartolone
- Orthopedic Surgery Service, Faculty of Medicine, University of Geneva, Switzerland
| | - Michael Betz
- Orthopedic Surgery Service, Faculty of Medicine, University of Geneva, Switzerland
| | - Didier Hannouche
- Orthopedic Surgery Service, Faculty of Medicine, University of Geneva, Switzerland
| | - Ilker Uçkay
- Orthopedic Surgery Service, Faculty of Medicine, University of Geneva, Switzerland
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
34
|
Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Photodynamic therapy effect on cell growth inhibition induced by Radachlorin and toluidine blue O on Staphylococcus aureus and Escherichia coli: An in vitro study. Photodiagnosis Photodyn Ther 2016; 15:213-7. [DOI: 10.1016/j.pdpdt.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
|
36
|
Boda SK, Basu B. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2016; 105:2174-2190. [PMID: 27404048 DOI: 10.1002/jbm.b.33740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2174-2190, 2017.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
37
|
Ravanetti F, Chiesa R, Ossiprandi MC, Gazza F, Farina V, Martini FM, Di Lecce R, Gnudi G, Della Valle C, Gavini J, Cacchioli A. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:52. [PMID: 26787484 DOI: 10.1007/s10856-015-5661-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
In implantology, as an alternative approach to the use of antibiotics, direct surface modifications of the implant addressed to inhibit bacterial adhesion and to limit bacterial proliferation are a promising tactic. The present study evaluates in an in vivo normal model the osteogenic response and the osteointegration of an anodic spark deposition nanostructured titanium surface doped with gallium (ASD + Ga) in comparison with two other surface treatments of titanium: an anodic spark deposition treatment without gallium (ASD) and an acid etching treatment (CTR). Moreover the study assesses the osteoprotective potential and the antibacterial effect of the previously mentioned surface treatments in an experimentally-induced peri-implantitis model. The obtained data points out a more rapid primary fixation in ASD and ASD + Ga implants, compared with CTR surface. Regarding the antibacterial properties, the ASD + Ga surface shows osteoprotective action on bone peri-implant tissue in vivo as well as an antibacterial effect within the first considered time point.
Collapse
Affiliation(s)
- F Ravanetti
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - R Chiesa
- Department of Chemistry, Materials and Materials Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - M C Ossiprandi
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Gazza
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - V Farina
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - F M Martini
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - R Di Lecce
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - G Gnudi
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - C Della Valle
- Department of Chemistry, Materials and Materials Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - J Gavini
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A Cacchioli
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
38
|
Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:17-30. [DOI: 10.1007/5584_2016_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS One 2014; 9:e115940. [PMID: 25536060 PMCID: PMC4275259 DOI: 10.1371/journal.pone.0115940] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022] Open
Abstract
The increasing incidence of implant-associated infections induced by Staphylococcus aureus (SA) in combination with growing resistance to conventional antibiotics requires novel therapeutic strategies. In the current study we present the first application of the biofilm-penetrating antimicrobial peptide lysostaphin in the context of bone infections. In a standardized implant-associated bone infection model in mice beta-irradiated lysostaphin-coated titanium plates were compared with uncoated plates. Coating of the implant was established with a poly(D,L)-lactide matrix (PDLLA) comprising lysostaphin formulated in a stabilizing and protecting solution (SPS). All mice were osteotomized and infected with a defined count of SA. Fractures were fixed with lysostaphin-coated locking plates. Plates uncoated or PDLLA-coated served as controls. All mice underwent debridement and lavage on Days 7, 14, 28 to determine the bacterial load and local immune reaction. Fracture healing was quantified by conventional radiography. On Day 7 bacterial growth in the lavages of mice with lysostaphin-coated plates showed a significantly lower count to the control groups. Moreover, in the lysostaphin-coated plate groups complete fracture healing were observed on Day 28. The fracture consolidation was accompanied by a diminished local immune reaction. However, control groups developed an osteitis with lysis or destruction of the bone and an evident local immune response. The presented approach of terminally sterilized lysostaphin-coated implants appears to be a promising therapeutic approach for low grade infection or as prophylactic strategy in high risk fracture care e.g. after severe open fractures.
Collapse
|
40
|
Prudencio A, Stebbins ND, Johnson M, Song M, Langowski BA, Uhrich KE. Polymeric prodrugs of ampicillin as antibacterial coatings. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514528410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel ampicillin prodrug containing two carboxylic acid functionalities was synthesized by reacting ampicillin with acyl chloride in the presence of base. This prodrug was subsequently converted into a poly(anhydride-amide) via solution polymerization. The polymer, which chemically incorporates the ampicillin prodrug into the polymeric backbone, was developed as a film to prevent infections associated with medical devices by controlled, localized release of antimicrobials. The robust polymer coatings exhibiting strong adhesion to stainless steel were produced under elevated temperature and reduced pressure. The in vitro hydrolytic degradation of the polymer into the ampicillin prodrug was measured and the antibacterial activity of polymer-derived coatings was examined using a Gram-positive bacterium, Staphylococcus aureus. Furthermore, the polymer cytotoxicity was screened using fibroblasts. The ampicillin prodrug demonstrated antibacterial activity and the polymer demonstrated no cytotoxic effects on fibroblasts. Based on these results, the biodegradation of the antimicrobial-based poly(anhydride-amide) into the prodrug displays substantial promise as an implant or implant coating to reduce device failure resulting from bacterial infections.
Collapse
Affiliation(s)
- Almudena Prudencio
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Nicholas D Stebbins
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Michelle Johnson
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - MinJung Song
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Bryan A Langowski
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
41
|
Windolf CD, Meng W, Lögters TT, MacKenzie CR, Windolf J, Flohé S. Implant-associated localized osteitis in murine femur fracture by biofilm forming Staphylococcus aureus: a novel experimental model. J Orthop Res 2013; 31:2013-20. [PMID: 23878009 DOI: 10.1002/jor.22446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/26/2013] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus (SA) is the most common causative agent for implant-associated osteitis. The present study characterizes a novel model of a low grade acute SA osteitis with bone defect in the femur which is stabilized by a titanium locking plate. Wild-type Balb/c mice were osteotomized, fixed by a locking plate and infected with SA. Mice underwent debridement 7 and 14 days later and were sacrificed at Day 28. At Days 7, 14, and 28 after inoculation local and systemic cell populations and IL-6 were analyzed. Fracture healing was quantified by radiography. The control group underwent the same procedure without infection. The bacterial load of implant-associated osteitis with biofilm formation was quantified by counting CFU and real-time PCR. Fracture healing determined by radiography was delayed in infected compared to non-infected mice. Throughout the investigation period CFU and leukocyte counts, as well as IL-6 levels were found to be significantly elevated in infected mice at the infection site but not systemically. Our murine model allows the detailed investigation of implant associated localized osteitis with biofilm producing SA and its influence on fracture healing. The model provides a tool to analyze therapeutic or prophylactic approaches to the problem of biofilm-associated osteitis.
Collapse
Affiliation(s)
- Ceylan D Windolf
- Department of Trauma- and Hand Surgery, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kashef N, Akbarizare M, Kamrava SK. Effect of sub-lethal photodynamic inactivation on the antibiotic susceptibility and biofilm formation of clinical Staphylococcus aureus isolates. Photodiagnosis Photodyn Ther 2013; 10:368-73. [DOI: 10.1016/j.pdpdt.2013.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/19/2013] [Accepted: 02/23/2013] [Indexed: 01/22/2023]
|
43
|
Mandal A, Sekar S, Chandrasekaran N, Mukherjee A, Sastry TP. Poly(ethylene) glycol-capped silver and magnetic nanoparticles: synthesis, characterization, and comparison of bactericidal and cytotoxic effects. Proc Inst Mech Eng H 2013; 227:1224-36. [PMID: 23959858 DOI: 10.1177/0954411913499290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver and magnetic (Fe3O4) nanoparticles have attracted wide attention as novel antimicrobial agents due to their unique chemical and physical properties. In order to study the comparative effects on antibacterial and animal cytotoxicity, Staphylococcus aureus and NIH 3T3 fibroblasts were used, respectively. Both nanoparticles were synthesized via a novel matrix-mediated method using poly(ethylene) glycol. Formation of silver nanoparticles was confirmed by fluorescence and ultraviolet-visible spectroscopic techniques. The poly(ethylene) glycol-coated silver and Fe3O4 nanoparticles were characterized by scanning electron microscope, transmission electron microscope, zeta potential, particle size analysis, Fourier-transform infrared, X-ray diffraction, and X-ray photoelectron spectroscopy. The antimicrobial results indicate that both poly(ethylene) glycol-coated silver and Fe3O4 nanoparticles inhibited S. aureus growth at the concentrations of 5 and 10 µg/mL at all time points without showing any significant cytotoxicity on NIH 3T3 fibroblasts. The particle size of both the poly(ethylene) glycol-coated silver and Fe3O4 nanoparticles dominated in the range 10-15 nm, obtained by particle size analyzer. The poly(ethylene) glycol coating on the particles showed less aggregation of nanoparticles, as observed by scanning electron microscope and transmission electron microscope. The overall obtained results indicated that these two nanoparticles were stable and could be used to develop a magnetized antimicrobial scaffolds for biomedical applications.
Collapse
Affiliation(s)
- A Mandal
- Centre for Nano-Biotechnology, School of Bio-Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
44
|
Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. BIOMATTER 2012; 2:176-94. [PMID: 23507884 PMCID: PMC3568104 DOI: 10.4161/biom.22905] [Citation(s) in RCA: 438] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.
Collapse
Affiliation(s)
- Marta Ribeiro
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
45
|
Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One 2012; 7:e40586. [PMID: 22792377 PMCID: PMC3394727 DOI: 10.1371/journal.pone.0040586] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/10/2012] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is the most frequent causative organism of osteomyelitis. It is characterised by widespread bone loss and bone destruction. Previously we demonstrated that S. aureus protein A (SpA) is capable of binding to tumour necrosis factor receptor-1 expressed on pre-osteoblastic cells, which results in signal generation that leads to cell apoptosis resulting in bone loss. In the current report we demonstrate that upon S. aureus binding to osteoblasts it also inhibits de novo bone formation by preventing expression of key markers of osteoblast growth and division such as alkaline phosphatase, collagen type I, osteocalcin, osteopontin and osteocalcin. In addition, S. aureus induces secretion of soluble RANKL from osteoblasts which in turn recruits and activates the bone resorbing cells, osteoclasts. A strain of S. aureus defective in SpA failed to affect osteoblast growth or proliferation and most importantly failed to recruit or activate osteoclasts. These results suggest that S. aureus SpA binding to osteoblasts provides multiple coordinated signals that accounts for bone loss and bone destruction seen in osteomyelitis cases. A better understanding of the mechanisms through which S. aureus leads to bone infection may improve treatment or lead to the development of better therapeutic agents to treat this notoriously difficult disease.
Collapse
Affiliation(s)
- Amro Widaa
- Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tania Claro
- Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy J. Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fergal J. O’Brien
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Steven W. Kerrigan
- Microbial Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
46
|
Bessa Pereira C, Gomes PS, Costa-Rodrigues J, Almeida Palmas R, Vieira L, Ferraz MP, Lopes MA, Fernandes MH. Equisetum arvense hydromethanolic extracts in bone tissue regeneration: in vitro osteoblastic modulation and antibacterial activity. Cell Prolif 2012; 45:386-96. [PMID: 22672309 DOI: 10.1111/j.1365-2184.2012.00826.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Equisetum arvense preparations have long been used to promote bone healing. The aim of this work was to evaluate osteogenic and antibacterial effects of E. arvense hydromethanolic extracts. MATERIALS AND METHODS Dried aerial components of E. arvense were extracted using a mixture of methanol:water (1:1), for 26 days, yielding three extracts that were tested (10-1000 μg/ml) in human osteoblastic cells: E1, E2 and EM (a mixture of E1 and E2, 1:1). Cell cultures, performed on cell culture plates or over hydroxyapatite (HA) substrates, were assessed for osteoblastic markers. In addition, effects of the extracts on Staphylococcus aureus were addressed. RESULTS Solution E1 caused increased viability/proliferation and ALP activity at 50-500 μg/ml, and deleterious effects at levels ≥1000 μg/ml. E2 inhibited cell proliferation at levels ≥500 μg/ml. EM presented a profile between those observed with E1 and E2. In addition, E1, E2 and EM, 10-1000 μg/ml, inhibited expansion of S. aureus. Furthermore, E1, tested in HA substrates colonized with osteoblastic cells, causing increase in cell population growth (10-100 μg/ml). E1 also exhibited antibacterial activity against S. aureus cultured over HA. CONCLUSIONS Results showed that E. arvense extracts elicited inductive effects on human osteoblasts while inhibiting activity of S. aureus, suggesting a potentially interesting profile regarding bone regeneration strategies.
Collapse
Affiliation(s)
- C Bessa Pereira
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Del Prado G, Terriza A, Ortiz-Pérez A, Molina-Manso D, Mahillo I, Yubero F, Puértolas JA, Manrubia-Cobo M, Gómez Barrena E, Esteban J. DLC coatings for UHMWPE: Relationship between bacterial adherence and surface properties. J Biomed Mater Res A 2012; 100:2813-20. [DOI: 10.1002/jbm.a.34220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/25/2012] [Accepted: 04/04/2012] [Indexed: 01/25/2023]
|
48
|
Liu Q, Han L, Li B, Sun J, Ni Y. Virulence characteristic and MLST-agr genetic background of high-level mupirocin-resistant, MRSA isolates from Shanghai and Wenzhou, China. PLoS One 2012; 7:e37005. [PMID: 22623969 PMCID: PMC3356393 DOI: 10.1371/journal.pone.0037005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
The emergence and prevalence of high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA) is challenging the eradication of MRSA nasal carriage and the treatment of skin and soft tissue infections. To understand the potentially pathogenetic capacity and the genetic basis of MuH MRSA, it is important to have a detailed knowledge of the molecular traits of this organism. Fifty three MuH MRSA isolates were gathered from Shanghai (28 isolates) and Wenzhou (25 isolates) in China. These isolates, consisting of 27 different PFGE-SCCmec-spa patterns, were examined by PCR for 35 virulence genes and further typed using agr (accessory gene regulator) typing and MLST (multilocus sequence typing). All 53 strains were positive for the genes hlg/hlg variant and icaD, and negative for seb, sed, see, seh, eta, etb, hld, cap-5, and ACME-arcA. Compared with Wenzhou isolates, Shanghai isolates were more likely to carry seg (P = 0.002) and several other genes which were not found in Wenzhou strains such as sec, sei, tst (P<0.001 each), and pvl (P = 0.012), and less likely to contain sea (P<0.001), cna (P = 0.031), and efb (P = 0.045). MLST and agr typing showed that ST239-agr1, ST5-agr1, and ST239-agr2 were the common lineages in MuH MRSA isolates from these two different regions. Our results indicated that MuH MRSA strains from two different geographic regions of China have differences in distribution of some virulence genes, while their major MLST-agr genetic backgrounds were accordant.
Collapse
Affiliation(s)
- Qingzhong Liu
- Department of Clinical Laboratory, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lizhong Han
- Department of Clinical Microbiology, Ruijin Hospital, School of Medicine, Shanghai, China
| | - Bin Li
- Department of Clinical Microbiology, Ruijin Hospital, School of Medicine, Shanghai, China
| | - Jingyong Sun
- Department of Clinical Microbiology, Ruijin Hospital, School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Clinical Microbiology, Ruijin Hospital, School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
49
|
Pérez-Tanoira R, Pérez-Jorge C, Endrino JL, Gómez-Barrena E, Horwat D, Pierson JF, Esteban J. Bacterial adhesion on biomedical surfaces covered by micrometric silver Islands. J Biomed Mater Res A 2012; 100:1521-8. [DOI: 10.1002/jbm.a.34090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/14/2011] [Accepted: 01/04/2012] [Indexed: 11/05/2022]
|
50
|
Grumezescu AM, Saviuc C, Chifiriuc MC, Hristu R, Mihaiescu DE, Balaure P, Stanciu G, Lazar V. Inhibitory activity of Fe(3) O(4)/oleic acid/usnic acid-core/shell/extra-shell nanofluid on S. aureus biofilm development. IEEE Trans Nanobioscience 2011; 10:269-74. [PMID: 22157076 DOI: 10.1109/tnb.2011.2178263] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Undesired biofilm development is a major concern in many areas, especially in the medical field. The purpose of the present study was to comparatively investigate the antibiofilm efficacy of usnic acid, in soluble versus nanofluid formulation, in order to highlight the potential use of Fe(3) O(4)/oleic acid (FeOA) nanofluid as potential controlled release vehicle of this antibiofilm agent. The (+) -UA loaded into nanofluid exhibited an improved antibiofilm effect on S. aureus biofilm formation, revealed by the drastic decrease of the viable cell counts as well as by confocal laser scanning microscopy images. Our results demonstrate that FeOA nanoparticles could be used as successful coating agents for obtaining antibiofilm pellicles on different medical devices, opening a new perspective for obtaining new antimicrobial and antibiofilm surfaces, based on hybrid functionalized nanostructured biomaterials.
Collapse
Affiliation(s)
- Alexandru Mihai Grumezescu
- Science and Engineering of Oxidic Materialsand Nanomaterials, University Politehnica of Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|