1
|
Liu J, Parrish JR, Hines J, Mansfield L, Finley RL. A proteome-wide screen of Campylobacter jejuni using protein microarrays identifies novel and conformational antigens. PLoS One 2019; 14:e0210351. [PMID: 30633767 PMCID: PMC6329530 DOI: 10.1371/journal.pone.0210351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is a foodborne intestinal pathogen and major cause of gastroenteritis worldwide. C. jejuni proteins that are immunogenic have been sought for their potential use in the development of biomarkers, diagnostic assays, or subunit vaccines for humans or livestock. To identify new immunogenic C. jejuni proteins, we used a native protein microarray approach. A protein chip, with over 1400 individually purified GST-tagged C. jejuni proteins, representing over 86% of the proteome, was constructed to screen for antibody titers present in test sera raised against whole C. jejuni cells. Dual detection of GST signals was incorporated as a way of normalizing the variation of protein concentrations contributing to the antibody staining intensities. We detected strong signals to 102 C. jejuni antigens. In addition to antigens recognized by antiserum raised against C. jejuni, parallel experiments were conducted to identify antigens cross-reactive to antiserum raised against various serotypes of E. coli or Salmonella or to healthy human sera. This led to the identification of 34 antigens specifically recognized by the C. jejuni antiserum, only four of which were previously known. The chip approach also allowed identification of conformational antigens. We demonstrate in the case of Cj1621 that antigen signals are lost to denaturing conditions commonly used in other approaches to identify immunogens. Antigens identified in this study include those possessing sequence features indicative of cell surface localization, as well as those that do not. Together, our results indicate that the unbiased chip-based screen can help reveal the full repertoire of host antibodies against microbial proteomes.
Collapse
Affiliation(s)
- Jiayou Liu
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jodi R Parrish
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Julie Hines
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Linda Mansfield
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Russell L Finley
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America.,Department of Microbiology, Immunology, and Biochemistry Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
2
|
Kobierecka PA, Wyszyńska AK, Gubernator J, Kuczkowski M, Wiśniewski O, Maruszewska M, Wojtania A, Derlatka KE, Adamska I, Godlewska R, Jagusztyn-Krynicka EK. Chicken Anti-Campylobacter Vaccine - Comparison of Various Carriers and Routes of Immunization. Front Microbiol 2016; 7:740. [PMID: 27242755 PMCID: PMC4872485 DOI: 10.3389/fmicb.2016.00740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp, especially the species Campylobacter jejuni, are important human enteropathogens responsible for millions of cases of gastro-intestinal disease worldwide every year. C. jejuni is a zoonotic pathogen, and poultry meat that has been contaminated by microorganisms is recognized as a key source of human infections. Although numerous strategies have been developed and experimentally checked to generate chicken vaccines, the results have so far had limited success. In this study, we explored the potential use of non-live carriers of Campylobacter antigen to combat Campylobacter in poultry. First, we assessed the effectiveness of immunization with orally or subcutaneously delivered Gram-positive Enhancer Matrix (GEM) particles carrying two Campylobacter antigens: CjaA and CjaD. These two immunization routes using GEMs as the vector did not protect against Campylobacter colonization. Thus, we next assessed the efficacy of in ovo immunization using various delivery systems: GEM particles and liposomes. The hybrid protein rCjaAD, which is CjaA presenting CjaD epitopes on its surface, was employed as a model antigen. We found that rCjaAD administered in ovo at embryonic development day 18 by both delivery systems resulted in significant levels of protection after challenge with a heterologous C. jejuni strain. In practice, in ovo chicken vaccination is used by the poultry industry to protect birds against several viral diseases. Our work showed that this means of delivery is also efficacious with respect to commensal bacteria such as Campylobacter. In this study, we evaluated the protection after one dose of vaccine given in ovo. We speculate that the level of protection may be increased by a post-hatch booster of orally delivered antigens.
Collapse
Affiliation(s)
- Patrycja A. Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Agnieszka K. Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of WrocławWrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Oskar Wiśniewski
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Marta Maruszewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Anna Wojtania
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna E. Derlatka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | | |
Collapse
|
3
|
Kobierecka PA, Olech B, Książek M, Derlatka K, Adamska I, Majewski PM, Jagusztyn-Krynicka EK, Wyszyńska AK. Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis. Front Microbiol 2016; 7:165. [PMID: 26925040 PMCID: PMC4757695 DOI: 10.3389/fmicb.2016.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein - CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type C. jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analyzed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ Lactic Acid Bacteria (LAB) strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered as an alternative vector to deliver heterologous antigens to the bird immune system. Additionally, the analysis of the structure and immunogenicity of the generated rCjaAD hybrid protein showed that the CjaA antigen can be considered as a starting point to construct multiepitope anti-Campylobacter vaccines.
Collapse
Affiliation(s)
- Patrycja A. Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Barbara Olech
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Monika Książek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna Derlatka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Paweł M. Majewski
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of WarsawWarsaw, Poland
| | | | - Agnieszka K. Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of WarsawWarsaw, Poland
| |
Collapse
|
4
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
5
|
Kobierecka P, Wyszyńska A, Maruszewska M, Wojtania A, Żylińska J, Bardowski J, Jagusztyn-Krynicka EK. Lactic Acid Bacteria as a Surface Display Platform for Campylobacter jejuni Antigens. J Mol Microbiol Biotechnol 2015; 25:1-10. [DOI: 10.1159/000368780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Food poisoning and diarrheal diseases continue to pose serious health care and socioeconomic problems worldwide. <i>Campylobacter</i> spp. is a very widespread cause of gastroenteritis. Over the past decade there has been increasing interest in the use of lactic acid bacteria (LAB) as mucosal delivery vehicles. They represent an attractive opportunity for vaccination in addition to vaccination with attenuated bacterial pathogens. <b><i>Methods:</i></b> We examined the binding ability of hybrid proteins to nontreated or trichloroacetic acid (TCA)-pretreated LAB cells by immunofluorescence and Western blot analysis. <b><i>Results:</i></b> In this study we evaluated the possibility of using GEM (Gram-positive enhancer matrix) particles of <i>Lactobacillus salivarius</i> as a binding platform for 2 conserved, immunodominant, extracytoplasmic <i>Campylobacter jejuni</i> proteins: CjaA and CjaD. We analyzed the binding ability of recombinant proteins that contain <i>C. jejuni</i> antigens (CjaA or CjaD) fused with the protein anchor (PA) of the <i>L. lactis </i>peptidoglycan hydrolase AcmA, which comprises 3 LysM motifs and determines noncovalent binding to the cell wall peptidoglycan. Both fused proteins, i.e. 6HisxCjaAx3LysM and 6HisxCjaDx3LysM, were able to bind to nontreated or TCA-pretreated <i>L. salivarius</i> cells. <b><i>Conclusion:</i></b> Our results documented that the LysM-mediated binding system allows us to construct GEM particles that present 2 <i>C. jejuni</i> antigens.
Collapse
|
6
|
Robyn J, Rasschaert G, Pasmans F, Heyndrickx M. Thermotolerant Campylobacter during Broiler Rearing: Risk Factors and Intervention. Compr Rev Food Sci Food Saf 2015; 14:81-105. [PMID: 33401809 DOI: 10.1111/1541-4337.12124] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Thermotolerant Campylobacters are one of the most important bacterial causative agents of human gastrointestinal illness worldwide. In most European Union (EU) member states human campylobacteriosis is mainly caused by infection with Campylobacter jejuni or Campylobacter coli following consumption or inadequate handling of Campylobacter-contaminated poultry meat. To date, no effective strategy to control Campylobacter colonization of broilers during rearing is available. In this review, we describe the public health problem posed by Campylobacter presence in broilers and list and critically review all currently known measures that have been researched to lower the numbers of Campylobacter bacteria in broilers during rearing. We also discuss the most promising measures and which measures should be investigated further. We end this review by elaborating on readily usable measures to lower Campylobacter introduction and Campylobacter numbers in a broiler flock.
Collapse
Affiliation(s)
- Joris Robyn
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium
| | - Geertrui Rasschaert
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium
| | - Frank Pasmans
- the Dept. of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent Univ, Salisburylaan 133, Merelbeke, Belgium
| | - Marc Heyndrickx
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium.,the Dept. of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent Univ, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
7
|
Watson E, Sherry A, Inglis NF, Lainson A, Jyothi D, Yaga R, Manson E, Imrie L, Everest P, Smith DGE. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity. EUPA OPEN PROTEOMICS 2014; 4:184-194. [PMID: 27525220 PMCID: PMC4975774 DOI: 10.1016/j.euprot.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 12/24/2022]
Abstract
Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Aileen Sherry
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil F Inglis
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Alex Lainson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | | | - Raja Yaga
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Erin Manson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Lisa Imrie
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Paul Everest
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David G E Smith
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
O'Donovan D, Corcoran GD, Lucey B, Sleator RD. Campylobacter ureolyticus: a portrait of the pathogen. Virulence 2014; 5:498-506. [PMID: 24717836 PMCID: PMC4063811 DOI: 10.4161/viru.28776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/29/2023] Open
Abstract
Herein, we provide a brief overview of the emerging bacterial pathogen Campylobacter ureolyticus. We describe the identification of the pathogen by molecular as opposed to classical culture based diagnostics and discuss candidate reservoirs of infection. We also review the available genomic data, outlining some of the major virulence factors, and discuss how these mechanisms likely contribute to pathogenesis of the organism.
Collapse
Affiliation(s)
- Dylan O'Donovan
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Gerard D Corcoran
- Department of Diagnostic Microbiology; Cork University Hospital; Wilton, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| |
Collapse
|
9
|
Łaniewski P, Kuczkowski M, Chrząstek K, Woźniak A, Wyszyńska A, Wieliczko A, Jagusztyn-Krynicka EK. Evaluation of the immunogenicity of Campylobacter jejuni CjaA protein delivered by Salmonella enterica sv. Typhimurium strain with regulated delayed attenuation in chickens. World J Microbiol Biotechnol 2014; 30:281-92. [PMID: 23913025 PMCID: PMC3880472 DOI: 10.1007/s11274-013-1447-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
Abstract
Campylobacter spp. are regarded as the most common bacterial cause of gastroenteritis worldwide, and consumption of chicken meat contaminated by Campylobacter is considered to be one of the most frequent sources of human infection in developed countries. Here we evaluated the immunogenicity and protective efficacy of Salmonella Typhimurium χ9718 producing the Campylobacter jejuni CjaA protein as a chicken anti-Campylobacter vaccine. In this study chickens were orally immunized with a new generation S. Typhimurium strain χ9718 with regulated delayed attenuation in vivo and displaying delayed antigen expression. The immunization with the S. Typhimurium χ9718 strain producing C. jejuni CjaA antigen induced strong immune responses against CjaA in both serum IgY and intestinal IgA, however, it did not result in the significant reduction of intestinal colonization by Campylobacter strain. The low level of protection might arise due to a lack of T cell response. Our results demonstrated that a Salmonella strain with regulated delayed attenuation and displaying regulated delayed antigen expression might be an efficient vector to induce immune response against Campylobacter. It seems that an efficient anti-Campylobacter subunit vaccine should be multicomponent. Since S. Typhimurium χ9718 contains two compatible balanced-lethal plasmids, it can provide the opportunity of cloning several Campylobacter genes encoding immunodominant proteins. It may also be used as a delivery vector of eukaryotic genes encoding immunostimulatory molecules to enhance or modulate functioning of chicken immune system.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Klaudia Chrząstek
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Anna Woźniak
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | - Agnieszka Wyszyńska
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic for Birds and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland
| | | |
Collapse
|
10
|
Hoppe S, Bier FF, Nickisch-Rosenegk MV. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni. PLoS One 2013; 8:e65837. [PMID: 23734261 PMCID: PMC3667084 DOI: 10.1371/journal.pone.0065837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify the identification of structural epitopes, as this would extend the spectrum of novel epitopes to be detected.
Collapse
Affiliation(s)
- Sebastian Hoppe
- Fraunhofer Institute for Biomedical Engineering, Am Muehlenberg, Potsdam, Germany
| | - Frank F. Bier
- Fraunhofer Institute for Biomedical Engineering, Am Muehlenberg, Potsdam, Germany
- University Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | | |
Collapse
|
11
|
Hoppe S, Bier FF, von Nickisch-Rosenegk M. Microarray-based method for screening of immunogenic proteins from bacteria. J Nanobiotechnology 2012; 10:12. [PMID: 22436172 PMCID: PMC3368735 DOI: 10.1186/1477-3155-10-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
Abstract
Background Detection of immunogenic proteins remains an important task for life sciences as it nourishes the understanding of pathogenicity, illuminates new potential vaccine candidates and broadens the spectrum of biomarkers applicable in diagnostic tools. Traditionally, immunoscreenings of expression libraries via polyclonal sera on nitrocellulose membranes or screenings of whole proteome lysates in 2-D gel electrophoresis are performed. However, these methods feature some rather inconvenient disadvantages. Screening of expression libraries to expose novel antigens from bacteria often lead to an abundance of false positive signals owing to the high cross reactivity of polyclonal antibodies towards the proteins of the expression host. A method is presented that overcomes many disadvantages of the old procedures. Results Four proteins that have previously been described as immunogenic have successfully been assessed immunogenic abilities with our method. One protein with no known immunogenic behaviour before suggested potential immunogenicity. We incorporated a fusion tag prior to our genes of interest and attached the expressed fusion proteins covalently on microarrays. This enhances the specific binding of the proteins compared to nitrocellulose. Thus, it helps to reduce the number of false positives significantly. It enables us to screen for immunogenic proteins in a shorter time, with more samples and statistical reliability. We validated our method by employing several known genes from Campylobacter jejuni NCTC 11168. Conclusions The method presented offers a new approach for screening of bacterial expression libraries to illuminate novel proteins with immunogenic features. It could provide a powerful and attractive alternative to existing methods and help to detect and identify vaccine candidates, biomarkers and potential virulence-associated factors with immunogenic behaviour furthering the knowledge of virulence and pathogenicity of studied bacteria.
Collapse
Affiliation(s)
- Sebastian Hoppe
- Fraunhofer Institute for Biomedical Engineering, Branch Potsdam, Am Mühlenberg 13, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
12
|
Abstract
The recent detection and isolation of the aflagellate Campylobacter ureolyticus (previously known as Bacteroides ureolyticus) from intestinal biopsy specimens and fecal samples of children with newly diagnosed Crohn's disease led us to investigate the pathogenic potential of this bacterium. Adherence and gentamicin protection assays were employed to quantify the levels of adherence to and invasion into host cells. C. ureolyticus UNSWCD was able to adhere to the Caco-2 intestinal epithelial cell line with a value of 5.341% ± 0.74% but was not able to invade the Caco-2 cells. The addition of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), to the cell line did not affect attachment or invasion, with attachment levels being 4.156% ± 0.61% (P = 0.270) for TNF-α and 6.472% ± 0.61% (P = 0.235) for IFN-γ. Scanning electron microscopy visually confirmed attachment and revealed that C. ureolyticus UNSWCD colonizes and adheres to intestinal cells, inducing cellular damage and microvillus degradation. Purification and identification of the C. ureolyticus UNSWCD secretome detected a total of 111 proteins, from which 29 were bioinformatically predicted to be secretory proteins. Functional classification revealed three putative virulence and colonization factors: the surface antigen CjaA, an outer membrane fibronectin binding protein, and an S-layer RTX toxin. These results suggest that C. ureolyticus has the potential to be a pathogen of the gastrointestinal tract.
Collapse
|
13
|
Kovach Z, Kaakoush NO, Lamb S, Zhang L, Raftery MJ, Mitchell H. Immunoreactive proteins of Campylobacter concisus, an emergent intestinal pathogen. ACTA ACUST UNITED AC 2011; 63:387-96. [PMID: 22092566 DOI: 10.1111/j.1574-695x.2011.00864.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 12/13/2022]
Abstract
Campylobacter concisus is an emerging pathogen of the human gastrointestinal tract. Recently, a significantly higher prevalence of C. concisus DNA and higher levels of antibodies specific to C. concisus was detected in children with Crohn's disease when compared with controls. The aim of this study was to identify C. concisus immunoreactive antigens. Proteins from C. concisus were separated using two-dimensional gel electrophoresis, and sera from 10 C. concisus-positive children with Crohn's disease were employed for immunoprobing. The patients' sera reacted with 69 spots, which corresponded to 31 proteins identified by mass spectrometry. The proteins were functionally classified as involved in chemotaxis, signal transduction, flagellar motility, surface binding and membrane protein assembly. Although the individual patients' sera reacted to different sets of proteins, common antigens that were recognized by all patients were flagellin B, ATP synthase F1 alpha subunit, and outer membrane protein 18. Cross-reactivity between proteins of the Campylobacter genus was tested using patients' sera absorbed with Campylobacter showae, Campylobacter jejuni and Campylobacter ureolyticus. Most of the C. concisus immunoreactive proteins identified in this study showed cross-reactivity with other species except for three antigens. In conclusion, this study has identified C. concisus proteins that are immunoreactive within patients with Crohn's disease.
Collapse
Affiliation(s)
- Zsuzsanna Kovach
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Evaluation of Salmonella-vectored Campylobacter peptide epitopes for reduction of Campylobacter jejuni in broiler chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:449-54. [PMID: 21177910 DOI: 10.1128/cvi.00379-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Campylobacter is a leading cause of bacterial gastroenteritis in humans and is often linked to contaminated poultry products. Live Salmonella vectors expressing three linear peptide epitopes from Campylobacter proteins Cj0113 (Omp18/CjaD), Cj0982c (CjaA), and Cj0420 (ACE393) were administered to chicks by oral gavage on the day of hatch, and the chicks were challenged with Campylobacter jejuni on day 21. All three candidate vaccines produced consistent humoral immune responses with high levels of serum IgG and mucosal secretory IgA (sIgA), with the best response from the Cj0113 peptide-expressing vector. Campylobacter challenge following vaccination of three candidate vaccine groups decreased Campylobacter recovery from the ileum compared to that for controls on day 32. The Cj0113 peptide-expressing vector reduced Campylobacter to below detectable levels. The Salmonella-vectored Cj0113 subunit vaccine appears to be an excellent candidate for further evaluation as a tool for the reduction of Campylobacter in poultry for improved food safety.
Collapse
|
15
|
Helicobacter pylori Omp18 and its application in serologic screening of infection. Curr Microbiol 2010; 62:325-30. [PMID: 20652254 DOI: 10.1007/s00284-010-9694-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/04/2010] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori (Hp) is a major risk factor for gastrointestinal disorders including gastric cancer. We evaluated host serum antibody responses toward outer membrane protein18 in comparison with Urease A and B subunits. omp18 and ureA-ureB gene fragments were PCR amplified, cloned, and expressed in E. coli expression system. The expressed proteins were visualized on SDS-PAGE and confirmed by immuno-blotting. Purified proteins were applied in western blotting assays in comparison with local and foreign ELISA kits. ROC curve analysis identified the optimum cut-off points for each protein. rOmp18 represented the highest rates of sensitivity (94%), specificity (89%), PPV (97.4%), NPV (77.4%), and accuracy (93.2%) in comparison with urease A and B subunits. These immunologic indices were in "substantial" agreement (Κ = 0.7) with the gold standard tests for Hp detection. This study recommends Hp conserved Omp18 as a reliable serologic marker for accurate detection of Hp infection particularly for application in population screening approaches.
Collapse
|
16
|
Scott NE, Cordwell SJ. Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteomics 2009; 6:61-74. [PMID: 19210127 DOI: 10.1586/14789450.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Campylobacter species are a major cause of disease in mammalian systems. The most common human etiological agent within this genus is Campylobacter jejuni - the leading cause of bacterial gastroenteritis in the developed world. While this organism has been extensively studied at the cellular level, and the genome sequences of several strains have now been elucidated, little is known regarding the role of individual proteins in virulence processes, such as adhesion, colonization and toxicity towards host cells. Proteomics encompasses the global analysis of proteins at the organism level. The technologies included under this term have now started to be utilized for understanding how Campylobacter species respond to changes in the environment, with an emphasis on the human host, as well as to map subcellular locations of proteins, in particular those that are surface-associated. C. jejuni is also of great significance as, unlike most other bacteria, it is able to post-translationally modify its proteins. The analysis of such proteins represents a major challenge in understanding this organism at the proteomic and cellular levels. This review will examine the state-of-the-art in Campylobacter proteomics, as well as provide insights into strategies that need to be undertaken to provide a comprehensive understanding of this organism at the molecular and functional level.
Collapse
Affiliation(s)
- Nichollas E Scott
- School of Molecular and Microbial Biosciences, Building GO8, Maze Crescent, The University of Sydney, Australia.
| | | |
Collapse
|
17
|
Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol 2008; 74:6867-75. [PMID: 18805999 DOI: 10.1128/aem.01097-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with maternal antibodies generated against the S3B strain of C. jejuni provided protection against Campylobacter colonization (O. Sahin, N. Luo, S. Huang, and Q. Zhang, Appl. Environ. Microbiol. 69:5372-5379, 2003). We obtained serum samples, collectively referred to as the C. jejuni S3B-SPF sera, from the previous study. These sera were determined to contain maternal antibodies that reacted against C. jejuni whole-cell lysates as judged by enzyme-linked immunosorbent assay. The antigens recognized by the C. jejuni S3B-SPF antibodies were identified by immunoblot analysis, coupled with mass spectrometry, of C. jejuni outer membrane protein extracts. This approach led to the identification of C. jejuni proteins recognized by the maternal antibodies, including the flagellin proteins and CadF adhesin. In vitro assays revealed that the C. jejuni S3B-SPF sera retarded the motility of the C. jejuni S3B homologous strain but did not retard the motility of a heterologous strain of C. jejuni (81-176). This finding provides a possible mechanism explaining why maternal antibodies confer enhanced protection against challenge with a homologous strain compared to a heterologous strain. Collectively, this study provides a list of C. jejuni proteins against which protective antibodies are generated in hens and passed to chicks.
Collapse
|
18
|
Wyszyńska A, Życka J, Godlewska R, Jagusztyn-Krynicka EK. The Campylobacter jejuni/coli cjaA (cj0982c) Gene Encodes an N-Glycosylated Lipoprotein Localized in the Inner Membrane. Curr Microbiol 2008; 57:181-8. [DOI: 10.1007/s00284-008-9171-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/04/2008] [Indexed: 11/24/2022]
|
19
|
Immunogenicity and protective efficacy of recombinant Campylobacter jejuni flagellum-secreted proteins in mice. Infect Immun 2008; 76:3170-5. [PMID: 18426878 DOI: 10.1128/iai.00076-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunogenicity and protective efficacy of three Campylobacter jejuni flagellum-secreted proteins, FlaC, FspA1, and FspA2, were compared by use of a mouse model. Mice were immunized intranasally with each protein with or without LTR192G as the adjuvant and challenged intranasally with C. jejuni 81-176 or CG8486. All three proteins were immunogenic, although FspA1 induced the highest levels of serum immunoglobulin G (IgG) and fecal IgA. Although immunogenic, FlaC provided only 18% protection against disease from C. jejuni 81-176. Immunization with FspA1 resulted in 57.8% protection without adjuvant or 63.8% protection with adjuvant against homologous challenge with 81-176. Alternatively, immunization with FspA2 provided 38.4% (without adjuvant) or 47.2% (with adjuvant) protection against disease from homologous challenge with CG8486. In contrast to FspA2, FspA1 provided some heterologous protection against C. jejuni CG8486 when delivered with (31.2%) or without (44.8%) LTR192G. These results suggest that FspA1 may be a good subunit vaccine candidate against C. jejuni disease.
Collapse
|
20
|
de Zoete MR, van Putten JPM, Wagenaar JA. Vaccination of chickens against Campylobacter. Vaccine 2007; 25:5548-57. [PMID: 17224215 DOI: 10.1016/j.vaccine.2006.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/13/2006] [Accepted: 12/01/2006] [Indexed: 11/29/2022]
Abstract
The gram-negative bacterium Campylobacter is the leading cause of bacterial entero-colitis in humans and is associated with the occurrence of life-threatening auto-immune based neurological disorders. Chickens, which are often heavily colonized with Campylobacter without signs of pathology, are considered the most important source for human infection. Although vaccination is a well established and effective method to combat various microbes in poultry, a commercial vaccine against Campylobacter has not yet been developed. For the development of such a vaccine, three main challenges can be identified: (1) the identification of novel cross-protection-inducing antigens, (2) the induction of a rapid, potent immune response, and (3) the development of novel adjuvants to further stimulate immunity against Campylobacter. The rapidly emerging knowledge of the biology of Campylobacter in combination with the recent advances in the fields of molecular vaccinology and immunology provide the required setting for the development of an effective vaccine against Campylobacter in poultry.
Collapse
Affiliation(s)
- Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80.165, 3508 TD Utrecht, The Netherlands
| | | | | |
Collapse
|
21
|
Schmidt-Ott R, Brass F, Scholz C, Werner C, Groß U. Improved serodiagnosis of Campylobacter jejuni infections using recombinant antigens. J Med Microbiol 2005; 54:761-767. [PMID: 16014430 DOI: 10.1099/jmm.0.46040-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Campylobacter jejuni is a frequent cause of infectious diarrhoea and is increasingly recognized as a trigger for late-onset complications. The poor standardization of commonly used serological tests might explain the conflicting results regarding the frequency of antecedent C. jejuni infections in defined patient groups. In order to obtain reliable epidemiological data as to the role of C. jejuni in causing late-onset complications, a highly specific and sensitive diagnostic tool for the epidemiological investigation of C. jejuni-associated diseases was developed. It was shown that recombinant proteins encoded by the C. jejuni genes cj0017 (P39) and cj0113 (P18) are specifically recognized by antibodies in sera from patients with C. jejuni enteritis. An ELISA using recombinant P18 and P39 as antigens was 91.9% sensitive and 99.0% specific, with positive and negative predictive values of 97.1% and 97.0%, respectively, comparing favourably with the 27.0% sensitivity of a routinely used serological assay.
Collapse
Affiliation(s)
- Ruprecht Schmidt-Ott
- Institute of Medical Microbiology1 and Department for Medical Statistics2, University of Göttingen, D-37075 Göttingen, Germany
| | - Felicitas Brass
- Institute of Medical Microbiology1 and Department for Medical Statistics2, University of Göttingen, D-37075 Göttingen, Germany
| | - Christiane Scholz
- Institute of Medical Microbiology1 and Department for Medical Statistics2, University of Göttingen, D-37075 Göttingen, Germany
| | - Carola Werner
- Institute of Medical Microbiology1 and Department for Medical Statistics2, University of Göttingen, D-37075 Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology1 and Department for Medical Statistics2, University of Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
22
|
Müller A, Thomas GH, Horler R, Brannigan JA, Blagova E, Levdikov VM, Fogg MJ, Wilson KS, Wilkinson AJ. An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Mol Microbiol 2005; 57:143-55. [PMID: 15948956 DOI: 10.1111/j.1365-2958.2005.04691.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a Gram-negative food-borne pathogen associated with gastroenteritis in humans as well as cases of the autoimmune disease Guillain-Barré syndrome. C. jejuni is asaccharolytic because it lacks an active glycolytic pathway for the use of sugars as a carbon source. This suggests an increased reliance on amino acids as nutrients and indeed the genome sequence of this organism indicates the presence of a number of amino acid uptake systems. Cj0982, also known as CjaA, is a putative extracytoplasmic solute receptor for one such uptake system as well as a major surface antigen and vaccine candidate. The crystal structure of Cj0982 reveals a two-domain protein with density in the enclosed cavity between the domains that clearly defines the presence of a bound cysteine ligand. Fluorescence titration experiments were used to demonstrate that Cj0982 binds cysteine tightly and specifically with a K(d) of approximately 10(-7) M consistent with a role as a receptor for a high-affinity transporter. These data imply that Cj0982 is the binding protein component of an ABC-type cysteine transporter system and that cysteine uptake is important in the physiology of C. jejuni.
Collapse
Affiliation(s)
- Axel Müller
- Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5YW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Raczko AM, Bujnicki JM, Pawłowski M, Godlewska R, Lewandowska M, Jagusztyn-Krynicka EK. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology (Reading) 2005; 151:219-231. [PMID: 15632440 DOI: 10.1099/mic.0.27483-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Gram-negative bacterial cells, disulfide bond formation occurs in the oxidative environment of the periplasm and is catalysed by Dsb (disulfide bond) proteins found in the periplasm and in the inner membrane. In this report the identification of a new subfamily of disulfide oxidoreductases encoded by a gene denoted dsbI, and functional characterization of DsbI proteins from Campylobacter jejuni and Helicobacter pylori, as well as DsbB from C. jejuni, are described. The N-terminal domain of DsbI is related to DsbB proteins and comprises five predicted transmembrane segments, while the C-terminal domain is predicted to locate to the periplasm and to fold into a β-propeller structure. The dsbI gene is co-transcribed with a small ORF designated dba (
dsbI-accessory). Based on a series of deletion and complementation experiments it is proposed that DsbB can complement the lack of DsbI but not the converse. In the presence of DsbB, the activity of DsbI was undetectable, hence it probably acts only on a subset of possible substrates of DsbB. To reconstruct the principal events in the evolution of DsbB and DsbI proteins, sequences of all their homologues identifiable in databases were analysed. In the course of this study, previously undetected variations on the common thiol-oxidoreductase theme were identified, such as development of an additional transmembrane helix and loss or migration of the second pair of Cys residues between two distinct periplasmic loops. In conjunction with the experimental characterization of two members of the DsbI lineage, this analysis has resulted in the first comprehensive classification of the DsbB/DsbI family based on structural, functional and evolutionary criteria.
Collapse
Affiliation(s)
- Anna M Raczko
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Marcin Pawłowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Lewandowska
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
24
|
Nita-Lazar M, Wacker M, Schegg B, Amber S, Aebi M. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 2004; 15:361-7. [PMID: 15574802 DOI: 10.1093/glycob/cwi019] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.
Collapse
Affiliation(s)
- Mihai Nita-Lazar
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Wyszyńska A, Raczko A, Lis M, Jagusztyn-Krynicka EK. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 2004; 22:1379-89. [PMID: 15063560 DOI: 10.1016/j.vaccine.2003.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 10/11/2003] [Accepted: 11/04/2003] [Indexed: 11/21/2022]
Abstract
It is well documented that poultry and poultry products are the major source of human campylobacteriosis and salmonellosis. This study examined the general efficacy of avirulent Salmonella vaccine strains expressing Campylobacter antigen as a bivalent chicken vaccine prototype. Three C. jejuni genes: cjaA (cj0982c), cjaC (cj0734c) and cjaD (cj0113) encoding highly immunogenic proteins which are conserved among different Campylobacter serotypes, were introduced into avirulent Salmonella enterica sv. Typhimurium (chi 4550 and chi 3987) strains of two different serotypes (UK-1 and SR). The high copy number plasmid pYA3341 Asd(+) was used as a cloning vector. The constitutive expression of all analysed genes as measured by Western immunoblot technique was independent of the particular host strain. Specific rabbit anti-rCjaA antibody reacted not only with CjaA but also with other solute-binding protein (family 3), component of the ABC transport system (CjaC protein), was chosen as the protective antigen for animal experiments. Chickens orally immunized with Salmonella expressing Campylobacter cjaA gene developed serum IgG and mucosal IgA antibody responses against Campylobacter membrane proteins and Salmonella OMPs, as measured by an ELISA test. Protection experiment showed that chicken immunization with avirulent Salmonella carrying Campylobacter cjaA gene greatly reduced the ability of heterologous wild type C. jejuni strain to colonize the bird cecum.
Collapse
Affiliation(s)
- Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, Miecznikowa 1 Street, 02-096 Warsaw, Poland
| | | | | | | |
Collapse
|
26
|
Voland P, Hafsi N, Zeitner M, Laforsch S, Wagner H, Prinz C. Antigenic properties of HpaA and Omp18, two outer membrane proteins of Helicobacter pylori. Infect Immun 2003; 71:3837-43. [PMID: 12819067 PMCID: PMC162034 DOI: 10.1128/iai.71.7.3837-3843.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Outer membrane proteins (OMPs) are incorporated into the outer plasma membrane of Helicobacter pylori and are important for, e.g., ion transport, adherence, structural and osmotic stability, and bacterial virulence but may also be antigenic due to their surface exposure. Previous proteome-based approaches with H. pylori lysates determined a strong serological reaction towards two H. pylori OMPs, HpaA (TIGR HP0797) and Omp18 (TIGR HP1125). PCR was used to detect DNA encoding the two proteins, and a positive signal was found in all H. pylori strains tested. Proteins were cloned and expressed in the human kidney cell line HK293 with the QiaExpressionist system with a C-terminal His tag. Only sera from infected persons showed a positive reaction with the recombinant proteins. Recombinant HpaA (rHpaA) and rOmp18 were incubated with human peripheral blood mononuclear cells and induced secretion of interleukin-12 (IL-12) and IL-10 from these cells. To determine the effect on antigen-presenting cells, human blood monocytic and dendritic cells (DCs) were isolated by magnetic cell separation. rOmp18 and rHpaA strongly stimulated major histocompatibility class II and CD83 expression 7- to 10-fold on isolated DCs. rHpaA and rOmp18 failed to stimulate IL-8 secretion from monocytes but increased secretion of IL-12 and IL-10 from DCs significantly. In summary, HpaA and Omp18 are recognized by human dendritic cells and induce their maturation as well as antigen presentation. HpaA and Omp18 of H. pylori thereby appear to have a specific antigenic potential in humans.
Collapse
Affiliation(s)
- Petra Voland
- Department of Medicine and Gastroenterology, Technical University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|